llvm-6502/lib/Target/X86/X86RegisterInfo.td
Jakob Stoklund Olesen 8b0a3f2df9 Remove the YMM_HI_6_15 hack.
Call clobbers are now represented with register mask operands.  The
regmask can easily represent the fact that xmm6 is call-preserved while
ymm6 isn't.  This is automatically computed by TableGen from the
CalleeSavedRegs containing xmm6.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150709 91177308-0d34-0410-b5e6-96231b3b80d8
2012-02-16 17:56:06 +00:00

475 lines
20 KiB
TableGen

//===- X86RegisterInfo.td - Describe the X86 Register File --*- tablegen -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the X86 Register file, defining the registers themselves,
// aliases between the registers, and the register classes built out of the
// registers.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Register definitions...
//
let Namespace = "X86" in {
// Subregister indices.
def sub_8bit : SubRegIndex;
def sub_8bit_hi : SubRegIndex;
def sub_16bit : SubRegIndex;
def sub_32bit : SubRegIndex;
def sub_ss : SubRegIndex;
def sub_sd : SubRegIndex;
def sub_xmm : SubRegIndex;
// In the register alias definitions below, we define which registers alias
// which others. We only specify which registers the small registers alias,
// because the register file generator is smart enough to figure out that
// AL aliases AX if we tell it that AX aliased AL (for example).
// Dwarf numbering is different for 32-bit and 64-bit, and there are
// variations by target as well. Currently the first entry is for X86-64,
// second - for EH on X86-32/Darwin and third is 'generic' one (X86-32/Linux
// and debug information on X86-32/Darwin)
// 8-bit registers
// Low registers
def AL : Register<"al">;
def DL : Register<"dl">;
def CL : Register<"cl">;
def BL : Register<"bl">;
// X86-64 only, requires REX.
let CostPerUse = 1 in {
def SIL : Register<"sil">;
def DIL : Register<"dil">;
def BPL : Register<"bpl">;
def SPL : Register<"spl">;
def R8B : Register<"r8b">;
def R9B : Register<"r9b">;
def R10B : Register<"r10b">;
def R11B : Register<"r11b">;
def R12B : Register<"r12b">;
def R13B : Register<"r13b">;
def R14B : Register<"r14b">;
def R15B : Register<"r15b">;
}
// High registers. On x86-64, these cannot be used in any instruction
// with a REX prefix.
def AH : Register<"ah">;
def DH : Register<"dh">;
def CH : Register<"ch">;
def BH : Register<"bh">;
// 16-bit registers
let SubRegIndices = [sub_8bit, sub_8bit_hi], CoveredBySubRegs = 1 in {
def AX : RegisterWithSubRegs<"ax", [AL,AH]>;
def DX : RegisterWithSubRegs<"dx", [DL,DH]>;
def CX : RegisterWithSubRegs<"cx", [CL,CH]>;
def BX : RegisterWithSubRegs<"bx", [BL,BH]>;
}
let SubRegIndices = [sub_8bit] in {
def SI : RegisterWithSubRegs<"si", [SIL]>;
def DI : RegisterWithSubRegs<"di", [DIL]>;
def BP : RegisterWithSubRegs<"bp", [BPL]>;
def SP : RegisterWithSubRegs<"sp", [SPL]>;
}
def IP : Register<"ip">;
// X86-64 only, requires REX.
let SubRegIndices = [sub_8bit], CostPerUse = 1 in {
def R8W : RegisterWithSubRegs<"r8w", [R8B]>;
def R9W : RegisterWithSubRegs<"r9w", [R9B]>;
def R10W : RegisterWithSubRegs<"r10w", [R10B]>;
def R11W : RegisterWithSubRegs<"r11w", [R11B]>;
def R12W : RegisterWithSubRegs<"r12w", [R12B]>;
def R13W : RegisterWithSubRegs<"r13w", [R13B]>;
def R14W : RegisterWithSubRegs<"r14w", [R14B]>;
def R15W : RegisterWithSubRegs<"r15w", [R15B]>;
}
// 32-bit registers
let SubRegIndices = [sub_16bit] in {
def EAX : RegisterWithSubRegs<"eax", [AX]>, DwarfRegNum<[-2, 0, 0]>;
def EDX : RegisterWithSubRegs<"edx", [DX]>, DwarfRegNum<[-2, 2, 2]>;
def ECX : RegisterWithSubRegs<"ecx", [CX]>, DwarfRegNum<[-2, 1, 1]>;
def EBX : RegisterWithSubRegs<"ebx", [BX]>, DwarfRegNum<[-2, 3, 3]>;
def ESI : RegisterWithSubRegs<"esi", [SI]>, DwarfRegNum<[-2, 6, 6]>;
def EDI : RegisterWithSubRegs<"edi", [DI]>, DwarfRegNum<[-2, 7, 7]>;
def EBP : RegisterWithSubRegs<"ebp", [BP]>, DwarfRegNum<[-2, 4, 5]>;
def ESP : RegisterWithSubRegs<"esp", [SP]>, DwarfRegNum<[-2, 5, 4]>;
def EIP : RegisterWithSubRegs<"eip", [IP]>, DwarfRegNum<[-2, 8, 8]>;
// X86-64 only, requires REX
let CostPerUse = 1 in {
def R8D : RegisterWithSubRegs<"r8d", [R8W]>;
def R9D : RegisterWithSubRegs<"r9d", [R9W]>;
def R10D : RegisterWithSubRegs<"r10d", [R10W]>;
def R11D : RegisterWithSubRegs<"r11d", [R11W]>;
def R12D : RegisterWithSubRegs<"r12d", [R12W]>;
def R13D : RegisterWithSubRegs<"r13d", [R13W]>;
def R14D : RegisterWithSubRegs<"r14d", [R14W]>;
def R15D : RegisterWithSubRegs<"r15d", [R15W]>;
}}
// 64-bit registers, X86-64 only
let SubRegIndices = [sub_32bit] in {
def RAX : RegisterWithSubRegs<"rax", [EAX]>, DwarfRegNum<[0, -2, -2]>;
def RDX : RegisterWithSubRegs<"rdx", [EDX]>, DwarfRegNum<[1, -2, -2]>;
def RCX : RegisterWithSubRegs<"rcx", [ECX]>, DwarfRegNum<[2, -2, -2]>;
def RBX : RegisterWithSubRegs<"rbx", [EBX]>, DwarfRegNum<[3, -2, -2]>;
def RSI : RegisterWithSubRegs<"rsi", [ESI]>, DwarfRegNum<[4, -2, -2]>;
def RDI : RegisterWithSubRegs<"rdi", [EDI]>, DwarfRegNum<[5, -2, -2]>;
def RBP : RegisterWithSubRegs<"rbp", [EBP]>, DwarfRegNum<[6, -2, -2]>;
def RSP : RegisterWithSubRegs<"rsp", [ESP]>, DwarfRegNum<[7, -2, -2]>;
// These also require REX.
let CostPerUse = 1 in {
def R8 : RegisterWithSubRegs<"r8", [R8D]>, DwarfRegNum<[8, -2, -2]>;
def R9 : RegisterWithSubRegs<"r9", [R9D]>, DwarfRegNum<[9, -2, -2]>;
def R10 : RegisterWithSubRegs<"r10", [R10D]>, DwarfRegNum<[10, -2, -2]>;
def R11 : RegisterWithSubRegs<"r11", [R11D]>, DwarfRegNum<[11, -2, -2]>;
def R12 : RegisterWithSubRegs<"r12", [R12D]>, DwarfRegNum<[12, -2, -2]>;
def R13 : RegisterWithSubRegs<"r13", [R13D]>, DwarfRegNum<[13, -2, -2]>;
def R14 : RegisterWithSubRegs<"r14", [R14D]>, DwarfRegNum<[14, -2, -2]>;
def R15 : RegisterWithSubRegs<"r15", [R15D]>, DwarfRegNum<[15, -2, -2]>;
def RIP : RegisterWithSubRegs<"rip", [EIP]>, DwarfRegNum<[16, -2, -2]>;
}}
// MMX Registers. These are actually aliased to ST0 .. ST7
def MM0 : Register<"mm0">, DwarfRegNum<[41, 29, 29]>;
def MM1 : Register<"mm1">, DwarfRegNum<[42, 30, 30]>;
def MM2 : Register<"mm2">, DwarfRegNum<[43, 31, 31]>;
def MM3 : Register<"mm3">, DwarfRegNum<[44, 32, 32]>;
def MM4 : Register<"mm4">, DwarfRegNum<[45, 33, 33]>;
def MM5 : Register<"mm5">, DwarfRegNum<[46, 34, 34]>;
def MM6 : Register<"mm6">, DwarfRegNum<[47, 35, 35]>;
def MM7 : Register<"mm7">, DwarfRegNum<[48, 36, 36]>;
// Pseudo Floating Point registers
def FP0 : Register<"fp0">;
def FP1 : Register<"fp1">;
def FP2 : Register<"fp2">;
def FP3 : Register<"fp3">;
def FP4 : Register<"fp4">;
def FP5 : Register<"fp5">;
def FP6 : Register<"fp6">;
// XMM Registers, used by the various SSE instruction set extensions.
// The sub_ss and sub_sd subregs are the same registers with another regclass.
let CompositeIndices = [(sub_ss), (sub_sd)] in {
def XMM0: Register<"xmm0">, DwarfRegNum<[17, 21, 21]>;
def XMM1: Register<"xmm1">, DwarfRegNum<[18, 22, 22]>;
def XMM2: Register<"xmm2">, DwarfRegNum<[19, 23, 23]>;
def XMM3: Register<"xmm3">, DwarfRegNum<[20, 24, 24]>;
def XMM4: Register<"xmm4">, DwarfRegNum<[21, 25, 25]>;
def XMM5: Register<"xmm5">, DwarfRegNum<[22, 26, 26]>;
def XMM6: Register<"xmm6">, DwarfRegNum<[23, 27, 27]>;
def XMM7: Register<"xmm7">, DwarfRegNum<[24, 28, 28]>;
// X86-64 only
let CostPerUse = 1 in {
def XMM8: Register<"xmm8">, DwarfRegNum<[25, -2, -2]>;
def XMM9: Register<"xmm9">, DwarfRegNum<[26, -2, -2]>;
def XMM10: Register<"xmm10">, DwarfRegNum<[27, -2, -2]>;
def XMM11: Register<"xmm11">, DwarfRegNum<[28, -2, -2]>;
def XMM12: Register<"xmm12">, DwarfRegNum<[29, -2, -2]>;
def XMM13: Register<"xmm13">, DwarfRegNum<[30, -2, -2]>;
def XMM14: Register<"xmm14">, DwarfRegNum<[31, -2, -2]>;
def XMM15: Register<"xmm15">, DwarfRegNum<[32, -2, -2]>;
}}
// YMM Registers, used by AVX instructions
let SubRegIndices = [sub_xmm] in {
def YMM0: RegisterWithSubRegs<"ymm0", [XMM0]>, DwarfRegAlias<XMM0>;
def YMM1: RegisterWithSubRegs<"ymm1", [XMM1]>, DwarfRegAlias<XMM1>;
def YMM2: RegisterWithSubRegs<"ymm2", [XMM2]>, DwarfRegAlias<XMM2>;
def YMM3: RegisterWithSubRegs<"ymm3", [XMM3]>, DwarfRegAlias<XMM3>;
def YMM4: RegisterWithSubRegs<"ymm4", [XMM4]>, DwarfRegAlias<XMM4>;
def YMM5: RegisterWithSubRegs<"ymm5", [XMM5]>, DwarfRegAlias<XMM5>;
def YMM6: RegisterWithSubRegs<"ymm6", [XMM6]>, DwarfRegAlias<XMM6>;
def YMM7: RegisterWithSubRegs<"ymm7", [XMM7]>, DwarfRegAlias<XMM7>;
def YMM8: RegisterWithSubRegs<"ymm8", [XMM8]>, DwarfRegAlias<XMM8>;
def YMM9: RegisterWithSubRegs<"ymm9", [XMM9]>, DwarfRegAlias<XMM9>;
def YMM10: RegisterWithSubRegs<"ymm10", [XMM10]>, DwarfRegAlias<XMM10>;
def YMM11: RegisterWithSubRegs<"ymm11", [XMM11]>, DwarfRegAlias<XMM11>;
def YMM12: RegisterWithSubRegs<"ymm12", [XMM12]>, DwarfRegAlias<XMM12>;
def YMM13: RegisterWithSubRegs<"ymm13", [XMM13]>, DwarfRegAlias<XMM13>;
def YMM14: RegisterWithSubRegs<"ymm14", [XMM14]>, DwarfRegAlias<XMM14>;
def YMM15: RegisterWithSubRegs<"ymm15", [XMM15]>, DwarfRegAlias<XMM15>;
}
class STRegister<string Name, list<Register> A> : Register<Name> {
let Aliases = A;
}
// Floating point stack registers. These don't map one-to-one to the FP
// pseudo registers, but we still mark them as aliasing FP registers. That
// way both kinds can be live without exceeding the stack depth. ST registers
// are only live around inline assembly.
def ST0 : STRegister<"st(0)", []>, DwarfRegNum<[33, 12, 11]>;
def ST1 : STRegister<"st(1)", [FP6]>, DwarfRegNum<[34, 13, 12]>;
def ST2 : STRegister<"st(2)", [FP5]>, DwarfRegNum<[35, 14, 13]>;
def ST3 : STRegister<"st(3)", [FP4]>, DwarfRegNum<[36, 15, 14]>;
def ST4 : STRegister<"st(4)", [FP3]>, DwarfRegNum<[37, 16, 15]>;
def ST5 : STRegister<"st(5)", [FP2]>, DwarfRegNum<[38, 17, 16]>;
def ST6 : STRegister<"st(6)", [FP1]>, DwarfRegNum<[39, 18, 17]>;
def ST7 : STRegister<"st(7)", [FP0]>, DwarfRegNum<[40, 19, 18]>;
// Status flags register
def EFLAGS : Register<"flags">;
// Segment registers
def CS : Register<"cs">;
def DS : Register<"ds">;
def SS : Register<"ss">;
def ES : Register<"es">;
def FS : Register<"fs">;
def GS : Register<"gs">;
// Debug registers
def DR0 : Register<"dr0">;
def DR1 : Register<"dr1">;
def DR2 : Register<"dr2">;
def DR3 : Register<"dr3">;
def DR4 : Register<"dr4">;
def DR5 : Register<"dr5">;
def DR6 : Register<"dr6">;
def DR7 : Register<"dr7">;
// Control registers
def CR0 : Register<"cr0">;
def CR1 : Register<"cr1">;
def CR2 : Register<"cr2">;
def CR3 : Register<"cr3">;
def CR4 : Register<"cr4">;
def CR5 : Register<"cr5">;
def CR6 : Register<"cr6">;
def CR7 : Register<"cr7">;
def CR8 : Register<"cr8">;
def CR9 : Register<"cr9">;
def CR10 : Register<"cr10">;
def CR11 : Register<"cr11">;
def CR12 : Register<"cr12">;
def CR13 : Register<"cr13">;
def CR14 : Register<"cr14">;
def CR15 : Register<"cr15">;
// Pseudo index registers
def EIZ : Register<"eiz">;
def RIZ : Register<"riz">;
}
//===----------------------------------------------------------------------===//
// Register Class Definitions... now that we have all of the pieces, define the
// top-level register classes. The order specified in the register list is
// implicitly defined to be the register allocation order.
//
// List call-clobbered registers before callee-save registers. RBX, RBP, (and
// R12, R13, R14, and R15 for X86-64) are callee-save registers.
// In 64-mode, there are 12 additional i8 registers, SIL, DIL, BPL, SPL, and
// R8B, ... R15B.
// Allocate R12 and R13 last, as these require an extra byte when
// encoded in x86_64 instructions.
// FIXME: Allow AH, CH, DH, BH to be used as general-purpose registers in
// 64-bit mode. The main complication is that they cannot be encoded in an
// instruction requiring a REX prefix, while SIL, DIL, BPL, R8D, etc.
// require a REX prefix. For example, "addb %ah, %dil" and "movzbl %ah, %r8d"
// cannot be encoded.
def GR8 : RegisterClass<"X86", [i8], 8,
(add AL, CL, DL, AH, CH, DH, BL, BH, SIL, DIL, BPL, SPL,
R8B, R9B, R10B, R11B, R14B, R15B, R12B, R13B)> {
let AltOrders = [(sub GR8, AH, BH, CH, DH)];
let AltOrderSelect = [{
return MF.getTarget().getSubtarget<X86Subtarget>().is64Bit();
}];
}
def GR16 : RegisterClass<"X86", [i16], 16,
(add AX, CX, DX, SI, DI, BX, BP, SP,
R8W, R9W, R10W, R11W, R14W, R15W, R12W, R13W)> {
let SubRegClasses = [(GR8 sub_8bit, sub_8bit_hi)];
}
def GR32 : RegisterClass<"X86", [i32], 32,
(add EAX, ECX, EDX, ESI, EDI, EBX, EBP, ESP,
R8D, R9D, R10D, R11D, R14D, R15D, R12D, R13D)> {
let SubRegClasses = [(GR8 sub_8bit, sub_8bit_hi), (GR16 sub_16bit)];
}
// GR64 - 64-bit GPRs. This oddly includes RIP, which isn't accurate, since
// RIP isn't really a register and it can't be used anywhere except in an
// address, but it doesn't cause trouble.
def GR64 : RegisterClass<"X86", [i64], 64,
(add RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
RBX, R14, R15, R12, R13, RBP, RSP, RIP)> {
let SubRegClasses = [(GR8 sub_8bit, sub_8bit_hi),
(GR16 sub_16bit),
(GR32 sub_32bit)];
}
// Segment registers for use by MOV instructions (and others) that have a
// segment register as one operand. Always contain a 16-bit segment
// descriptor.
def SEGMENT_REG : RegisterClass<"X86", [i16], 16, (add CS, DS, SS, ES, FS, GS)>;
// Debug registers.
def DEBUG_REG : RegisterClass<"X86", [i32], 32, (sequence "DR%u", 0, 7)>;
// Control registers.
def CONTROL_REG : RegisterClass<"X86", [i64], 64, (sequence "CR%u", 0, 15)>;
// GR8_ABCD_L, GR8_ABCD_H, GR16_ABCD, GR32_ABCD, GR64_ABCD - Subclasses of
// GR8, GR16, GR32, and GR64 which contain just the "a" "b", "c", and "d"
// registers. On x86-32, GR16_ABCD and GR32_ABCD are classes for registers
// that support 8-bit subreg operations. On x86-64, GR16_ABCD, GR32_ABCD,
// and GR64_ABCD are classes for registers that support 8-bit h-register
// operations.
def GR8_ABCD_L : RegisterClass<"X86", [i8], 8, (add AL, CL, DL, BL)>;
def GR8_ABCD_H : RegisterClass<"X86", [i8], 8, (add AH, CH, DH, BH)>;
def GR16_ABCD : RegisterClass<"X86", [i16], 16, (add AX, CX, DX, BX)> {
let SubRegClasses = [(GR8_ABCD_L sub_8bit), (GR8_ABCD_H sub_8bit_hi)];
}
def GR32_ABCD : RegisterClass<"X86", [i32], 32, (add EAX, ECX, EDX, EBX)> {
let SubRegClasses = [(GR8_ABCD_L sub_8bit),
(GR8_ABCD_H sub_8bit_hi),
(GR16_ABCD sub_16bit)];
}
def GR64_ABCD : RegisterClass<"X86", [i64], 64, (add RAX, RCX, RDX, RBX)> {
let SubRegClasses = [(GR8_ABCD_L sub_8bit),
(GR8_ABCD_H sub_8bit_hi),
(GR16_ABCD sub_16bit),
(GR32_ABCD sub_32bit)];
}
def GR32_TC : RegisterClass<"X86", [i32], 32, (add EAX, ECX, EDX)> {
let SubRegClasses = [(GR8 sub_8bit, sub_8bit_hi), (GR16 sub_16bit)];
}
def GR64_TC : RegisterClass<"X86", [i64], 64, (add RAX, RCX, RDX, RSI, RDI,
R8, R9, R11, RIP)> {
let SubRegClasses = [(GR8 sub_8bit, sub_8bit_hi),
(GR16 sub_16bit),
(GR32_TC sub_32bit)];
}
def GR64_TCW64 : RegisterClass<"X86", [i64], 64, (add RAX, RCX, RDX,
R8, R9, R11)>;
// GR8_NOREX - GR8 registers which do not require a REX prefix.
def GR8_NOREX : RegisterClass<"X86", [i8], 8,
(add AL, CL, DL, AH, CH, DH, BL, BH)> {
let AltOrders = [(sub GR8_NOREX, AH, BH, CH, DH)];
let AltOrderSelect = [{
return MF.getTarget().getSubtarget<X86Subtarget>().is64Bit();
}];
}
// GR16_NOREX - GR16 registers which do not require a REX prefix.
def GR16_NOREX : RegisterClass<"X86", [i16], 16,
(add AX, CX, DX, SI, DI, BX, BP, SP)> {
let SubRegClasses = [(GR8_NOREX sub_8bit, sub_8bit_hi)];
}
// GR32_NOREX - GR32 registers which do not require a REX prefix.
def GR32_NOREX : RegisterClass<"X86", [i32], 32,
(add EAX, ECX, EDX, ESI, EDI, EBX, EBP, ESP)> {
let SubRegClasses = [(GR8_NOREX sub_8bit, sub_8bit_hi),
(GR16_NOREX sub_16bit)];
}
// GR64_NOREX - GR64 registers which do not require a REX prefix.
def GR64_NOREX : RegisterClass<"X86", [i64], 64,
(add RAX, RCX, RDX, RSI, RDI, RBX, RBP, RSP, RIP)> {
let SubRegClasses = [(GR8_NOREX sub_8bit, sub_8bit_hi),
(GR16_NOREX sub_16bit),
(GR32_NOREX sub_32bit)];
}
// GR32_NOAX - GR32 registers except EAX. Used by AddRegFrm of XCHG32 in 64-bit
// mode to prevent encoding using the 0x90 NOP encoding. xchg %eax, %eax needs
// to clear upper 32-bits of RAX so is not a NOP.
def GR32_NOAX : RegisterClass<"X86", [i32], 32, (sub GR32, EAX)> {
let SubRegClasses = [(GR8 sub_8bit, sub_8bit_hi), (GR16 sub_16bit)];
}
// GR32_NOSP - GR32 registers except ESP.
def GR32_NOSP : RegisterClass<"X86", [i32], 32, (sub GR32, ESP)> {
let SubRegClasses = [(GR8 sub_8bit, sub_8bit_hi), (GR16 sub_16bit)];
}
// GR64_NOSP - GR64 registers except RSP (and RIP).
def GR64_NOSP : RegisterClass<"X86", [i64], 64, (sub GR64, RSP, RIP)> {
let SubRegClasses = [(GR8 sub_8bit, sub_8bit_hi),
(GR16 sub_16bit),
(GR32_NOSP sub_32bit)];
}
// GR32_NOREX_NOSP - GR32 registers which do not require a REX prefix except
// ESP.
def GR32_NOREX_NOSP : RegisterClass<"X86", [i32], 32,
(and GR32_NOREX, GR32_NOSP)> {
let SubRegClasses = [(GR8_NOREX sub_8bit, sub_8bit_hi),
(GR16_NOREX sub_16bit)];
}
// GR64_NOREX_NOSP - GR64_NOREX registers except RSP.
def GR64_NOREX_NOSP : RegisterClass<"X86", [i64], 64,
(and GR64_NOREX, GR64_NOSP)> {
let SubRegClasses = [(GR8_NOREX sub_8bit, sub_8bit_hi),
(GR16_NOREX sub_16bit),
(GR32_NOREX_NOSP sub_32bit)];
}
// A class to support the 'A' assembler constraint: EAX then EDX.
def GR32_AD : RegisterClass<"X86", [i32], 32, (add EAX, EDX)> {
let SubRegClasses = [(GR8_ABCD_L sub_8bit),
(GR8_ABCD_H sub_8bit_hi),
(GR16_ABCD sub_16bit)];
}
// Scalar SSE2 floating point registers.
def FR32 : RegisterClass<"X86", [f32], 32, (sequence "XMM%u", 0, 15)>;
def FR64 : RegisterClass<"X86", [f64], 64, (add FR32)>;
// FIXME: This sets up the floating point register files as though they are f64
// values, though they really are f80 values. This will cause us to spill
// values as 64-bit quantities instead of 80-bit quantities, which is much much
// faster on common hardware. In reality, this should be controlled by a
// command line option or something.
def RFP32 : RegisterClass<"X86",[f32], 32, (sequence "FP%u", 0, 6)>;
def RFP64 : RegisterClass<"X86",[f64], 32, (add RFP32)>;
def RFP80 : RegisterClass<"X86",[f80], 32, (add RFP32)>;
// Floating point stack registers (these are not allocatable by the
// register allocator - the floating point stackifier is responsible
// for transforming FPn allocations to STn registers)
def RST : RegisterClass<"X86", [f80, f64, f32], 32, (sequence "ST%u", 0, 7)> {
let isAllocatable = 0;
}
// Generic vector registers: VR64 and VR128.
def VR64: RegisterClass<"X86", [x86mmx], 64, (sequence "MM%u", 0, 7)>;
def VR128 : RegisterClass<"X86", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
128, (add FR32)> {
let SubRegClasses = [(FR32 sub_ss), (FR64 sub_sd)];
}
def VR256 : RegisterClass<"X86", [v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
256, (sequence "YMM%u", 0, 15)> {
let SubRegClasses = [(FR32 sub_ss), (FR64 sub_sd), (VR128 sub_xmm)];
}
// Status flags registers.
def CCR : RegisterClass<"X86", [i32], 32, (add EFLAGS)> {
let CopyCost = -1; // Don't allow copying of status registers.
let isAllocatable = 0;
}