mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-12 02:33:33 +00:00
beefa3ada0
Immediate fields that have no natural MVT type tended to use i8 if the field was small enough. This was a bit confusing since i8 isn't a legal type for the target. Fields for short immediates in a 32-bit or 64-bit operation use i32 or i64 instead, so it would be better to do the same for all fields. No behavioral change intended. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212702 91177308-0d34-0410-b5e6-96231b3b80d8
476 lines
18 KiB
TableGen
476 lines
18 KiB
TableGen
//===-- SystemZOperands.td - SystemZ instruction operands ----*- tblgen-*--===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Class definitions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class ImmediateAsmOperand<string name>
|
|
: AsmOperandClass {
|
|
let Name = name;
|
|
let RenderMethod = "addImmOperands";
|
|
}
|
|
|
|
// Constructs both a DAG pattern and instruction operand for an immediate
|
|
// of type VT. PRED returns true if a node is acceptable and XFORM returns
|
|
// the operand value associated with the node. ASMOP is the name of the
|
|
// associated asm operand, and also forms the basis of the asm print method.
|
|
class Immediate<ValueType vt, code pred, SDNodeXForm xform, string asmop>
|
|
: PatLeaf<(vt imm), pred, xform>, Operand<vt> {
|
|
let PrintMethod = "print"##asmop##"Operand";
|
|
let DecoderMethod = "decode"##asmop##"Operand";
|
|
let ParserMatchClass = !cast<AsmOperandClass>(asmop);
|
|
}
|
|
|
|
// Constructs an asm operand for a PC-relative address. SIZE says how
|
|
// many bits there are.
|
|
class PCRelAsmOperand<string size> : ImmediateAsmOperand<"PCRel"##size> {
|
|
let PredicateMethod = "isImm";
|
|
let ParserMethod = "parsePCRel"##size;
|
|
}
|
|
|
|
// Constructs an operand for a PC-relative address with address type VT.
|
|
// ASMOP is the associated asm operand.
|
|
class PCRelOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> {
|
|
let PrintMethod = "printPCRelOperand";
|
|
let ParserMatchClass = asmop;
|
|
}
|
|
|
|
// Constructs both a DAG pattern and instruction operand for a PC-relative
|
|
// address with address size VT. SELF is the name of the operand and
|
|
// ASMOP is the associated asm operand.
|
|
class PCRelAddress<ValueType vt, string self, AsmOperandClass asmop>
|
|
: ComplexPattern<vt, 1, "selectPCRelAddress",
|
|
[z_pcrel_wrapper, z_pcrel_offset]>,
|
|
PCRelOperand<vt, asmop> {
|
|
let MIOperandInfo = (ops !cast<Operand>(self));
|
|
}
|
|
|
|
// Constructs an AsmOperandClass for addressing mode FORMAT, treating the
|
|
// registers as having BITSIZE bits and displacements as having DISPSIZE bits.
|
|
// LENGTH is "LenN" for addresses with an N-bit length field, otherwise it
|
|
// is "".
|
|
class AddressAsmOperand<string format, string bitsize, string dispsize,
|
|
string length = "">
|
|
: AsmOperandClass {
|
|
let Name = format##bitsize##"Disp"##dispsize##length;
|
|
let ParserMethod = "parse"##format##bitsize;
|
|
let RenderMethod = "add"##format##"Operands";
|
|
}
|
|
|
|
// Constructs both a DAG pattern and instruction operand for an addressing mode.
|
|
// FORMAT, BITSIZE, DISPSIZE and LENGTH are the parameters to an associated
|
|
// AddressAsmOperand. OPERANDS is a list of NUMOPS individual operands
|
|
// (base register, displacement, etc.). SELTYPE is the type of the memory
|
|
// operand for selection purposes; sometimes we want different selection
|
|
// choices for the same underlying addressing mode. SUFFIX is similarly
|
|
// a suffix appended to the displacement for selection purposes;
|
|
// e.g. we want to reject small 20-bit displacements if a 12-bit form
|
|
// also exists, but we want to accept them otherwise.
|
|
class AddressingMode<string seltype, string bitsize, string dispsize,
|
|
string suffix, string length, int numops, string format,
|
|
dag operands>
|
|
: ComplexPattern<!cast<ValueType>("i"##bitsize), numops,
|
|
"select"##seltype##dispsize##suffix##length,
|
|
[add, sub, or, frameindex, z_adjdynalloc]>,
|
|
Operand<!cast<ValueType>("i"##bitsize)> {
|
|
let PrintMethod = "print"##format##"Operand";
|
|
let EncoderMethod = "get"##format##dispsize##length##"Encoding";
|
|
let DecoderMethod =
|
|
"decode"##format##bitsize##"Disp"##dispsize##length##"Operand";
|
|
let MIOperandInfo = operands;
|
|
let ParserMatchClass =
|
|
!cast<AddressAsmOperand>(format##bitsize##"Disp"##dispsize##length);
|
|
}
|
|
|
|
// An addressing mode with a base and displacement but no index.
|
|
class BDMode<string type, string bitsize, string dispsize, string suffix>
|
|
: AddressingMode<type, bitsize, dispsize, suffix, "", 2, "BDAddr",
|
|
(ops !cast<RegisterOperand>("ADDR"##bitsize),
|
|
!cast<Immediate>("disp"##dispsize##"imm"##bitsize))>;
|
|
|
|
// An addressing mode with a base, displacement and index.
|
|
class BDXMode<string type, string bitsize, string dispsize, string suffix>
|
|
: AddressingMode<type, bitsize, dispsize, suffix, "", 3, "BDXAddr",
|
|
(ops !cast<RegisterOperand>("ADDR"##bitsize),
|
|
!cast<Immediate>("disp"##dispsize##"imm"##bitsize),
|
|
!cast<RegisterOperand>("ADDR"##bitsize))>;
|
|
|
|
// A BDMode paired with an immediate length operand of LENSIZE bits.
|
|
class BDLMode<string type, string bitsize, string dispsize, string suffix,
|
|
string lensize>
|
|
: AddressingMode<type, bitsize, dispsize, suffix, "Len"##lensize, 3,
|
|
"BDLAddr",
|
|
(ops !cast<RegisterOperand>("ADDR"##bitsize),
|
|
!cast<Immediate>("disp"##dispsize##"imm"##bitsize),
|
|
!cast<Immediate>("imm"##bitsize))>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Extracting immediate operands from nodes
|
|
// These all create MVT::i64 nodes to ensure the value is not sign-extended
|
|
// when converted from an SDNode to a MachineOperand later on.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Bits 0-15 (counting from the lsb).
|
|
def LL16 : SDNodeXForm<imm, [{
|
|
uint64_t Value = N->getZExtValue() & 0x000000000000FFFFULL;
|
|
return CurDAG->getTargetConstant(Value, MVT::i64);
|
|
}]>;
|
|
|
|
// Bits 16-31 (counting from the lsb).
|
|
def LH16 : SDNodeXForm<imm, [{
|
|
uint64_t Value = (N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16;
|
|
return CurDAG->getTargetConstant(Value, MVT::i64);
|
|
}]>;
|
|
|
|
// Bits 32-47 (counting from the lsb).
|
|
def HL16 : SDNodeXForm<imm, [{
|
|
uint64_t Value = (N->getZExtValue() & 0x0000FFFF00000000ULL) >> 32;
|
|
return CurDAG->getTargetConstant(Value, MVT::i64);
|
|
}]>;
|
|
|
|
// Bits 48-63 (counting from the lsb).
|
|
def HH16 : SDNodeXForm<imm, [{
|
|
uint64_t Value = (N->getZExtValue() & 0xFFFF000000000000ULL) >> 48;
|
|
return CurDAG->getTargetConstant(Value, MVT::i64);
|
|
}]>;
|
|
|
|
// Low 32 bits.
|
|
def LF32 : SDNodeXForm<imm, [{
|
|
uint64_t Value = N->getZExtValue() & 0x00000000FFFFFFFFULL;
|
|
return CurDAG->getTargetConstant(Value, MVT::i64);
|
|
}]>;
|
|
|
|
// High 32 bits.
|
|
def HF32 : SDNodeXForm<imm, [{
|
|
uint64_t Value = N->getZExtValue() >> 32;
|
|
return CurDAG->getTargetConstant(Value, MVT::i64);
|
|
}]>;
|
|
|
|
// Truncate an immediate to a 8-bit signed quantity.
|
|
def SIMM8 : SDNodeXForm<imm, [{
|
|
return CurDAG->getTargetConstant(int8_t(N->getZExtValue()), MVT::i64);
|
|
}]>;
|
|
|
|
// Truncate an immediate to a 8-bit unsigned quantity.
|
|
def UIMM8 : SDNodeXForm<imm, [{
|
|
return CurDAG->getTargetConstant(uint8_t(N->getZExtValue()), MVT::i64);
|
|
}]>;
|
|
|
|
// Truncate an immediate to a 16-bit signed quantity.
|
|
def SIMM16 : SDNodeXForm<imm, [{
|
|
return CurDAG->getTargetConstant(int16_t(N->getZExtValue()), MVT::i64);
|
|
}]>;
|
|
|
|
// Truncate an immediate to a 16-bit unsigned quantity.
|
|
def UIMM16 : SDNodeXForm<imm, [{
|
|
return CurDAG->getTargetConstant(uint16_t(N->getZExtValue()), MVT::i64);
|
|
}]>;
|
|
|
|
// Truncate an immediate to a 32-bit signed quantity.
|
|
def SIMM32 : SDNodeXForm<imm, [{
|
|
return CurDAG->getTargetConstant(int32_t(N->getZExtValue()), MVT::i64);
|
|
}]>;
|
|
|
|
// Truncate an immediate to a 32-bit unsigned quantity.
|
|
def UIMM32 : SDNodeXForm<imm, [{
|
|
return CurDAG->getTargetConstant(uint32_t(N->getZExtValue()), MVT::i64);
|
|
}]>;
|
|
|
|
// Negate and then truncate an immediate to a 32-bit unsigned quantity.
|
|
def NEGIMM32 : SDNodeXForm<imm, [{
|
|
return CurDAG->getTargetConstant(uint32_t(-N->getZExtValue()), MVT::i64);
|
|
}]>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Immediate asm operands.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def U4Imm : ImmediateAsmOperand<"U4Imm">;
|
|
def U6Imm : ImmediateAsmOperand<"U6Imm">;
|
|
def S8Imm : ImmediateAsmOperand<"S8Imm">;
|
|
def U8Imm : ImmediateAsmOperand<"U8Imm">;
|
|
def S16Imm : ImmediateAsmOperand<"S16Imm">;
|
|
def U16Imm : ImmediateAsmOperand<"U16Imm">;
|
|
def S32Imm : ImmediateAsmOperand<"S32Imm">;
|
|
def U32Imm : ImmediateAsmOperand<"U32Imm">;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// i32 immediates
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Immediates for the lower and upper 16 bits of an i32, with the other
|
|
// bits of the i32 being zero.
|
|
def imm32ll16 : Immediate<i32, [{
|
|
return SystemZ::isImmLL(N->getZExtValue());
|
|
}], LL16, "U16Imm">;
|
|
|
|
def imm32lh16 : Immediate<i32, [{
|
|
return SystemZ::isImmLH(N->getZExtValue());
|
|
}], LH16, "U16Imm">;
|
|
|
|
// Immediates for the lower and upper 16 bits of an i32, with the other
|
|
// bits of the i32 being one.
|
|
def imm32ll16c : Immediate<i32, [{
|
|
return SystemZ::isImmLL(uint32_t(~N->getZExtValue()));
|
|
}], LL16, "U16Imm">;
|
|
|
|
def imm32lh16c : Immediate<i32, [{
|
|
return SystemZ::isImmLH(uint32_t(~N->getZExtValue()));
|
|
}], LH16, "U16Imm">;
|
|
|
|
// Short immediates
|
|
def imm32zx4 : Immediate<i32, [{
|
|
return isUInt<4>(N->getZExtValue());
|
|
}], NOOP_SDNodeXForm, "U4Imm">;
|
|
|
|
def imm32zx6 : Immediate<i32, [{
|
|
return isUInt<6>(N->getZExtValue());
|
|
}], NOOP_SDNodeXForm, "U6Imm">;
|
|
|
|
def imm32sx8 : Immediate<i32, [{
|
|
return isInt<8>(N->getSExtValue());
|
|
}], SIMM8, "S8Imm">;
|
|
|
|
def imm32zx8 : Immediate<i32, [{
|
|
return isUInt<8>(N->getZExtValue());
|
|
}], UIMM8, "U8Imm">;
|
|
|
|
def imm32zx8trunc : Immediate<i32, [{}], UIMM8, "U8Imm">;
|
|
|
|
def imm32sx16 : Immediate<i32, [{
|
|
return isInt<16>(N->getSExtValue());
|
|
}], SIMM16, "S16Imm">;
|
|
|
|
def imm32zx16 : Immediate<i32, [{
|
|
return isUInt<16>(N->getZExtValue());
|
|
}], UIMM16, "U16Imm">;
|
|
|
|
def imm32sx16trunc : Immediate<i32, [{}], SIMM16, "S16Imm">;
|
|
|
|
// Full 32-bit immediates. we need both signed and unsigned versions
|
|
// because the assembler is picky. E.g. AFI requires signed operands
|
|
// while NILF requires unsigned ones.
|
|
def simm32 : Immediate<i32, [{}], SIMM32, "S32Imm">;
|
|
def uimm32 : Immediate<i32, [{}], UIMM32, "U32Imm">;
|
|
|
|
def imm32 : ImmLeaf<i32, [{}]>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// 64-bit immediates
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Immediates for 16-bit chunks of an i64, with the other bits of the
|
|
// i32 being zero.
|
|
def imm64ll16 : Immediate<i64, [{
|
|
return SystemZ::isImmLL(N->getZExtValue());
|
|
}], LL16, "U16Imm">;
|
|
|
|
def imm64lh16 : Immediate<i64, [{
|
|
return SystemZ::isImmLH(N->getZExtValue());
|
|
}], LH16, "U16Imm">;
|
|
|
|
def imm64hl16 : Immediate<i64, [{
|
|
return SystemZ::isImmHL(N->getZExtValue());
|
|
}], HL16, "U16Imm">;
|
|
|
|
def imm64hh16 : Immediate<i64, [{
|
|
return SystemZ::isImmHH(N->getZExtValue());
|
|
}], HH16, "U16Imm">;
|
|
|
|
// Immediates for 16-bit chunks of an i64, with the other bits of the
|
|
// i32 being one.
|
|
def imm64ll16c : Immediate<i64, [{
|
|
return SystemZ::isImmLL(uint64_t(~N->getZExtValue()));
|
|
}], LL16, "U16Imm">;
|
|
|
|
def imm64lh16c : Immediate<i64, [{
|
|
return SystemZ::isImmLH(uint64_t(~N->getZExtValue()));
|
|
}], LH16, "U16Imm">;
|
|
|
|
def imm64hl16c : Immediate<i64, [{
|
|
return SystemZ::isImmHL(uint64_t(~N->getZExtValue()));
|
|
}], HL16, "U16Imm">;
|
|
|
|
def imm64hh16c : Immediate<i64, [{
|
|
return SystemZ::isImmHH(uint64_t(~N->getZExtValue()));
|
|
}], HH16, "U16Imm">;
|
|
|
|
// Immediates for the lower and upper 32 bits of an i64, with the other
|
|
// bits of the i32 being zero.
|
|
def imm64lf32 : Immediate<i64, [{
|
|
return SystemZ::isImmLF(N->getZExtValue());
|
|
}], LF32, "U32Imm">;
|
|
|
|
def imm64hf32 : Immediate<i64, [{
|
|
return SystemZ::isImmHF(N->getZExtValue());
|
|
}], HF32, "U32Imm">;
|
|
|
|
// Immediates for the lower and upper 32 bits of an i64, with the other
|
|
// bits of the i32 being one.
|
|
def imm64lf32c : Immediate<i64, [{
|
|
return SystemZ::isImmLF(uint64_t(~N->getZExtValue()));
|
|
}], LF32, "U32Imm">;
|
|
|
|
def imm64hf32c : Immediate<i64, [{
|
|
return SystemZ::isImmHF(uint64_t(~N->getZExtValue()));
|
|
}], HF32, "U32Imm">;
|
|
|
|
// Short immediates.
|
|
def imm64sx8 : Immediate<i64, [{
|
|
return isInt<8>(N->getSExtValue());
|
|
}], SIMM8, "S8Imm">;
|
|
|
|
def imm64zx8 : Immediate<i64, [{
|
|
return isUInt<8>(N->getSExtValue());
|
|
}], UIMM8, "U8Imm">;
|
|
|
|
def imm64sx16 : Immediate<i64, [{
|
|
return isInt<16>(N->getSExtValue());
|
|
}], SIMM16, "S16Imm">;
|
|
|
|
def imm64zx16 : Immediate<i64, [{
|
|
return isUInt<16>(N->getZExtValue());
|
|
}], UIMM16, "U16Imm">;
|
|
|
|
def imm64sx32 : Immediate<i64, [{
|
|
return isInt<32>(N->getSExtValue());
|
|
}], SIMM32, "S32Imm">;
|
|
|
|
def imm64zx32 : Immediate<i64, [{
|
|
return isUInt<32>(N->getZExtValue());
|
|
}], UIMM32, "U32Imm">;
|
|
|
|
def imm64zx32n : Immediate<i64, [{
|
|
return isUInt<32>(-N->getSExtValue());
|
|
}], NEGIMM32, "U32Imm">;
|
|
|
|
def imm64 : ImmLeaf<i64, [{}]>, Operand<i64>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Floating-point immediates
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Floating-point zero.
|
|
def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>;
|
|
|
|
// Floating point negative zero.
|
|
def fpimmneg0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(-0.0); }]>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Symbolic address operands
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// PC-relative asm operands.
|
|
def PCRel16 : PCRelAsmOperand<"16">;
|
|
def PCRel32 : PCRelAsmOperand<"32">;
|
|
|
|
// PC-relative offsets of a basic block. The offset is sign-extended
|
|
// and multiplied by 2.
|
|
def brtarget16 : PCRelOperand<OtherVT, PCRel16> {
|
|
let EncoderMethod = "getPC16DBLEncoding";
|
|
let DecoderMethod = "decodePC16DBLOperand";
|
|
}
|
|
def brtarget32 : PCRelOperand<OtherVT, PCRel32> {
|
|
let EncoderMethod = "getPC32DBLEncoding";
|
|
let DecoderMethod = "decodePC32DBLOperand";
|
|
}
|
|
|
|
// A PC-relative offset of a global value. The offset is sign-extended
|
|
// and multiplied by 2.
|
|
def pcrel32 : PCRelAddress<i64, "pcrel32", PCRel32> {
|
|
let EncoderMethod = "getPC32DBLEncoding";
|
|
let DecoderMethod = "decodePC32DBLOperand";
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Addressing modes
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// 12-bit displacement operands.
|
|
def disp12imm32 : Operand<i32>;
|
|
def disp12imm64 : Operand<i64>;
|
|
|
|
// 20-bit displacement operands.
|
|
def disp20imm32 : Operand<i32>;
|
|
def disp20imm64 : Operand<i64>;
|
|
|
|
def BDAddr32Disp12 : AddressAsmOperand<"BDAddr", "32", "12">;
|
|
def BDAddr32Disp20 : AddressAsmOperand<"BDAddr", "32", "20">;
|
|
def BDAddr64Disp12 : AddressAsmOperand<"BDAddr", "64", "12">;
|
|
def BDAddr64Disp20 : AddressAsmOperand<"BDAddr", "64", "20">;
|
|
def BDXAddr64Disp12 : AddressAsmOperand<"BDXAddr", "64", "12">;
|
|
def BDXAddr64Disp20 : AddressAsmOperand<"BDXAddr", "64", "20">;
|
|
def BDLAddr64Disp12Len8 : AddressAsmOperand<"BDLAddr", "64", "12", "Len8">;
|
|
|
|
// DAG patterns and operands for addressing modes. Each mode has
|
|
// the form <type><range><group>[<len>] where:
|
|
//
|
|
// <type> is one of:
|
|
// shift : base + displacement (32-bit)
|
|
// bdaddr : base + displacement
|
|
// mviaddr : like bdaddr, but reject cases with a natural index
|
|
// bdxaddr : base + displacement + index
|
|
// laaddr : like bdxaddr, but used for Load Address operations
|
|
// dynalloc : base + displacement + index + ADJDYNALLOC
|
|
// bdladdr : base + displacement with a length field
|
|
//
|
|
// <range> is one of:
|
|
// 12 : the displacement is an unsigned 12-bit value
|
|
// 20 : the displacement is a signed 20-bit value
|
|
//
|
|
// <group> is one of:
|
|
// pair : used when there is an equivalent instruction with the opposite
|
|
// range value (12 or 20)
|
|
// only : used when there is no equivalent instruction with the opposite
|
|
// range value
|
|
//
|
|
// <len> is one of:
|
|
//
|
|
// <empty> : there is no length field
|
|
// len8 : the length field is 8 bits, with a range of [1, 0x100].
|
|
def shift12only : BDMode <"BDAddr", "32", "12", "Only">;
|
|
def shift20only : BDMode <"BDAddr", "32", "20", "Only">;
|
|
def bdaddr12only : BDMode <"BDAddr", "64", "12", "Only">;
|
|
def bdaddr12pair : BDMode <"BDAddr", "64", "12", "Pair">;
|
|
def bdaddr20only : BDMode <"BDAddr", "64", "20", "Only">;
|
|
def bdaddr20pair : BDMode <"BDAddr", "64", "20", "Pair">;
|
|
def mviaddr12pair : BDMode <"MVIAddr", "64", "12", "Pair">;
|
|
def mviaddr20pair : BDMode <"MVIAddr", "64", "20", "Pair">;
|
|
def bdxaddr12only : BDXMode<"BDXAddr", "64", "12", "Only">;
|
|
def bdxaddr12pair : BDXMode<"BDXAddr", "64", "12", "Pair">;
|
|
def bdxaddr20only : BDXMode<"BDXAddr", "64", "20", "Only">;
|
|
def bdxaddr20only128 : BDXMode<"BDXAddr", "64", "20", "Only128">;
|
|
def bdxaddr20pair : BDXMode<"BDXAddr", "64", "20", "Pair">;
|
|
def dynalloc12only : BDXMode<"DynAlloc", "64", "12", "Only">;
|
|
def laaddr12pair : BDXMode<"LAAddr", "64", "12", "Pair">;
|
|
def laaddr20pair : BDXMode<"LAAddr", "64", "20", "Pair">;
|
|
def bdladdr12onlylen8 : BDLMode<"BDLAddr", "64", "12", "Only", "8">;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Miscellaneous
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Access registers. At present we just use them for accessing the thread
|
|
// pointer, so we don't expose them as register to LLVM.
|
|
def AccessReg : AsmOperandClass {
|
|
let Name = "AccessReg";
|
|
let ParserMethod = "parseAccessReg";
|
|
}
|
|
def access_reg : Immediate<i32, [{ return N->getZExtValue() < 16; }],
|
|
NOOP_SDNodeXForm, "AccessReg"> {
|
|
let ParserMatchClass = AccessReg;
|
|
}
|
|
|
|
// A 4-bit condition-code mask.
|
|
def cond4 : PatLeaf<(i32 imm), [{ return (N->getZExtValue() < 16); }]>,
|
|
Operand<i32> {
|
|
let PrintMethod = "printCond4Operand";
|
|
}
|