mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-12 17:32:19 +00:00
674be02d52
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172025 91177308-0d34-0410-b5e6-96231b3b80d8
270 lines
10 KiB
C++
270 lines
10 KiB
C++
//===-- llvm/Support/ConstantRange.h - Represent a range --------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Represent a range of possible values that may occur when the program is run
|
|
// for an integral value. This keeps track of a lower and upper bound for the
|
|
// constant, which MAY wrap around the end of the numeric range. To do this, it
|
|
// keeps track of a [lower, upper) bound, which specifies an interval just like
|
|
// STL iterators. When used with boolean values, the following are important
|
|
// ranges: :
|
|
//
|
|
// [F, F) = {} = Empty set
|
|
// [T, F) = {T}
|
|
// [F, T) = {F}
|
|
// [T, T) = {F, T} = Full set
|
|
//
|
|
// The other integral ranges use min/max values for special range values. For
|
|
// example, for 8-bit types, it uses:
|
|
// [0, 0) = {} = Empty set
|
|
// [255, 255) = {0..255} = Full Set
|
|
//
|
|
// Note that ConstantRange can be used to represent either signed or
|
|
// unsigned ranges.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_SUPPORT_CONSTANTRANGE_H
|
|
#define LLVM_SUPPORT_CONSTANTRANGE_H
|
|
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/Support/DataTypes.h"
|
|
|
|
namespace llvm {
|
|
|
|
/// ConstantRange - This class represents an range of values.
|
|
///
|
|
class ConstantRange {
|
|
APInt Lower, Upper;
|
|
|
|
public:
|
|
/// Initialize a full (the default) or empty set for the specified bit width.
|
|
///
|
|
explicit ConstantRange(uint32_t BitWidth, bool isFullSet = true);
|
|
|
|
/// Initialize a range to hold the single specified value.
|
|
///
|
|
ConstantRange(const APInt &Value);
|
|
|
|
/// @brief Initialize a range of values explicitly. This will assert out if
|
|
/// Lower==Upper and Lower != Min or Max value for its type. It will also
|
|
/// assert out if the two APInt's are not the same bit width.
|
|
ConstantRange(const APInt &Lower, const APInt &Upper);
|
|
|
|
/// makeICmpRegion - Produce the smallest range that contains all values that
|
|
/// might satisfy the comparison specified by Pred when compared to any value
|
|
/// contained within Other.
|
|
///
|
|
/// Solves for range X in 'for all x in X, there exists a y in Y such that
|
|
/// icmp op x, y is true'. Every value that might make the comparison true
|
|
/// is included in the resulting range.
|
|
static ConstantRange makeICmpRegion(unsigned Pred,
|
|
const ConstantRange &Other);
|
|
|
|
/// getLower - Return the lower value for this range...
|
|
///
|
|
const APInt &getLower() const { return Lower; }
|
|
|
|
/// getUpper - Return the upper value for this range...
|
|
///
|
|
const APInt &getUpper() const { return Upper; }
|
|
|
|
/// getBitWidth - get the bit width of this ConstantRange
|
|
///
|
|
uint32_t getBitWidth() const { return Lower.getBitWidth(); }
|
|
|
|
/// isFullSet - Return true if this set contains all of the elements possible
|
|
/// for this data-type
|
|
///
|
|
bool isFullSet() const;
|
|
|
|
/// isEmptySet - Return true if this set contains no members.
|
|
///
|
|
bool isEmptySet() const;
|
|
|
|
/// isWrappedSet - Return true if this set wraps around the top of the range,
|
|
/// for example: [100, 8)
|
|
///
|
|
bool isWrappedSet() const;
|
|
|
|
/// isSignWrappedSet - Return true if this set wraps around the INT_MIN of
|
|
/// its bitwidth, for example: i8 [120, 140).
|
|
///
|
|
bool isSignWrappedSet() const;
|
|
|
|
/// contains - Return true if the specified value is in the set.
|
|
///
|
|
bool contains(const APInt &Val) const;
|
|
|
|
/// contains - Return true if the other range is a subset of this one.
|
|
///
|
|
bool contains(const ConstantRange &CR) const;
|
|
|
|
/// getSingleElement - If this set contains a single element, return it,
|
|
/// otherwise return null.
|
|
///
|
|
const APInt *getSingleElement() const {
|
|
if (Upper == Lower + 1)
|
|
return &Lower;
|
|
return 0;
|
|
}
|
|
|
|
/// isSingleElement - Return true if this set contains exactly one member.
|
|
///
|
|
bool isSingleElement() const { return getSingleElement() != 0; }
|
|
|
|
/// getSetSize - Return the number of elements in this set.
|
|
///
|
|
APInt getSetSize() const;
|
|
|
|
/// getUnsignedMax - Return the largest unsigned value contained in the
|
|
/// ConstantRange.
|
|
///
|
|
APInt getUnsignedMax() const;
|
|
|
|
/// getUnsignedMin - Return the smallest unsigned value contained in the
|
|
/// ConstantRange.
|
|
///
|
|
APInt getUnsignedMin() const;
|
|
|
|
/// getSignedMax - Return the largest signed value contained in the
|
|
/// ConstantRange.
|
|
///
|
|
APInt getSignedMax() const;
|
|
|
|
/// getSignedMin - Return the smallest signed value contained in the
|
|
/// ConstantRange.
|
|
///
|
|
APInt getSignedMin() const;
|
|
|
|
/// operator== - Return true if this range is equal to another range.
|
|
///
|
|
bool operator==(const ConstantRange &CR) const {
|
|
return Lower == CR.Lower && Upper == CR.Upper;
|
|
}
|
|
bool operator!=(const ConstantRange &CR) const {
|
|
return !operator==(CR);
|
|
}
|
|
|
|
/// subtract - Subtract the specified constant from the endpoints of this
|
|
/// constant range.
|
|
ConstantRange subtract(const APInt &CI) const;
|
|
|
|
/// \brief Subtract the specified range from this range (aka relative
|
|
/// complement of the sets).
|
|
ConstantRange difference(const ConstantRange &CR) const;
|
|
|
|
/// intersectWith - Return the range that results from the intersection of
|
|
/// this range with another range. The resultant range is guaranteed to
|
|
/// include all elements contained in both input ranges, and to have the
|
|
/// smallest possible set size that does so. Because there may be two
|
|
/// intersections with the same set size, A.intersectWith(B) might not
|
|
/// be equal to B.intersectWith(A).
|
|
///
|
|
ConstantRange intersectWith(const ConstantRange &CR) const;
|
|
|
|
/// unionWith - Return the range that results from the union of this range
|
|
/// with another range. The resultant range is guaranteed to include the
|
|
/// elements of both sets, but may contain more. For example, [3, 9) union
|
|
/// [12,15) is [3, 15), which includes 9, 10, and 11, which were not included
|
|
/// in either set before.
|
|
///
|
|
ConstantRange unionWith(const ConstantRange &CR) const;
|
|
|
|
/// zeroExtend - Return a new range in the specified integer type, which must
|
|
/// be strictly larger than the current type. The returned range will
|
|
/// correspond to the possible range of values if the source range had been
|
|
/// zero extended to BitWidth.
|
|
ConstantRange zeroExtend(uint32_t BitWidth) const;
|
|
|
|
/// signExtend - Return a new range in the specified integer type, which must
|
|
/// be strictly larger than the current type. The returned range will
|
|
/// correspond to the possible range of values if the source range had been
|
|
/// sign extended to BitWidth.
|
|
ConstantRange signExtend(uint32_t BitWidth) const;
|
|
|
|
/// truncate - Return a new range in the specified integer type, which must be
|
|
/// strictly smaller than the current type. The returned range will
|
|
/// correspond to the possible range of values if the source range had been
|
|
/// truncated to the specified type.
|
|
ConstantRange truncate(uint32_t BitWidth) const;
|
|
|
|
/// zextOrTrunc - make this range have the bit width given by \p BitWidth. The
|
|
/// value is zero extended, truncated, or left alone to make it that width.
|
|
ConstantRange zextOrTrunc(uint32_t BitWidth) const;
|
|
|
|
/// sextOrTrunc - make this range have the bit width given by \p BitWidth. The
|
|
/// value is sign extended, truncated, or left alone to make it that width.
|
|
ConstantRange sextOrTrunc(uint32_t BitWidth) const;
|
|
|
|
/// add - Return a new range representing the possible values resulting
|
|
/// from an addition of a value in this range and a value in \p Other.
|
|
ConstantRange add(const ConstantRange &Other) const;
|
|
|
|
/// sub - Return a new range representing the possible values resulting
|
|
/// from a subtraction of a value in this range and a value in \p Other.
|
|
ConstantRange sub(const ConstantRange &Other) const;
|
|
|
|
/// multiply - Return a new range representing the possible values resulting
|
|
/// from a multiplication of a value in this range and a value in \p Other.
|
|
/// TODO: This isn't fully implemented yet.
|
|
ConstantRange multiply(const ConstantRange &Other) const;
|
|
|
|
/// smax - Return a new range representing the possible values resulting
|
|
/// from a signed maximum of a value in this range and a value in \p Other.
|
|
ConstantRange smax(const ConstantRange &Other) const;
|
|
|
|
/// umax - Return a new range representing the possible values resulting
|
|
/// from an unsigned maximum of a value in this range and a value in \p Other.
|
|
ConstantRange umax(const ConstantRange &Other) const;
|
|
|
|
/// udiv - Return a new range representing the possible values resulting
|
|
/// from an unsigned division of a value in this range and a value in
|
|
/// \p Other.
|
|
ConstantRange udiv(const ConstantRange &Other) const;
|
|
|
|
/// binaryAnd - return a new range representing the possible values resulting
|
|
/// from a binary-and of a value in this range by a value in \p Other.
|
|
ConstantRange binaryAnd(const ConstantRange &Other) const;
|
|
|
|
/// binaryOr - return a new range representing the possible values resulting
|
|
/// from a binary-or of a value in this range by a value in \p Other.
|
|
ConstantRange binaryOr(const ConstantRange &Other) const;
|
|
|
|
/// shl - Return a new range representing the possible values resulting
|
|
/// from a left shift of a value in this range by a value in \p Other.
|
|
/// TODO: This isn't fully implemented yet.
|
|
ConstantRange shl(const ConstantRange &Other) const;
|
|
|
|
/// lshr - Return a new range representing the possible values resulting
|
|
/// from a logical right shift of a value in this range and a value in
|
|
/// \p Other.
|
|
ConstantRange lshr(const ConstantRange &Other) const;
|
|
|
|
/// inverse - Return a new range that is the logical not of the current set.
|
|
///
|
|
ConstantRange inverse() const;
|
|
|
|
/// print - Print out the bounds to a stream...
|
|
///
|
|
void print(raw_ostream &OS) const;
|
|
|
|
/// dump - Allow printing from a debugger easily...
|
|
///
|
|
void dump() const;
|
|
};
|
|
|
|
inline raw_ostream &operator<<(raw_ostream &OS, const ConstantRange &CR) {
|
|
CR.print(OS);
|
|
return OS;
|
|
}
|
|
|
|
} // End llvm namespace
|
|
|
|
#endif
|