llvm-6502/lib/Target/X86/X86Subtarget.cpp
2007-08-01 23:45:51 +00:00

298 lines
8.9 KiB
C++

//===-- X86Subtarget.cpp - X86 Subtarget Information ------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Nate Begeman and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the X86 specific subclass of TargetSubtarget.
//
//===----------------------------------------------------------------------===//
#include "X86Subtarget.h"
#include "X86GenSubtarget.inc"
#include "llvm/Module.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
cl::opt<X86Subtarget::AsmWriterFlavorTy>
AsmWriterFlavor("x86-asm-syntax", cl::init(X86Subtarget::Unset),
cl::desc("Choose style of code to emit from X86 backend:"),
cl::values(
clEnumValN(X86Subtarget::ATT, "att", " Emit AT&T-style assembly"),
clEnumValN(X86Subtarget::Intel, "intel", " Emit Intel-style assembly"),
clEnumValEnd));
/// True if accessing the GV requires an extra load. For Windows, dllimported
/// symbols are indirect, loading the value at address GV rather then the
/// value of GV itself. This means that the GlobalAddress must be in the base
/// or index register of the address, not the GV offset field.
bool X86Subtarget::GVRequiresExtraLoad(const GlobalValue* GV,
const TargetMachine& TM,
bool isDirectCall) const
{
// FIXME: PIC
if (TM.getRelocationModel() != Reloc::Static)
if (isTargetDarwin()) {
return (!isDirectCall &&
(GV->hasWeakLinkage() || GV->hasLinkOnceLinkage() ||
(GV->isDeclaration() && !GV->hasNotBeenReadFromBitcode())));
} else if (TM.getRelocationModel() == Reloc::PIC_ && isPICStyleGOT()) {
// Extra load is needed for all non-statics.
return (!isDirectCall &&
(GV->isDeclaration() || !GV->hasInternalLinkage()));
} else if (isTargetCygMing() || isTargetWindows()) {
return (GV->hasDLLImportLinkage());
}
return false;
}
/// GetCpuIDAndInfo - Execute the specified cpuid and return the 4 values in the
/// specified arguments. If we can't run cpuid on the host, return true.
bool X86::GetCpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,
unsigned *rECX, unsigned *rEDX) {
#if defined(__x86_64__)
// gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
asm ("movq\t%%rbx, %%rsi\n\t"
"cpuid\n\t"
"xchgq\t%%rbx, %%rsi\n\t"
: "=a" (*rEAX),
"=S" (*rEBX),
"=c" (*rECX),
"=d" (*rEDX)
: "a" (value));
return false;
#elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
#if defined(__GNUC__)
asm ("movl\t%%ebx, %%esi\n\t"
"cpuid\n\t"
"xchgl\t%%ebx, %%esi\n\t"
: "=a" (*rEAX),
"=S" (*rEBX),
"=c" (*rECX),
"=d" (*rEDX)
: "a" (value));
return false;
#elif defined(_MSC_VER)
__asm {
mov eax,value
cpuid
mov esi,rEAX
mov dword ptr [esi],eax
mov esi,rEBX
mov dword ptr [esi],ebx
mov esi,rECX
mov dword ptr [esi],ecx
mov esi,rEDX
mov dword ptr [esi],edx
}
return false;
#endif
#endif
return true;
}
void X86Subtarget::AutoDetectSubtargetFeatures() {
unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
union {
unsigned u[3];
char c[12];
} text;
if (X86::GetCpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1))
return;
X86::GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX);
if ((EDX >> 23) & 0x1) X86SSELevel = MMX;
if ((EDX >> 25) & 0x1) X86SSELevel = SSE1;
if ((EDX >> 26) & 0x1) X86SSELevel = SSE2;
if (ECX & 0x1) X86SSELevel = SSE3;
if ((ECX >> 9) & 0x1) X86SSELevel = SSSE3;
if (memcmp(text.c, "GenuineIntel", 12) == 0 ||
memcmp(text.c, "AuthenticAMD", 12) == 0) {
X86::GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
HasX86_64 = (EDX >> 29) & 0x1;
}
}
static const char *GetCurrentX86CPU() {
unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
if (X86::GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX))
return "generic";
unsigned Family = (EAX >> 8) & 0xf; // Bits 8 - 11
unsigned Model = (EAX >> 4) & 0xf; // Bits 4 - 7
X86::GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
bool Em64T = (EDX >> 29) & 0x1;
union {
unsigned u[3];
char c[12];
} text;
X86::GetCpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1);
if (memcmp(text.c, "GenuineIntel", 12) == 0) {
switch (Family) {
case 3:
return "i386";
case 4:
return "i486";
case 5:
switch (Model) {
case 4: return "pentium-mmx";
default: return "pentium";
}
case 6:
switch (Model) {
case 1: return "pentiumpro";
case 3:
case 5:
case 6: return "pentium2";
case 7:
case 8:
case 10:
case 11: return "pentium3";
case 9:
case 13: return "pentium-m";
case 14: return "yonah";
case 15: return "core2";
default: return "i686";
}
case 15: {
switch (Model) {
case 3:
case 4:
return (Em64T) ? "nocona" : "prescott";
default:
return (Em64T) ? "x86-64" : "pentium4";
}
}
default:
return "generic";
}
} else if (memcmp(text.c, "AuthenticAMD", 12) == 0) {
// FIXME: this poorly matches the generated SubtargetFeatureKV table. There
// appears to be no way to generate the wide variety of AMD-specific targets
// from the information returned from CPUID.
switch (Family) {
case 4:
return "i486";
case 5:
switch (Model) {
case 6:
case 7: return "k6";
case 8: return "k6-2";
case 9:
case 13: return "k6-3";
default: return "pentium";
}
case 6:
switch (Model) {
case 4: return "athlon-tbird";
case 6:
case 7:
case 8: return "athlon-mp";
case 10: return "athlon-xp";
default: return "athlon";
}
case 15:
switch (Model) {
case 1: return "opteron";
case 5: return "athlon-fx"; // also opteron
default: return "athlon64";
}
default:
return "generic";
}
} else {
return "generic";
}
}
X86Subtarget::X86Subtarget(const Module &M, const std::string &FS, bool is64Bit)
: AsmFlavor(AsmWriterFlavor)
, PICStyle(PICStyle::None)
, X86SSELevel(NoMMXSSE)
, HasX86_64(false)
, stackAlignment(8)
// FIXME: this is a known good value for Yonah. How about others?
, MinRepStrSizeThreshold(128)
, Is64Bit(is64Bit)
, HasLow4GUserAddress(true)
, TargetType(isELF) { // Default to ELF unless otherwise specified.
// Determine default and user specified characteristics
if (!FS.empty()) {
// If feature string is not empty, parse features string.
std::string CPU = GetCurrentX86CPU();
ParseSubtargetFeatures(FS, CPU);
if (Is64Bit && !HasX86_64)
cerr << "Warning: Generation of 64-bit code for a 32-bit processor "
<< "requested.\n";
if (Is64Bit && X86SSELevel < SSE2)
cerr << "Warning: 64-bit processors all have at least SSE2.\n";
} else {
// Otherwise, use CPUID to auto-detect feature set.
AutoDetectSubtargetFeatures();
}
// If requesting codegen for X86-64, make sure that 64-bit and SSE2 features
// are enabled. These are available on all x86-64 CPUs.
if (Is64Bit) {
HasX86_64 = true;
if (X86SSELevel < SSE2)
X86SSELevel = SSE2;
}
// Set the boolean corresponding to the current target triple, or the default
// if one cannot be determined, to true.
const std::string& TT = M.getTargetTriple();
if (TT.length() > 5) {
if (TT.find("cygwin") != std::string::npos)
TargetType = isCygwin;
else if (TT.find("mingw") != std::string::npos)
TargetType = isMingw;
else if (TT.find("darwin") != std::string::npos)
TargetType = isDarwin;
else if (TT.find("win32") != std::string::npos)
TargetType = isWindows;
} else if (TT.empty()) {
#if defined(__CYGWIN__)
TargetType = isCygwin;
#elif defined(__MINGW32__)
TargetType = isMingw;
#elif defined(__APPLE__)
TargetType = isDarwin;
#elif defined(_WIN32)
TargetType = isWindows;
#endif
}
// If the asm syntax hasn't been overridden on the command line, use whatever
// the target wants.
if (AsmFlavor == X86Subtarget::Unset) {
if (TargetType == isWindows) {
AsmFlavor = X86Subtarget::Intel;
} else {
AsmFlavor = X86Subtarget::ATT;
}
}
if (TargetType == isDarwin && Is64Bit)
HasLow4GUserAddress = false;
if (TargetType == isDarwin ||
TargetType == isCygwin ||
TargetType == isMingw ||
(TargetType == isELF && Is64Bit))
stackAlignment = 16;
}