llvm-6502/lib/Transforms/InstCombine/InstCombineVectorOps.cpp

764 lines
29 KiB
C++

//===- InstCombineVectorOps.cpp -------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements instcombine for ExtractElement, InsertElement and
// ShuffleVector.
//
//===----------------------------------------------------------------------===//
#include "InstCombine.h"
#include "llvm/Support/PatternMatch.h"
using namespace llvm;
using namespace PatternMatch;
/// CheapToScalarize - Return true if the value is cheaper to scalarize than it
/// is to leave as a vector operation. isConstant indicates whether we're
/// extracting one known element. If false we're extracting a variable index.
static bool CheapToScalarize(Value *V, bool isConstant) {
if (Constant *C = dyn_cast<Constant>(V)) {
if (isConstant) return true;
// If all elts are the same, we can extract it and use any of the values.
Constant *Op0 = C->getAggregateElement(0U);
for (unsigned i = 1, e = V->getType()->getVectorNumElements(); i != e; ++i)
if (C->getAggregateElement(i) != Op0)
return false;
return true;
}
Instruction *I = dyn_cast<Instruction>(V);
if (!I) return false;
// Insert element gets simplified to the inserted element or is deleted if
// this is constant idx extract element and its a constant idx insertelt.
if (I->getOpcode() == Instruction::InsertElement && isConstant &&
isa<ConstantInt>(I->getOperand(2)))
return true;
if (I->getOpcode() == Instruction::Load && I->hasOneUse())
return true;
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
if (BO->hasOneUse() &&
(CheapToScalarize(BO->getOperand(0), isConstant) ||
CheapToScalarize(BO->getOperand(1), isConstant)))
return true;
if (CmpInst *CI = dyn_cast<CmpInst>(I))
if (CI->hasOneUse() &&
(CheapToScalarize(CI->getOperand(0), isConstant) ||
CheapToScalarize(CI->getOperand(1), isConstant)))
return true;
return false;
}
/// FindScalarElement - Given a vector and an element number, see if the scalar
/// value is already around as a register, for example if it were inserted then
/// extracted from the vector.
static Value *FindScalarElement(Value *V, unsigned EltNo) {
assert(V->getType()->isVectorTy() && "Not looking at a vector?");
VectorType *VTy = cast<VectorType>(V->getType());
unsigned Width = VTy->getNumElements();
if (EltNo >= Width) // Out of range access.
return UndefValue::get(VTy->getElementType());
if (Constant *C = dyn_cast<Constant>(V))
return C->getAggregateElement(EltNo);
if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
// If this is an insert to a variable element, we don't know what it is.
if (!isa<ConstantInt>(III->getOperand(2)))
return 0;
unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
// If this is an insert to the element we are looking for, return the
// inserted value.
if (EltNo == IIElt)
return III->getOperand(1);
// Otherwise, the insertelement doesn't modify the value, recurse on its
// vector input.
return FindScalarElement(III->getOperand(0), EltNo);
}
if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
int InEl = SVI->getMaskValue(EltNo);
if (InEl < 0)
return UndefValue::get(VTy->getElementType());
if (InEl < (int)LHSWidth)
return FindScalarElement(SVI->getOperand(0), InEl);
return FindScalarElement(SVI->getOperand(1), InEl - LHSWidth);
}
// Extract a value from a vector add operation with a constant zero.
Value *Val = 0; Constant *Con = 0;
if (match(V, m_Add(m_Value(Val), m_Constant(Con)))) {
if (Con->getAggregateElement(EltNo)->isNullValue())
return FindScalarElement(Val, EltNo);
}
// Otherwise, we don't know.
return 0;
}
// If we have a PHI node with a vector type that has only 2 uses: feed
// itself and be an operand of extractelemnt at a constant location,
// try to replace the PHI of the vector type with a PHI of a scalar type
Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
// Verify that the PHI node has exactly 2 uses. Otherwise return NULL.
if (!PN->hasNUses(2))
return NULL;
// If so, it's known at this point that one operand is PHI and the other is
// an extractelement node. Find the PHI user that is not the extractelement
// node.
Value::use_iterator iu = PN->use_begin();
Instruction *PHIUser = dyn_cast<Instruction>(*iu);
if (PHIUser == cast<Instruction>(&EI))
PHIUser = cast<Instruction>(*(++iu));
// Verify that this PHI user has one use, which is the PHI itself,
// and that it is a binary operation which is cheap to scalarize.
// otherwise return NULL.
if (!PHIUser->hasOneUse() || !(PHIUser->use_back() == PN) ||
!(isa<BinaryOperator>(PHIUser)) ||
!CheapToScalarize(PHIUser, true))
return NULL;
// Create a scalar PHI node that will replace the vector PHI node
// just before the current PHI node.
PHINode * scalarPHI = cast<PHINode>(
InsertNewInstWith(PHINode::Create(EI.getType(),
PN->getNumIncomingValues(), ""), *PN));
// Scalarize each PHI operand.
for (unsigned i=0; i < PN->getNumIncomingValues(); i++) {
Value *PHIInVal = PN->getIncomingValue(i);
BasicBlock *inBB = PN->getIncomingBlock(i);
Value *Elt = EI.getIndexOperand();
// If the operand is the PHI induction variable:
if (PHIInVal == PHIUser) {
// Scalarize the binary operation. Its first operand is the
// scalar PHI and the second operand is extracted from the other
// vector operand.
BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
unsigned opId = (B0->getOperand(0) == PN) ? 1: 0;
Value *Op = Builder->CreateExtractElement(
B0->getOperand(opId), Elt, B0->getOperand(opId)->getName()+".Elt");
Value *newPHIUser = InsertNewInstWith(
BinaryOperator::Create(B0->getOpcode(), scalarPHI,Op),
*B0);
scalarPHI->addIncoming(newPHIUser, inBB);
} else {
// Scalarize PHI input:
Instruction *newEI =
ExtractElementInst::Create(PHIInVal, Elt, "");
// Insert the new instruction into the predecessor basic block.
Instruction *pos = dyn_cast<Instruction>(PHIInVal);
BasicBlock::iterator InsertPos;
if (pos && !isa<PHINode>(pos)) {
InsertPos = pos;
++InsertPos;
} else {
InsertPos = inBB->getFirstInsertionPt();
}
InsertNewInstWith(newEI, *InsertPos);
scalarPHI->addIncoming(newEI, inBB);
}
}
return ReplaceInstUsesWith(EI, scalarPHI);
}
Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
// If vector val is constant with all elements the same, replace EI with
// that element. We handle a known element # below.
if (Constant *C = dyn_cast<Constant>(EI.getOperand(0)))
if (CheapToScalarize(C, false))
return ReplaceInstUsesWith(EI, C->getAggregateElement(0U));
// If extracting a specified index from the vector, see if we can recursively
// find a previously computed scalar that was inserted into the vector.
if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
unsigned IndexVal = IdxC->getZExtValue();
unsigned VectorWidth = EI.getVectorOperandType()->getNumElements();
// If this is extracting an invalid index, turn this into undef, to avoid
// crashing the code below.
if (IndexVal >= VectorWidth)
return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
// This instruction only demands the single element from the input vector.
// If the input vector has a single use, simplify it based on this use
// property.
if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
APInt UndefElts(VectorWidth, 0);
APInt DemandedMask(VectorWidth, 0);
DemandedMask.setBit(IndexVal);
if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
DemandedMask, UndefElts)) {
EI.setOperand(0, V);
return &EI;
}
}
if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
return ReplaceInstUsesWith(EI, Elt);
// If the this extractelement is directly using a bitcast from a vector of
// the same number of elements, see if we can find the source element from
// it. In this case, we will end up needing to bitcast the scalars.
if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
if (VectorType *VT = dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
if (VT->getNumElements() == VectorWidth)
if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal))
return new BitCastInst(Elt, EI.getType());
}
// If there's a vector PHI feeding a scalar use through this extractelement
// instruction, try to scalarize the PHI.
if (PHINode *PN = dyn_cast<PHINode>(EI.getOperand(0))) {
Instruction *scalarPHI = scalarizePHI(EI, PN);
if (scalarPHI)
return (scalarPHI);
}
}
if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
// Push extractelement into predecessor operation if legal and
// profitable to do so
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
if (I->hasOneUse() &&
CheapToScalarize(BO, isa<ConstantInt>(EI.getOperand(1)))) {
Value *newEI0 =
Builder->CreateExtractElement(BO->getOperand(0), EI.getOperand(1),
EI.getName()+".lhs");
Value *newEI1 =
Builder->CreateExtractElement(BO->getOperand(1), EI.getOperand(1),
EI.getName()+".rhs");
return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
}
} else if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
// Extracting the inserted element?
if (IE->getOperand(2) == EI.getOperand(1))
return ReplaceInstUsesWith(EI, IE->getOperand(1));
// If the inserted and extracted elements are constants, they must not
// be the same value, extract from the pre-inserted value instead.
if (isa<Constant>(IE->getOperand(2)) && isa<Constant>(EI.getOperand(1))) {
Worklist.AddValue(EI.getOperand(0));
EI.setOperand(0, IE->getOperand(0));
return &EI;
}
} else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
// If this is extracting an element from a shufflevector, figure out where
// it came from and extract from the appropriate input element instead.
if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
Value *Src;
unsigned LHSWidth =
SVI->getOperand(0)->getType()->getVectorNumElements();
if (SrcIdx < 0)
return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
if (SrcIdx < (int)LHSWidth)
Src = SVI->getOperand(0);
else {
SrcIdx -= LHSWidth;
Src = SVI->getOperand(1);
}
Type *Int32Ty = Type::getInt32Ty(EI.getContext());
return ExtractElementInst::Create(Src,
ConstantInt::get(Int32Ty,
SrcIdx, false));
}
} else if (CastInst *CI = dyn_cast<CastInst>(I)) {
// Canonicalize extractelement(cast) -> cast(extractelement)
// bitcasts can change the number of vector elements and they cost nothing
if (CI->hasOneUse() && EI.hasOneUse() &&
(CI->getOpcode() != Instruction::BitCast)) {
Value *EE = Builder->CreateExtractElement(CI->getOperand(0),
EI.getIndexOperand());
return CastInst::Create(CI->getOpcode(), EE, EI.getType());
}
}
}
return 0;
}
/// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
/// elements from either LHS or RHS, return the shuffle mask and true.
/// Otherwise, return false.
static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
SmallVectorImpl<Constant*> &Mask) {
assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
"Invalid CollectSingleShuffleElements");
unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
if (isa<UndefValue>(V)) {
Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
return true;
}
if (V == LHS) {
for (unsigned i = 0; i != NumElts; ++i)
Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
return true;
}
if (V == RHS) {
for (unsigned i = 0; i != NumElts; ++i)
Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
i+NumElts));
return true;
}
if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
// If this is an insert of an extract from some other vector, include it.
Value *VecOp = IEI->getOperand(0);
Value *ScalarOp = IEI->getOperand(1);
Value *IdxOp = IEI->getOperand(2);
if (!isa<ConstantInt>(IdxOp))
return false;
unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
// Okay, we can handle this if the vector we are insertinting into is
// transitively ok.
if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
// If so, update the mask to reflect the inserted undef.
Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
return true;
}
} else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
if (isa<ConstantInt>(EI->getOperand(1)) &&
EI->getOperand(0)->getType() == V->getType()) {
unsigned ExtractedIdx =
cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
// This must be extracting from either LHS or RHS.
if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
// Okay, we can handle this if the vector we are insertinting into is
// transitively ok.
if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
// If so, update the mask to reflect the inserted value.
if (EI->getOperand(0) == LHS) {
Mask[InsertedIdx % NumElts] =
ConstantInt::get(Type::getInt32Ty(V->getContext()),
ExtractedIdx);
} else {
assert(EI->getOperand(0) == RHS);
Mask[InsertedIdx % NumElts] =
ConstantInt::get(Type::getInt32Ty(V->getContext()),
ExtractedIdx+NumElts);
}
return true;
}
}
}
}
}
// TODO: Handle shufflevector here!
return false;
}
/// CollectShuffleElements - We are building a shuffle of V, using RHS as the
/// RHS of the shuffle instruction, if it is not null. Return a shuffle mask
/// that computes V and the LHS value of the shuffle.
static Value *CollectShuffleElements(Value *V, SmallVectorImpl<Constant*> &Mask,
Value *&RHS) {
assert(V->getType()->isVectorTy() &&
(RHS == 0 || V->getType() == RHS->getType()) &&
"Invalid shuffle!");
unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
if (isa<UndefValue>(V)) {
Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
return V;
}
if (isa<ConstantAggregateZero>(V)) {
Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
return V;
}
if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
// If this is an insert of an extract from some other vector, include it.
Value *VecOp = IEI->getOperand(0);
Value *ScalarOp = IEI->getOperand(1);
Value *IdxOp = IEI->getOperand(2);
if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
EI->getOperand(0)->getType() == V->getType()) {
unsigned ExtractedIdx =
cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
// Either the extracted from or inserted into vector must be RHSVec,
// otherwise we'd end up with a shuffle of three inputs.
if (EI->getOperand(0) == RHS || RHS == 0) {
RHS = EI->getOperand(0);
Value *V = CollectShuffleElements(VecOp, Mask, RHS);
Mask[InsertedIdx % NumElts] =
ConstantInt::get(Type::getInt32Ty(V->getContext()),
NumElts+ExtractedIdx);
return V;
}
if (VecOp == RHS) {
Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
// Update Mask to reflect that `ScalarOp' has been inserted at
// position `InsertedIdx' within the vector returned by IEI.
Mask[InsertedIdx % NumElts] = Mask[ExtractedIdx];
// Everything but the extracted element is replaced with the RHS.
for (unsigned i = 0; i != NumElts; ++i) {
if (i != InsertedIdx)
Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()),
NumElts+i);
}
return V;
}
// If this insertelement is a chain that comes from exactly these two
// vectors, return the vector and the effective shuffle.
if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
return EI->getOperand(0);
}
}
}
// TODO: Handle shufflevector here!
// Otherwise, can't do anything fancy. Return an identity vector.
for (unsigned i = 0; i != NumElts; ++i)
Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
return V;
}
Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
Value *VecOp = IE.getOperand(0);
Value *ScalarOp = IE.getOperand(1);
Value *IdxOp = IE.getOperand(2);
// Inserting an undef or into an undefined place, remove this.
if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
ReplaceInstUsesWith(IE, VecOp);
// If the inserted element was extracted from some other vector, and if the
// indexes are constant, try to turn this into a shufflevector operation.
if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
EI->getOperand(0)->getType() == IE.getType()) {
unsigned NumVectorElts = IE.getType()->getNumElements();
unsigned ExtractedIdx =
cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
if (ExtractedIdx >= NumVectorElts) // Out of range extract.
return ReplaceInstUsesWith(IE, VecOp);
if (InsertedIdx >= NumVectorElts) // Out of range insert.
return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
// If we are extracting a value from a vector, then inserting it right
// back into the same place, just use the input vector.
if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
return ReplaceInstUsesWith(IE, VecOp);
// If this insertelement isn't used by some other insertelement, turn it
// (and any insertelements it points to), into one big shuffle.
if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
SmallVector<Constant*, 16> Mask;
Value *RHS = 0;
Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
if (RHS == 0) RHS = UndefValue::get(LHS->getType());
// We now have a shuffle of LHS, RHS, Mask.
return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask));
}
}
}
unsigned VWidth = cast<VectorType>(VecOp->getType())->getNumElements();
APInt UndefElts(VWidth, 0);
APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
if (V != &IE)
return ReplaceInstUsesWith(IE, V);
return &IE;
}
return 0;
}
Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
Value *LHS = SVI.getOperand(0);
Value *RHS = SVI.getOperand(1);
SmallVector<int, 16> Mask = SVI.getShuffleMask();
bool MadeChange = false;
// Undefined shuffle mask -> undefined value.
if (isa<UndefValue>(SVI.getOperand(2)))
return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
APInt UndefElts(VWidth, 0);
APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
if (V != &SVI)
return ReplaceInstUsesWith(SVI, V);
LHS = SVI.getOperand(0);
RHS = SVI.getOperand(1);
MadeChange = true;
}
unsigned LHSWidth = cast<VectorType>(LHS->getType())->getNumElements();
// Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
// Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
if (LHS == RHS || isa<UndefValue>(LHS)) {
if (isa<UndefValue>(LHS) && LHS == RHS) {
// shuffle(undef,undef,mask) -> undef.
Value* result = (VWidth == LHSWidth)
? LHS : UndefValue::get(SVI.getType());
return ReplaceInstUsesWith(SVI, result);
}
// Remap any references to RHS to use LHS.
SmallVector<Constant*, 16> Elts;
for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) {
if (Mask[i] < 0) {
Elts.push_back(UndefValue::get(Type::getInt32Ty(SVI.getContext())));
continue;
}
if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) ||
(Mask[i] < (int)e && isa<UndefValue>(LHS))) {
Mask[i] = -1; // Turn into undef.
Elts.push_back(UndefValue::get(Type::getInt32Ty(SVI.getContext())));
} else {
Mask[i] = Mask[i] % e; // Force to LHS.
Elts.push_back(ConstantInt::get(Type::getInt32Ty(SVI.getContext()),
Mask[i]));
}
}
SVI.setOperand(0, SVI.getOperand(1));
SVI.setOperand(1, UndefValue::get(RHS->getType()));
SVI.setOperand(2, ConstantVector::get(Elts));
LHS = SVI.getOperand(0);
RHS = SVI.getOperand(1);
MadeChange = true;
}
if (VWidth == LHSWidth) {
// Analyze the shuffle, are the LHS or RHS and identity shuffles?
bool isLHSID = true, isRHSID = true;
for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
if (Mask[i] < 0) continue; // Ignore undef values.
// Is this an identity shuffle of the LHS value?
isLHSID &= (Mask[i] == (int)i);
// Is this an identity shuffle of the RHS value?
isRHSID &= (Mask[i]-e == i);
}
// Eliminate identity shuffles.
if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
}
// If the LHS is a shufflevector itself, see if we can combine it with this
// one without producing an unusual shuffle.
// Cases that might be simplified:
// 1.
// x1=shuffle(v1,v2,mask1)
// x=shuffle(x1,undef,mask)
// ==>
// x=shuffle(v1,undef,newMask)
// newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
// 2.
// x1=shuffle(v1,undef,mask1)
// x=shuffle(x1,x2,mask)
// where v1.size() == mask1.size()
// ==>
// x=shuffle(v1,x2,newMask)
// newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
// 3.
// x2=shuffle(v2,undef,mask2)
// x=shuffle(x1,x2,mask)
// where v2.size() == mask2.size()
// ==>
// x=shuffle(x1,v2,newMask)
// newMask[i] = (mask[i] < x1.size())
// ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
// 4.
// x1=shuffle(v1,undef,mask1)
// x2=shuffle(v2,undef,mask2)
// x=shuffle(x1,x2,mask)
// where v1.size() == v2.size()
// ==>
// x=shuffle(v1,v2,newMask)
// newMask[i] = (mask[i] < x1.size())
// ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
//
// Here we are really conservative:
// we are absolutely afraid of producing a shuffle mask not in the input
// program, because the code gen may not be smart enough to turn a merged
// shuffle into two specific shuffles: it may produce worse code. As such,
// we only merge two shuffles if the result is either a splat or one of the
// input shuffle masks. In this case, merging the shuffles just removes
// one instruction, which we know is safe. This is good for things like
// turning: (splat(splat)) -> splat, or
// merge(V[0..n], V[n+1..2n]) -> V[0..2n]
ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
if (LHSShuffle)
if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
LHSShuffle = NULL;
if (RHSShuffle)
if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
RHSShuffle = NULL;
if (!LHSShuffle && !RHSShuffle)
return MadeChange ? &SVI : 0;
Value* LHSOp0 = NULL;
Value* LHSOp1 = NULL;
Value* RHSOp0 = NULL;
unsigned LHSOp0Width = 0;
unsigned RHSOp0Width = 0;
if (LHSShuffle) {
LHSOp0 = LHSShuffle->getOperand(0);
LHSOp1 = LHSShuffle->getOperand(1);
LHSOp0Width = cast<VectorType>(LHSOp0->getType())->getNumElements();
}
if (RHSShuffle) {
RHSOp0 = RHSShuffle->getOperand(0);
RHSOp0Width = cast<VectorType>(RHSOp0->getType())->getNumElements();
}
Value* newLHS = LHS;
Value* newRHS = RHS;
if (LHSShuffle) {
// case 1
if (isa<UndefValue>(RHS)) {
newLHS = LHSOp0;
newRHS = LHSOp1;
}
// case 2 or 4
else if (LHSOp0Width == LHSWidth) {
newLHS = LHSOp0;
}
}
// case 3 or 4
if (RHSShuffle && RHSOp0Width == LHSWidth) {
newRHS = RHSOp0;
}
// case 4
if (LHSOp0 == RHSOp0) {
newLHS = LHSOp0;
newRHS = NULL;
}
if (newLHS == LHS && newRHS == RHS)
return MadeChange ? &SVI : 0;
SmallVector<int, 16> LHSMask;
SmallVector<int, 16> RHSMask;
if (newLHS != LHS)
LHSMask = LHSShuffle->getShuffleMask();
if (RHSShuffle && newRHS != RHS)
RHSMask = RHSShuffle->getShuffleMask();
unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
SmallVector<int, 16> newMask;
bool isSplat = true;
int SplatElt = -1;
// Create a new mask for the new ShuffleVectorInst so that the new
// ShuffleVectorInst is equivalent to the original one.
for (unsigned i = 0; i < VWidth; ++i) {
int eltMask;
if (Mask[i] < 0) {
// This element is an undef value.
eltMask = -1;
} else if (Mask[i] < (int)LHSWidth) {
// This element is from left hand side vector operand.
//
// If LHS is going to be replaced (case 1, 2, or 4), calculate the
// new mask value for the element.
if (newLHS != LHS) {
eltMask = LHSMask[Mask[i]];
// If the value selected is an undef value, explicitly specify it
// with a -1 mask value.
if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
eltMask = -1;
} else
eltMask = Mask[i];
} else {
// This element is from right hand side vector operand
//
// If the value selected is an undef value, explicitly specify it
// with a -1 mask value. (case 1)
if (isa<UndefValue>(RHS))
eltMask = -1;
// If RHS is going to be replaced (case 3 or 4), calculate the
// new mask value for the element.
else if (newRHS != RHS) {
eltMask = RHSMask[Mask[i]-LHSWidth];
// If the value selected is an undef value, explicitly specify it
// with a -1 mask value.
if (eltMask >= (int)RHSOp0Width) {
assert(isa<UndefValue>(RHSShuffle->getOperand(1))
&& "should have been check above");
eltMask = -1;
}
} else
eltMask = Mask[i]-LHSWidth;
// If LHS's width is changed, shift the mask value accordingly.
// If newRHS == NULL, i.e. LHSOp0 == RHSOp0, we want to remap any
// references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
// If newRHS == newLHS, we want to remap any references from newRHS to
// newLHS so that we can properly identify splats that may occur due to
// obfuscation accross the two vectors.
if (eltMask >= 0 && newRHS != NULL && newLHS != newRHS)
eltMask += newLHSWidth;
}
// Check if this could still be a splat.
if (eltMask >= 0) {
if (SplatElt >= 0 && SplatElt != eltMask)
isSplat = false;
SplatElt = eltMask;
}
newMask.push_back(eltMask);
}
// If the result mask is equal to one of the original shuffle masks,
// or is a splat, do the replacement.
if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
SmallVector<Constant*, 16> Elts;
Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
if (newMask[i] < 0) {
Elts.push_back(UndefValue::get(Int32Ty));
} else {
Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
}
}
if (newRHS == NULL)
newRHS = UndefValue::get(newLHS->getType());
return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
}
return MadeChange ? &SVI : 0;
}