llvm-6502/lib/Transforms/InstCombine/InstructionCombining.cpp
2010-01-07 23:44:37 +00:00

1275 lines
50 KiB
C++

//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// InstructionCombining - Combine instructions to form fewer, simple
// instructions. This pass does not modify the CFG. This pass is where
// algebraic simplification happens.
//
// This pass combines things like:
// %Y = add i32 %X, 1
// %Z = add i32 %Y, 1
// into:
// %Z = add i32 %X, 2
//
// This is a simple worklist driven algorithm.
//
// This pass guarantees that the following canonicalizations are performed on
// the program:
// 1. If a binary operator has a constant operand, it is moved to the RHS
// 2. Bitwise operators with constant operands are always grouped so that
// shifts are performed first, then or's, then and's, then xor's.
// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
// 4. All cmp instructions on boolean values are replaced with logical ops
// 5. add X, X is represented as (X*2) => (X << 1)
// 6. Multiplies with a power-of-two constant argument are transformed into
// shifts.
// ... etc.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "instcombine"
#include "llvm/Transforms/Scalar.h"
#include "InstCombine.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/PatternMatch.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include <algorithm>
#include <climits>
using namespace llvm;
using namespace llvm::PatternMatch;
STATISTIC(NumCombined , "Number of insts combined");
STATISTIC(NumConstProp, "Number of constant folds");
STATISTIC(NumDeadInst , "Number of dead inst eliminated");
STATISTIC(NumSunkInst , "Number of instructions sunk");
char InstCombiner::ID = 0;
static RegisterPass<InstCombiner>
X("instcombine", "Combine redundant instructions");
void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addPreservedID(LCSSAID);
AU.setPreservesCFG();
}
/// ShouldChangeType - Return true if it is desirable to convert a computation
/// from 'From' to 'To'. We don't want to convert from a legal to an illegal
/// type for example, or from a smaller to a larger illegal type.
bool InstCombiner::ShouldChangeType(const Type *From, const Type *To) const {
assert(isa<IntegerType>(From) && isa<IntegerType>(To));
// If we don't have TD, we don't know if the source/dest are legal.
if (!TD) return false;
unsigned FromWidth = From->getPrimitiveSizeInBits();
unsigned ToWidth = To->getPrimitiveSizeInBits();
bool FromLegal = TD->isLegalInteger(FromWidth);
bool ToLegal = TD->isLegalInteger(ToWidth);
// If this is a legal integer from type, and the result would be an illegal
// type, don't do the transformation.
if (FromLegal && !ToLegal)
return false;
// Otherwise, if both are illegal, do not increase the size of the result. We
// do allow things like i160 -> i64, but not i64 -> i160.
if (!FromLegal && !ToLegal && ToWidth > FromWidth)
return false;
return true;
}
// SimplifyCommutative - This performs a few simplifications for commutative
// operators:
//
// 1. Order operands such that they are listed from right (least complex) to
// left (most complex). This puts constants before unary operators before
// binary operators.
//
// 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
// 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
//
bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
bool Changed = false;
if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
Changed = !I.swapOperands();
if (!I.isAssociative()) return Changed;
Instruction::BinaryOps Opcode = I.getOpcode();
if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
if (isa<Constant>(I.getOperand(1))) {
Constant *Folded = ConstantExpr::get(I.getOpcode(),
cast<Constant>(I.getOperand(1)),
cast<Constant>(Op->getOperand(1)));
I.setOperand(0, Op->getOperand(0));
I.setOperand(1, Folded);
return true;
}
if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)))
if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
Op->hasOneUse() && Op1->hasOneUse()) {
Constant *C1 = cast<Constant>(Op->getOperand(1));
Constant *C2 = cast<Constant>(Op1->getOperand(1));
// Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
Instruction *New = BinaryOperator::Create(Opcode, Op->getOperand(0),
Op1->getOperand(0),
Op1->getName(), &I);
Worklist.Add(New);
I.setOperand(0, New);
I.setOperand(1, Folded);
return true;
}
}
return Changed;
}
// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
// if the LHS is a constant zero (which is the 'negate' form).
//
Value *InstCombiner::dyn_castNegVal(Value *V) const {
if (BinaryOperator::isNeg(V))
return BinaryOperator::getNegArgument(V);
// Constants can be considered to be negated values if they can be folded.
if (ConstantInt *C = dyn_cast<ConstantInt>(V))
return ConstantExpr::getNeg(C);
if (ConstantVector *C = dyn_cast<ConstantVector>(V))
if (C->getType()->getElementType()->isInteger())
return ConstantExpr::getNeg(C);
return 0;
}
// dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
// instruction if the LHS is a constant negative zero (which is the 'negate'
// form).
//
Value *InstCombiner::dyn_castFNegVal(Value *V) const {
if (BinaryOperator::isFNeg(V))
return BinaryOperator::getFNegArgument(V);
// Constants can be considered to be negated values if they can be folded.
if (ConstantFP *C = dyn_cast<ConstantFP>(V))
return ConstantExpr::getFNeg(C);
if (ConstantVector *C = dyn_cast<ConstantVector>(V))
if (C->getType()->getElementType()->isFloatingPoint())
return ConstantExpr::getFNeg(C);
return 0;
}
static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
InstCombiner *IC) {
if (CastInst *CI = dyn_cast<CastInst>(&I))
return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
// Figure out if the constant is the left or the right argument.
bool ConstIsRHS = isa<Constant>(I.getOperand(1));
Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
if (Constant *SOC = dyn_cast<Constant>(SO)) {
if (ConstIsRHS)
return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
}
Value *Op0 = SO, *Op1 = ConstOperand;
if (!ConstIsRHS)
std::swap(Op0, Op1);
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
SO->getName()+".op");
if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
SO->getName()+".cmp");
if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
SO->getName()+".cmp");
llvm_unreachable("Unknown binary instruction type!");
}
// FoldOpIntoSelect - Given an instruction with a select as one operand and a
// constant as the other operand, try to fold the binary operator into the
// select arguments. This also works for Cast instructions, which obviously do
// not have a second operand.
Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
// Don't modify shared select instructions
if (!SI->hasOneUse()) return 0;
Value *TV = SI->getOperand(1);
Value *FV = SI->getOperand(2);
if (isa<Constant>(TV) || isa<Constant>(FV)) {
// Bool selects with constant operands can be folded to logical ops.
if (SI->getType()->isInteger(1)) return 0;
Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
return SelectInst::Create(SI->getCondition(), SelectTrueVal,
SelectFalseVal);
}
return 0;
}
/// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
/// has a PHI node as operand #0, see if we can fold the instruction into the
/// PHI (which is only possible if all operands to the PHI are constants).
///
/// If AllowAggressive is true, FoldOpIntoPhi will allow certain transforms
/// that would normally be unprofitable because they strongly encourage jump
/// threading.
Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I,
bool AllowAggressive) {
AllowAggressive = false;
PHINode *PN = cast<PHINode>(I.getOperand(0));
unsigned NumPHIValues = PN->getNumIncomingValues();
if (NumPHIValues == 0 ||
// We normally only transform phis with a single use, unless we're trying
// hard to make jump threading happen.
(!PN->hasOneUse() && !AllowAggressive))
return 0;
// Check to see if all of the operands of the PHI are simple constants
// (constantint/constantfp/undef). If there is one non-constant value,
// remember the BB it is in. If there is more than one or if *it* is a PHI,
// bail out. We don't do arbitrary constant expressions here because moving
// their computation can be expensive without a cost model.
BasicBlock *NonConstBB = 0;
for (unsigned i = 0; i != NumPHIValues; ++i)
if (!isa<Constant>(PN->getIncomingValue(i)) ||
isa<ConstantExpr>(PN->getIncomingValue(i))) {
if (NonConstBB) return 0; // More than one non-const value.
if (isa<PHINode>(PN->getIncomingValue(i))) return 0; // Itself a phi.
NonConstBB = PN->getIncomingBlock(i);
// If the incoming non-constant value is in I's block, we have an infinite
// loop.
if (NonConstBB == I.getParent())
return 0;
}
// If there is exactly one non-constant value, we can insert a copy of the
// operation in that block. However, if this is a critical edge, we would be
// inserting the computation one some other paths (e.g. inside a loop). Only
// do this if the pred block is unconditionally branching into the phi block.
if (NonConstBB != 0 && !AllowAggressive) {
BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
if (!BI || !BI->isUnconditional()) return 0;
}
// Okay, we can do the transformation: create the new PHI node.
PHINode *NewPN = PHINode::Create(I.getType(), "");
NewPN->reserveOperandSpace(PN->getNumOperands()/2);
InsertNewInstBefore(NewPN, *PN);
NewPN->takeName(PN);
// Next, add all of the operands to the PHI.
if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
// We only currently try to fold the condition of a select when it is a phi,
// not the true/false values.
Value *TrueV = SI->getTrueValue();
Value *FalseV = SI->getFalseValue();
BasicBlock *PhiTransBB = PN->getParent();
for (unsigned i = 0; i != NumPHIValues; ++i) {
BasicBlock *ThisBB = PN->getIncomingBlock(i);
Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
Value *InV = 0;
if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
} else {
assert(PN->getIncomingBlock(i) == NonConstBB);
InV = SelectInst::Create(PN->getIncomingValue(i), TrueVInPred,
FalseVInPred,
"phitmp", NonConstBB->getTerminator());
Worklist.Add(cast<Instruction>(InV));
}
NewPN->addIncoming(InV, ThisBB);
}
} else if (I.getNumOperands() == 2) {
Constant *C = cast<Constant>(I.getOperand(1));
for (unsigned i = 0; i != NumPHIValues; ++i) {
Value *InV = 0;
if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
if (CmpInst *CI = dyn_cast<CmpInst>(&I))
InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
else
InV = ConstantExpr::get(I.getOpcode(), InC, C);
} else {
assert(PN->getIncomingBlock(i) == NonConstBB);
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
InV = BinaryOperator::Create(BO->getOpcode(),
PN->getIncomingValue(i), C, "phitmp",
NonConstBB->getTerminator());
else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
InV = CmpInst::Create(CI->getOpcode(),
CI->getPredicate(),
PN->getIncomingValue(i), C, "phitmp",
NonConstBB->getTerminator());
else
llvm_unreachable("Unknown binop!");
Worklist.Add(cast<Instruction>(InV));
}
NewPN->addIncoming(InV, PN->getIncomingBlock(i));
}
} else {
CastInst *CI = cast<CastInst>(&I);
const Type *RetTy = CI->getType();
for (unsigned i = 0; i != NumPHIValues; ++i) {
Value *InV;
if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
} else {
assert(PN->getIncomingBlock(i) == NonConstBB);
InV = CastInst::Create(CI->getOpcode(), PN->getIncomingValue(i),
I.getType(), "phitmp",
NonConstBB->getTerminator());
Worklist.Add(cast<Instruction>(InV));
}
NewPN->addIncoming(InV, PN->getIncomingBlock(i));
}
}
return ReplaceInstUsesWith(I, NewPN);
}
/// FindElementAtOffset - Given a type and a constant offset, determine whether
/// or not there is a sequence of GEP indices into the type that will land us at
/// the specified offset. If so, fill them into NewIndices and return the
/// resultant element type, otherwise return null.
const Type *InstCombiner::FindElementAtOffset(const Type *Ty, int64_t Offset,
SmallVectorImpl<Value*> &NewIndices) {
if (!TD) return 0;
if (!Ty->isSized()) return 0;
// Start with the index over the outer type. Note that the type size
// might be zero (even if the offset isn't zero) if the indexed type
// is something like [0 x {int, int}]
const Type *IntPtrTy = TD->getIntPtrType(Ty->getContext());
int64_t FirstIdx = 0;
if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
FirstIdx = Offset/TySize;
Offset -= FirstIdx*TySize;
// Handle hosts where % returns negative instead of values [0..TySize).
if (Offset < 0) {
--FirstIdx;
Offset += TySize;
assert(Offset >= 0);
}
assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
}
NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
// Index into the types. If we fail, set OrigBase to null.
while (Offset) {
// Indexing into tail padding between struct/array elements.
if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty))
return 0;
if (const StructType *STy = dyn_cast<StructType>(Ty)) {
const StructLayout *SL = TD->getStructLayout(STy);
assert(Offset < (int64_t)SL->getSizeInBytes() &&
"Offset must stay within the indexed type");
unsigned Elt = SL->getElementContainingOffset(Offset);
NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
Elt));
Offset -= SL->getElementOffset(Elt);
Ty = STy->getElementType(Elt);
} else if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType());
assert(EltSize && "Cannot index into a zero-sized array");
NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
Offset %= EltSize;
Ty = AT->getElementType();
} else {
// Otherwise, we can't index into the middle of this atomic type, bail.
return 0;
}
}
return Ty;
}
Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
if (Value *V = SimplifyGEPInst(&Ops[0], Ops.size(), TD))
return ReplaceInstUsesWith(GEP, V);
Value *PtrOp = GEP.getOperand(0);
if (isa<UndefValue>(GEP.getOperand(0)))
return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
// Eliminate unneeded casts for indices.
if (TD) {
bool MadeChange = false;
unsigned PtrSize = TD->getPointerSizeInBits();
gep_type_iterator GTI = gep_type_begin(GEP);
for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
I != E; ++I, ++GTI) {
if (!isa<SequentialType>(*GTI)) continue;
// If we are using a wider index than needed for this platform, shrink it
// to what we need. If narrower, sign-extend it to what we need. This
// explicit cast can make subsequent optimizations more obvious.
unsigned OpBits = cast<IntegerType>((*I)->getType())->getBitWidth();
if (OpBits == PtrSize)
continue;
*I = Builder->CreateIntCast(*I, TD->getIntPtrType(GEP.getContext()),true);
MadeChange = true;
}
if (MadeChange) return &GEP;
}
// Combine Indices - If the source pointer to this getelementptr instruction
// is a getelementptr instruction, combine the indices of the two
// getelementptr instructions into a single instruction.
//
if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
// Note that if our source is a gep chain itself that we wait for that
// chain to be resolved before we perform this transformation. This
// avoids us creating a TON of code in some cases.
//
if (GetElementPtrInst *SrcGEP =
dyn_cast<GetElementPtrInst>(Src->getOperand(0)))
if (SrcGEP->getNumOperands() == 2)
return 0; // Wait until our source is folded to completion.
SmallVector<Value*, 8> Indices;
// Find out whether the last index in the source GEP is a sequential idx.
bool EndsWithSequential = false;
for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
I != E; ++I)
EndsWithSequential = !isa<StructType>(*I);
// Can we combine the two pointer arithmetics offsets?
if (EndsWithSequential) {
// Replace: gep (gep %P, long B), long A, ...
// With: T = long A+B; gep %P, T, ...
//
Value *Sum;
Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
Value *GO1 = GEP.getOperand(1);
if (SO1 == Constant::getNullValue(SO1->getType())) {
Sum = GO1;
} else if (GO1 == Constant::getNullValue(GO1->getType())) {
Sum = SO1;
} else {
// If they aren't the same type, then the input hasn't been processed
// by the loop above yet (which canonicalizes sequential index types to
// intptr_t). Just avoid transforming this until the input has been
// normalized.
if (SO1->getType() != GO1->getType())
return 0;
Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
}
// Update the GEP in place if possible.
if (Src->getNumOperands() == 2) {
GEP.setOperand(0, Src->getOperand(0));
GEP.setOperand(1, Sum);
return &GEP;
}
Indices.append(Src->op_begin()+1, Src->op_end()-1);
Indices.push_back(Sum);
Indices.append(GEP.op_begin()+2, GEP.op_end());
} else if (isa<Constant>(*GEP.idx_begin()) &&
cast<Constant>(*GEP.idx_begin())->isNullValue() &&
Src->getNumOperands() != 1) {
// Otherwise we can do the fold if the first index of the GEP is a zero
Indices.append(Src->op_begin()+1, Src->op_end());
Indices.append(GEP.idx_begin()+1, GEP.idx_end());
}
if (!Indices.empty())
return (GEP.isInBounds() && Src->isInBounds()) ?
GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices.begin(),
Indices.end(), GEP.getName()) :
GetElementPtrInst::Create(Src->getOperand(0), Indices.begin(),
Indices.end(), GEP.getName());
}
// Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
Value *StrippedPtr = PtrOp->stripPointerCasts();
if (StrippedPtr != PtrOp) {
const PointerType *StrippedPtrTy =cast<PointerType>(StrippedPtr->getType());
bool HasZeroPointerIndex = false;
if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
HasZeroPointerIndex = C->isZero();
// Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
// into : GEP [10 x i8]* X, i32 0, ...
//
// Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
// into : GEP i8* X, ...
//
// This occurs when the program declares an array extern like "int X[];"
if (HasZeroPointerIndex) {
const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
if (const ArrayType *CATy =
dyn_cast<ArrayType>(CPTy->getElementType())) {
// GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
// -> GEP i8* X, ...
SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
GetElementPtrInst *Res =
GetElementPtrInst::Create(StrippedPtr, Idx.begin(),
Idx.end(), GEP.getName());
Res->setIsInBounds(GEP.isInBounds());
return Res;
}
if (const ArrayType *XATy =
dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
// GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
if (CATy->getElementType() == XATy->getElementType()) {
// -> GEP [10 x i8]* X, i32 0, ...
// At this point, we know that the cast source type is a pointer
// to an array of the same type as the destination pointer
// array. Because the array type is never stepped over (there
// is a leading zero) we can fold the cast into this GEP.
GEP.setOperand(0, StrippedPtr);
return &GEP;
}
}
}
} else if (GEP.getNumOperands() == 2) {
// Transform things like:
// %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
// into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
const Type *SrcElTy = StrippedPtrTy->getElementType();
const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
if (TD && isa<ArrayType>(SrcElTy) &&
TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
TD->getTypeAllocSize(ResElTy)) {
Value *Idx[2];
Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
Idx[1] = GEP.getOperand(1);
Value *NewGEP = GEP.isInBounds() ?
Builder->CreateInBoundsGEP(StrippedPtr, Idx, Idx + 2, GEP.getName()) :
Builder->CreateGEP(StrippedPtr, Idx, Idx + 2, GEP.getName());
// V and GEP are both pointer types --> BitCast
return new BitCastInst(NewGEP, GEP.getType());
}
// Transform things like:
// getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
// (where tmp = 8*tmp2) into:
// getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
if (TD && isa<ArrayType>(SrcElTy) && ResElTy->isInteger(8)) {
uint64_t ArrayEltSize =
TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType());
// Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We
// allow either a mul, shift, or constant here.
Value *NewIdx = 0;
ConstantInt *Scale = 0;
if (ArrayEltSize == 1) {
NewIdx = GEP.getOperand(1);
Scale = ConstantInt::get(cast<IntegerType>(NewIdx->getType()), 1);
} else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
NewIdx = ConstantInt::get(CI->getType(), 1);
Scale = CI;
} else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
if (Inst->getOpcode() == Instruction::Shl &&
isa<ConstantInt>(Inst->getOperand(1))) {
ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
Scale = ConstantInt::get(cast<IntegerType>(Inst->getType()),
1ULL << ShAmtVal);
NewIdx = Inst->getOperand(0);
} else if (Inst->getOpcode() == Instruction::Mul &&
isa<ConstantInt>(Inst->getOperand(1))) {
Scale = cast<ConstantInt>(Inst->getOperand(1));
NewIdx = Inst->getOperand(0);
}
}
// If the index will be to exactly the right offset with the scale taken
// out, perform the transformation. Note, we don't know whether Scale is
// signed or not. We'll use unsigned version of division/modulo
// operation after making sure Scale doesn't have the sign bit set.
if (ArrayEltSize && Scale && Scale->getSExtValue() >= 0LL &&
Scale->getZExtValue() % ArrayEltSize == 0) {
Scale = ConstantInt::get(Scale->getType(),
Scale->getZExtValue() / ArrayEltSize);
if (Scale->getZExtValue() != 1) {
Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
false /*ZExt*/);
NewIdx = Builder->CreateMul(NewIdx, C, "idxscale");
}
// Insert the new GEP instruction.
Value *Idx[2];
Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
Idx[1] = NewIdx;
Value *NewGEP = GEP.isInBounds() ?
Builder->CreateInBoundsGEP(StrippedPtr, Idx, Idx + 2,GEP.getName()):
Builder->CreateGEP(StrippedPtr, Idx, Idx + 2, GEP.getName());
// The NewGEP must be pointer typed, so must the old one -> BitCast
return new BitCastInst(NewGEP, GEP.getType());
}
}
}
}
/// See if we can simplify:
/// X = bitcast A* to B*
/// Y = gep X, <...constant indices...>
/// into a gep of the original struct. This is important for SROA and alias
/// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
if (TD &&
!isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices()) {
// Determine how much the GEP moves the pointer. We are guaranteed to get
// a constant back from EmitGEPOffset.
ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(&GEP));
int64_t Offset = OffsetV->getSExtValue();
// If this GEP instruction doesn't move the pointer, just replace the GEP
// with a bitcast of the real input to the dest type.
if (Offset == 0) {
// If the bitcast is of an allocation, and the allocation will be
// converted to match the type of the cast, don't touch this.
if (isa<AllocaInst>(BCI->getOperand(0)) ||
isMalloc(BCI->getOperand(0))) {
// See if the bitcast simplifies, if so, don't nuke this GEP yet.
if (Instruction *I = visitBitCast(*BCI)) {
if (I != BCI) {
I->takeName(BCI);
BCI->getParent()->getInstList().insert(BCI, I);
ReplaceInstUsesWith(*BCI, I);
}
return &GEP;
}
}
return new BitCastInst(BCI->getOperand(0), GEP.getType());
}
// Otherwise, if the offset is non-zero, we need to find out if there is a
// field at Offset in 'A's type. If so, we can pull the cast through the
// GEP.
SmallVector<Value*, 8> NewIndices;
const Type *InTy =
cast<PointerType>(BCI->getOperand(0)->getType())->getElementType();
if (FindElementAtOffset(InTy, Offset, NewIndices)) {
Value *NGEP = GEP.isInBounds() ?
Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices.begin(),
NewIndices.end()) :
Builder->CreateGEP(BCI->getOperand(0), NewIndices.begin(),
NewIndices.end());
if (NGEP->getType() == GEP.getType())
return ReplaceInstUsesWith(GEP, NGEP);
NGEP->takeName(&GEP);
return new BitCastInst(NGEP, GEP.getType());
}
}
}
return 0;
}
Instruction *InstCombiner::visitFree(Instruction &FI) {
Value *Op = FI.getOperand(1);
// free undef -> unreachable.
if (isa<UndefValue>(Op)) {
// Insert a new store to null because we cannot modify the CFG here.
new StoreInst(ConstantInt::getTrue(FI.getContext()),
UndefValue::get(Type::getInt1PtrTy(FI.getContext())), &FI);
return EraseInstFromFunction(FI);
}
// If we have 'free null' delete the instruction. This can happen in stl code
// when lots of inlining happens.
if (isa<ConstantPointerNull>(Op))
return EraseInstFromFunction(FI);
// If we have a malloc call whose only use is a free call, delete both.
if (isMalloc(Op)) {
if (CallInst* CI = extractMallocCallFromBitCast(Op)) {
if (Op->hasOneUse() && CI->hasOneUse()) {
EraseInstFromFunction(FI);
EraseInstFromFunction(*CI);
return EraseInstFromFunction(*cast<Instruction>(Op));
}
} else {
// Op is a call to malloc
if (Op->hasOneUse()) {
EraseInstFromFunction(FI);
return EraseInstFromFunction(*cast<Instruction>(Op));
}
}
}
return 0;
}
Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
// Change br (not X), label True, label False to: br X, label False, True
Value *X = 0;
BasicBlock *TrueDest;
BasicBlock *FalseDest;
if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
!isa<Constant>(X)) {
// Swap Destinations and condition...
BI.setCondition(X);
BI.setSuccessor(0, FalseDest);
BI.setSuccessor(1, TrueDest);
return &BI;
}
// Cannonicalize fcmp_one -> fcmp_oeq
FCmpInst::Predicate FPred; Value *Y;
if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
TrueDest, FalseDest)) &&
BI.getCondition()->hasOneUse())
if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
FPred == FCmpInst::FCMP_OGE) {
FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
// Swap Destinations and condition.
BI.setSuccessor(0, FalseDest);
BI.setSuccessor(1, TrueDest);
Worklist.Add(Cond);
return &BI;
}
// Cannonicalize icmp_ne -> icmp_eq
ICmpInst::Predicate IPred;
if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
TrueDest, FalseDest)) &&
BI.getCondition()->hasOneUse())
if (IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
IPred == ICmpInst::ICMP_SGE) {
ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
// Swap Destinations and condition.
BI.setSuccessor(0, FalseDest);
BI.setSuccessor(1, TrueDest);
Worklist.Add(Cond);
return &BI;
}
return 0;
}
Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
Value *Cond = SI.getCondition();
if (Instruction *I = dyn_cast<Instruction>(Cond)) {
if (I->getOpcode() == Instruction::Add)
if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
// change 'switch (X+4) case 1:' into 'switch (X) case -3'
for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
SI.setOperand(i,
ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
AddRHS));
SI.setOperand(0, I->getOperand(0));
Worklist.Add(I);
return &SI;
}
}
return 0;
}
Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
Value *Agg = EV.getAggregateOperand();
if (!EV.hasIndices())
return ReplaceInstUsesWith(EV, Agg);
if (Constant *C = dyn_cast<Constant>(Agg)) {
if (isa<UndefValue>(C))
return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType()));
if (isa<ConstantAggregateZero>(C))
return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType()));
if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
// Extract the element indexed by the first index out of the constant
Value *V = C->getOperand(*EV.idx_begin());
if (EV.getNumIndices() > 1)
// Extract the remaining indices out of the constant indexed by the
// first index
return ExtractValueInst::Create(V, EV.idx_begin() + 1, EV.idx_end());
else
return ReplaceInstUsesWith(EV, V);
}
return 0; // Can't handle other constants
}
if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
// We're extracting from an insertvalue instruction, compare the indices
const unsigned *exti, *exte, *insi, *inse;
for (exti = EV.idx_begin(), insi = IV->idx_begin(),
exte = EV.idx_end(), inse = IV->idx_end();
exti != exte && insi != inse;
++exti, ++insi) {
if (*insi != *exti)
// The insert and extract both reference distinctly different elements.
// This means the extract is not influenced by the insert, and we can
// replace the aggregate operand of the extract with the aggregate
// operand of the insert. i.e., replace
// %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
// %E = extractvalue { i32, { i32 } } %I, 0
// with
// %E = extractvalue { i32, { i32 } } %A, 0
return ExtractValueInst::Create(IV->getAggregateOperand(),
EV.idx_begin(), EV.idx_end());
}
if (exti == exte && insi == inse)
// Both iterators are at the end: Index lists are identical. Replace
// %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
// %C = extractvalue { i32, { i32 } } %B, 1, 0
// with "i32 42"
return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
if (exti == exte) {
// The extract list is a prefix of the insert list. i.e. replace
// %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
// %E = extractvalue { i32, { i32 } } %I, 1
// with
// %X = extractvalue { i32, { i32 } } %A, 1
// %E = insertvalue { i32 } %X, i32 42, 0
// by switching the order of the insert and extract (though the
// insertvalue should be left in, since it may have other uses).
Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
EV.idx_begin(), EV.idx_end());
return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
insi, inse);
}
if (insi == inse)
// The insert list is a prefix of the extract list
// We can simply remove the common indices from the extract and make it
// operate on the inserted value instead of the insertvalue result.
// i.e., replace
// %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
// %E = extractvalue { i32, { i32 } } %I, 1, 0
// with
// %E extractvalue { i32 } { i32 42 }, 0
return ExtractValueInst::Create(IV->getInsertedValueOperand(),
exti, exte);
}
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
// We're extracting from an intrinsic, see if we're the only user, which
// allows us to simplify multiple result intrinsics to simpler things that
// just get one value..
if (II->hasOneUse()) {
// Check if we're grabbing the overflow bit or the result of a 'with
// overflow' intrinsic. If it's the latter we can remove the intrinsic
// and replace it with a traditional binary instruction.
switch (II->getIntrinsicID()) {
case Intrinsic::uadd_with_overflow:
case Intrinsic::sadd_with_overflow:
if (*EV.idx_begin() == 0) { // Normal result.
Value *LHS = II->getOperand(1), *RHS = II->getOperand(2);
II->replaceAllUsesWith(UndefValue::get(II->getType()));
EraseInstFromFunction(*II);
return BinaryOperator::CreateAdd(LHS, RHS);
}
break;
case Intrinsic::usub_with_overflow:
case Intrinsic::ssub_with_overflow:
if (*EV.idx_begin() == 0) { // Normal result.
Value *LHS = II->getOperand(1), *RHS = II->getOperand(2);
II->replaceAllUsesWith(UndefValue::get(II->getType()));
EraseInstFromFunction(*II);
return BinaryOperator::CreateSub(LHS, RHS);
}
break;
case Intrinsic::umul_with_overflow:
case Intrinsic::smul_with_overflow:
if (*EV.idx_begin() == 0) { // Normal result.
Value *LHS = II->getOperand(1), *RHS = II->getOperand(2);
II->replaceAllUsesWith(UndefValue::get(II->getType()));
EraseInstFromFunction(*II);
return BinaryOperator::CreateMul(LHS, RHS);
}
break;
default:
break;
}
}
}
// Can't simplify extracts from other values. Note that nested extracts are
// already simplified implicitely by the above (extract ( extract (insert) )
// will be translated into extract ( insert ( extract ) ) first and then just
// the value inserted, if appropriate).
return 0;
}
/// TryToSinkInstruction - Try to move the specified instruction from its
/// current block into the beginning of DestBlock, which can only happen if it's
/// safe to move the instruction past all of the instructions between it and the
/// end of its block.
static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
assert(I->hasOneUse() && "Invariants didn't hold!");
// Cannot move control-flow-involving, volatile loads, vaarg, etc.
if (isa<PHINode>(I) || I->mayHaveSideEffects() || isa<TerminatorInst>(I))
return false;
// Do not sink alloca instructions out of the entry block.
if (isa<AllocaInst>(I) && I->getParent() ==
&DestBlock->getParent()->getEntryBlock())
return false;
// We can only sink load instructions if there is nothing between the load and
// the end of block that could change the value.
if (I->mayReadFromMemory()) {
for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
Scan != E; ++Scan)
if (Scan->mayWriteToMemory())
return false;
}
BasicBlock::iterator InsertPos = DestBlock->getFirstNonPHI();
I->moveBefore(InsertPos);
++NumSunkInst;
return true;
}
/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
/// all reachable code to the worklist.
///
/// This has a couple of tricks to make the code faster and more powerful. In
/// particular, we constant fold and DCE instructions as we go, to avoid adding
/// them to the worklist (this significantly speeds up instcombine on code where
/// many instructions are dead or constant). Additionally, if we find a branch
/// whose condition is a known constant, we only visit the reachable successors.
///
static bool AddReachableCodeToWorklist(BasicBlock *BB,
SmallPtrSet<BasicBlock*, 64> &Visited,
InstCombiner &IC,
const TargetData *TD) {
bool MadeIRChange = false;
SmallVector<BasicBlock*, 256> Worklist;
Worklist.push_back(BB);
std::vector<Instruction*> InstrsForInstCombineWorklist;
InstrsForInstCombineWorklist.reserve(128);
SmallPtrSet<ConstantExpr*, 64> FoldedConstants;
do {
BB = Worklist.pop_back_val();
// We have now visited this block! If we've already been here, ignore it.
if (!Visited.insert(BB)) continue;
for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
Instruction *Inst = BBI++;
// DCE instruction if trivially dead.
if (isInstructionTriviallyDead(Inst)) {
++NumDeadInst;
DEBUG(errs() << "IC: DCE: " << *Inst << '\n');
Inst->eraseFromParent();
continue;
}
// ConstantProp instruction if trivially constant.
if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
DEBUG(errs() << "IC: ConstFold to: " << *C << " from: "
<< *Inst << '\n');
Inst->replaceAllUsesWith(C);
++NumConstProp;
Inst->eraseFromParent();
continue;
}
if (TD) {
// See if we can constant fold its operands.
for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
i != e; ++i) {
ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
if (CE == 0) continue;
// If we already folded this constant, don't try again.
if (!FoldedConstants.insert(CE))
continue;
Constant *NewC = ConstantFoldConstantExpression(CE, TD);
if (NewC && NewC != CE) {
*i = NewC;
MadeIRChange = true;
}
}
}
InstrsForInstCombineWorklist.push_back(Inst);
}
// Recursively visit successors. If this is a branch or switch on a
// constant, only visit the reachable successor.
TerminatorInst *TI = BB->getTerminator();
if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
Worklist.push_back(ReachableBB);
continue;
}
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
// See if this is an explicit destination.
for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
if (SI->getCaseValue(i) == Cond) {
BasicBlock *ReachableBB = SI->getSuccessor(i);
Worklist.push_back(ReachableBB);
continue;
}
// Otherwise it is the default destination.
Worklist.push_back(SI->getSuccessor(0));
continue;
}
}
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
Worklist.push_back(TI->getSuccessor(i));
} while (!Worklist.empty());
// Once we've found all of the instructions to add to instcombine's worklist,
// add them in reverse order. This way instcombine will visit from the top
// of the function down. This jives well with the way that it adds all uses
// of instructions to the worklist after doing a transformation, thus avoiding
// some N^2 behavior in pathological cases.
IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
InstrsForInstCombineWorklist.size());
return MadeIRChange;
}
bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
MadeIRChange = false;
DEBUG(errs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
<< F.getNameStr() << "\n");
{
// Do a depth-first traversal of the function, populate the worklist with
// the reachable instructions. Ignore blocks that are not reachable. Keep
// track of which blocks we visit.
SmallPtrSet<BasicBlock*, 64> Visited;
MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);
// Do a quick scan over the function. If we find any blocks that are
// unreachable, remove any instructions inside of them. This prevents
// the instcombine code from having to deal with some bad special cases.
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
if (!Visited.count(BB)) {
Instruction *Term = BB->getTerminator();
while (Term != BB->begin()) { // Remove instrs bottom-up
BasicBlock::iterator I = Term; --I;
DEBUG(errs() << "IC: DCE: " << *I << '\n');
// A debug intrinsic shouldn't force another iteration if we weren't
// going to do one without it.
if (!isa<DbgInfoIntrinsic>(I)) {
++NumDeadInst;
MadeIRChange = true;
}
// If I is not void type then replaceAllUsesWith undef.
// This allows ValueHandlers and custom metadata to adjust itself.
if (!I->getType()->isVoidTy())
I->replaceAllUsesWith(UndefValue::get(I->getType()));
I->eraseFromParent();
}
}
}
while (!Worklist.isEmpty()) {
Instruction *I = Worklist.RemoveOne();
if (I == 0) continue; // skip null values.
// Check to see if we can DCE the instruction.
if (isInstructionTriviallyDead(I)) {
DEBUG(errs() << "IC: DCE: " << *I << '\n');
EraseInstFromFunction(*I);
++NumDeadInst;
MadeIRChange = true;
continue;
}
// Instruction isn't dead, see if we can constant propagate it.
if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
if (Constant *C = ConstantFoldInstruction(I, TD)) {
DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
// Add operands to the worklist.
ReplaceInstUsesWith(*I, C);
++NumConstProp;
EraseInstFromFunction(*I);
MadeIRChange = true;
continue;
}
// See if we can trivially sink this instruction to a successor basic block.
if (I->hasOneUse()) {
BasicBlock *BB = I->getParent();
Instruction *UserInst = cast<Instruction>(I->use_back());
BasicBlock *UserParent;
// Get the block the use occurs in.
if (PHINode *PN = dyn_cast<PHINode>(UserInst))
UserParent = PN->getIncomingBlock(I->use_begin().getUse());
else
UserParent = UserInst->getParent();
if (UserParent != BB) {
bool UserIsSuccessor = false;
// See if the user is one of our successors.
for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
if (*SI == UserParent) {
UserIsSuccessor = true;
break;
}
// If the user is one of our immediate successors, and if that successor
// only has us as a predecessors (we'd have to split the critical edge
// otherwise), we can keep going.
if (UserIsSuccessor && UserParent->getSinglePredecessor())
// Okay, the CFG is simple enough, try to sink this instruction.
MadeIRChange |= TryToSinkInstruction(I, UserParent);
}
}
// Now that we have an instruction, try combining it to simplify it.
Builder->SetInsertPoint(I->getParent(), I);
#ifndef NDEBUG
std::string OrigI;
#endif
DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
DEBUG(errs() << "IC: Visiting: " << OrigI << '\n');
if (Instruction *Result = visit(*I)) {
++NumCombined;
// Should we replace the old instruction with a new one?
if (Result != I) {
DEBUG(errs() << "IC: Old = " << *I << '\n'
<< " New = " << *Result << '\n');
// Everything uses the new instruction now.
I->replaceAllUsesWith(Result);
// Push the new instruction and any users onto the worklist.
Worklist.Add(Result);
Worklist.AddUsersToWorkList(*Result);
// Move the name to the new instruction first.
Result->takeName(I);
// Insert the new instruction into the basic block...
BasicBlock *InstParent = I->getParent();
BasicBlock::iterator InsertPos = I;
if (!isa<PHINode>(Result)) // If combining a PHI, don't insert
while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
++InsertPos;
InstParent->getInstList().insert(InsertPos, Result);
EraseInstFromFunction(*I);
} else {
#ifndef NDEBUG
DEBUG(errs() << "IC: Mod = " << OrigI << '\n'
<< " New = " << *I << '\n');
#endif
// If the instruction was modified, it's possible that it is now dead.
// if so, remove it.
if (isInstructionTriviallyDead(I)) {
EraseInstFromFunction(*I);
} else {
Worklist.Add(I);
Worklist.AddUsersToWorkList(*I);
}
}
MadeIRChange = true;
}
}
Worklist.Zap();
return MadeIRChange;
}
bool InstCombiner::runOnFunction(Function &F) {
MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
TD = getAnalysisIfAvailable<TargetData>();
/// Builder - This is an IRBuilder that automatically inserts new
/// instructions into the worklist when they are created.
IRBuilder<true, TargetFolder, InstCombineIRInserter>
TheBuilder(F.getContext(), TargetFolder(TD),
InstCombineIRInserter(Worklist));
Builder = &TheBuilder;
bool EverMadeChange = false;
// Iterate while there is work to do.
unsigned Iteration = 0;
while (DoOneIteration(F, Iteration++))
EverMadeChange = true;
Builder = 0;
return EverMadeChange;
}
FunctionPass *llvm::createInstructionCombiningPass() {
return new InstCombiner();
}