mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-15 04:30:12 +00:00
e3a8e534e1
API requirements much more obvious. The key here is that there are two totally different use cases for mutating the graph. Prior to doing any SCC formation, it is very easy to mutate the graph. There may be users that want to do small tweaks here, and then use the already-built graph for their SCC-based operations. This method remains on the graph itself and is documented carefully as being cheap but unavailable once SCCs are formed. Once SCCs are formed, and there is some in-flight DFS building them, we have to be much more careful in how we mutate the graph. These mutation operations are sunk onto the SCCs themselves, which both simplifies things (the code was already there!) and helps make it obvious that these interfaces are only applicable within that context. The other primary constraint is that the edge being mutated is actually related to the SCC on which we call the method. This helps make it obvious that you cannot arbitrarily mutate some other SCC. I've tried to write much more complete documentation for the interesting mutation API -- intra-SCC edge removal. Currently one aspect of this documentation is a lie (the result list of SCCs) but we also don't even have tests for that API. =[ I'm going to add tests and fix it to match the documentation next. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207339 91177308-0d34-0410-b5e6-96231b3b80d8 |
||
---|---|---|
.. | ||
IPA | ||
AliasAnalysis.cpp | ||
AliasAnalysisCounter.cpp | ||
AliasAnalysisEvaluator.cpp | ||
AliasDebugger.cpp | ||
AliasSetTracker.cpp | ||
Analysis.cpp | ||
BasicAliasAnalysis.cpp | ||
BlockFrequencyInfo.cpp | ||
BlockFrequencyInfoImpl.cpp | ||
BranchProbabilityInfo.cpp | ||
CaptureTracking.cpp | ||
CFG.cpp | ||
CFGPrinter.cpp | ||
CGSCCPassManager.cpp | ||
CMakeLists.txt | ||
CodeMetrics.cpp | ||
ConstantFolding.cpp | ||
CostModel.cpp | ||
Delinearization.cpp | ||
DependenceAnalysis.cpp | ||
DominanceFrontier.cpp | ||
DomPrinter.cpp | ||
InstCount.cpp | ||
InstructionSimplify.cpp | ||
Interval.cpp | ||
IntervalPartition.cpp | ||
IVUsers.cpp | ||
LazyCallGraph.cpp | ||
LazyValueInfo.cpp | ||
LibCallAliasAnalysis.cpp | ||
LibCallSemantics.cpp | ||
Lint.cpp | ||
LLVMBuild.txt | ||
Loads.cpp | ||
LoopInfo.cpp | ||
LoopPass.cpp | ||
Makefile | ||
MemDepPrinter.cpp | ||
MemoryBuiltins.cpp | ||
MemoryDependenceAnalysis.cpp | ||
ModuleDebugInfoPrinter.cpp | ||
NoAliasAnalysis.cpp | ||
PHITransAddr.cpp | ||
PostDominators.cpp | ||
PtrUseVisitor.cpp | ||
README.txt | ||
RegionInfo.cpp | ||
RegionPass.cpp | ||
RegionPrinter.cpp | ||
ScalarEvolution.cpp | ||
ScalarEvolutionAliasAnalysis.cpp | ||
ScalarEvolutionExpander.cpp | ||
ScalarEvolutionNormalization.cpp | ||
SparsePropagation.cpp | ||
TargetTransformInfo.cpp | ||
Trace.cpp | ||
TypeBasedAliasAnalysis.cpp | ||
ValueTracking.cpp |
Analysis Opportunities: //===---------------------------------------------------------------------===// In test/Transforms/LoopStrengthReduce/quadradic-exit-value.ll, the ScalarEvolution expression for %r is this: {1,+,3,+,2}<loop> Outside the loop, this could be evaluated simply as (%n * %n), however ScalarEvolution currently evaluates it as (-2 + (2 * (trunc i65 (((zext i64 (-2 + %n) to i65) * (zext i64 (-1 + %n) to i65)) /u 2) to i64)) + (3 * %n)) In addition to being much more complicated, it involves i65 arithmetic, which is very inefficient when expanded into code. //===---------------------------------------------------------------------===// In formatValue in test/CodeGen/X86/lsr-delayed-fold.ll, ScalarEvolution is forming this expression: ((trunc i64 (-1 * %arg5) to i32) + (trunc i64 %arg5 to i32) + (-1 * (trunc i64 undef to i32))) This could be folded to (-1 * (trunc i64 undef to i32)) //===---------------------------------------------------------------------===//