mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-30 02:32:08 +00:00
4cd53531fd
Previously, fast-isel would not clean up after failing to select a call instruction, because it would have called flushLocalValueMap() which moves the insertion point, making SavedInsertPt in selectInstruction() invalid. Fixing this by making SavedInsertPt a member variable, and having flushLocalValueMap() update it. This removes some redundant code at -O0, and more importantly fixes PR20863. Differential Revision: http://reviews.llvm.org/D5249 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217401 91177308-0d34-0410-b5e6-96231b3b80d8
2145 lines
77 KiB
C++
2145 lines
77 KiB
C++
//===-- FastISel.cpp - Implementation of the FastISel class ---------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the implementation of the FastISel class.
|
|
//
|
|
// "Fast" instruction selection is designed to emit very poor code quickly.
|
|
// Also, it is not designed to be able to do much lowering, so most illegal
|
|
// types (e.g. i64 on 32-bit targets) and operations are not supported. It is
|
|
// also not intended to be able to do much optimization, except in a few cases
|
|
// where doing optimizations reduces overall compile time. For example, folding
|
|
// constants into immediate fields is often done, because it's cheap and it
|
|
// reduces the number of instructions later phases have to examine.
|
|
//
|
|
// "Fast" instruction selection is able to fail gracefully and transfer
|
|
// control to the SelectionDAG selector for operations that it doesn't
|
|
// support. In many cases, this allows us to avoid duplicating a lot of
|
|
// the complicated lowering logic that SelectionDAG currently has.
|
|
//
|
|
// The intended use for "fast" instruction selection is "-O0" mode
|
|
// compilation, where the quality of the generated code is irrelevant when
|
|
// weighed against the speed at which the code can be generated. Also,
|
|
// at -O0, the LLVM optimizers are not running, and this makes the
|
|
// compile time of codegen a much higher portion of the overall compile
|
|
// time. Despite its limitations, "fast" instruction selection is able to
|
|
// handle enough code on its own to provide noticeable overall speedups
|
|
// in -O0 compiles.
|
|
//
|
|
// Basic operations are supported in a target-independent way, by reading
|
|
// the same instruction descriptions that the SelectionDAG selector reads,
|
|
// and identifying simple arithmetic operations that can be directly selected
|
|
// from simple operators. More complicated operations currently require
|
|
// target-specific code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/Analysis.h"
|
|
#include "llvm/CodeGen/FastISel.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/BranchProbabilityInfo.h"
|
|
#include "llvm/Analysis/Loads.h"
|
|
#include "llvm/CodeGen/Analysis.h"
|
|
#include "llvm/CodeGen/FunctionLoweringInfo.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/StackMaps.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DebugInfo.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetLibraryInfo.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetSubtargetInfo.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "isel"
|
|
|
|
STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
|
|
"target-independent selector");
|
|
STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
|
|
"target-specific selector");
|
|
STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
|
|
|
|
void FastISel::ArgListEntry::setAttributes(ImmutableCallSite *CS,
|
|
unsigned AttrIdx) {
|
|
IsSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt);
|
|
IsZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt);
|
|
IsInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg);
|
|
IsSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet);
|
|
IsNest = CS->paramHasAttr(AttrIdx, Attribute::Nest);
|
|
IsByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal);
|
|
IsInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca);
|
|
IsReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned);
|
|
Alignment = CS->getParamAlignment(AttrIdx);
|
|
}
|
|
|
|
/// Set the current block to which generated machine instructions will be
|
|
/// appended, and clear the local CSE map.
|
|
void FastISel::startNewBlock() {
|
|
LocalValueMap.clear();
|
|
|
|
// Instructions are appended to FuncInfo.MBB. If the basic block already
|
|
// contains labels or copies, use the last instruction as the last local
|
|
// value.
|
|
EmitStartPt = nullptr;
|
|
if (!FuncInfo.MBB->empty())
|
|
EmitStartPt = &FuncInfo.MBB->back();
|
|
LastLocalValue = EmitStartPt;
|
|
}
|
|
|
|
bool FastISel::lowerArguments() {
|
|
if (!FuncInfo.CanLowerReturn)
|
|
// Fallback to SDISel argument lowering code to deal with sret pointer
|
|
// parameter.
|
|
return false;
|
|
|
|
if (!fastLowerArguments())
|
|
return false;
|
|
|
|
// Enter arguments into ValueMap for uses in non-entry BBs.
|
|
for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(),
|
|
E = FuncInfo.Fn->arg_end();
|
|
I != E; ++I) {
|
|
DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(I);
|
|
assert(VI != LocalValueMap.end() && "Missed an argument?");
|
|
FuncInfo.ValueMap[I] = VI->second;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void FastISel::flushLocalValueMap() {
|
|
LocalValueMap.clear();
|
|
LastLocalValue = EmitStartPt;
|
|
recomputeInsertPt();
|
|
SavedInsertPt = FuncInfo.InsertPt;
|
|
}
|
|
|
|
bool FastISel::hasTrivialKill(const Value *V) {
|
|
// Don't consider constants or arguments to have trivial kills.
|
|
const Instruction *I = dyn_cast<Instruction>(V);
|
|
if (!I)
|
|
return false;
|
|
|
|
// No-op casts are trivially coalesced by fast-isel.
|
|
if (const auto *Cast = dyn_cast<CastInst>(I))
|
|
if (Cast->isNoopCast(DL.getIntPtrType(Cast->getContext())) &&
|
|
!hasTrivialKill(Cast->getOperand(0)))
|
|
return false;
|
|
|
|
// Even the value might have only one use in the LLVM IR, it is possible that
|
|
// FastISel might fold the use into another instruction and now there is more
|
|
// than one use at the Machine Instruction level.
|
|
unsigned Reg = lookUpRegForValue(V);
|
|
if (Reg && !MRI.use_empty(Reg))
|
|
return false;
|
|
|
|
// GEPs with all zero indices are trivially coalesced by fast-isel.
|
|
if (const auto *GEP = dyn_cast<GetElementPtrInst>(I))
|
|
if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0)))
|
|
return false;
|
|
|
|
// Only instructions with a single use in the same basic block are considered
|
|
// to have trivial kills.
|
|
return I->hasOneUse() &&
|
|
!(I->getOpcode() == Instruction::BitCast ||
|
|
I->getOpcode() == Instruction::PtrToInt ||
|
|
I->getOpcode() == Instruction::IntToPtr) &&
|
|
cast<Instruction>(*I->user_begin())->getParent() == I->getParent();
|
|
}
|
|
|
|
unsigned FastISel::getRegForValue(const Value *V) {
|
|
EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
|
|
// Don't handle non-simple values in FastISel.
|
|
if (!RealVT.isSimple())
|
|
return 0;
|
|
|
|
// Ignore illegal types. We must do this before looking up the value
|
|
// in ValueMap because Arguments are given virtual registers regardless
|
|
// of whether FastISel can handle them.
|
|
MVT VT = RealVT.getSimpleVT();
|
|
if (!TLI.isTypeLegal(VT)) {
|
|
// Handle integer promotions, though, because they're common and easy.
|
|
if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
|
|
VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
// Look up the value to see if we already have a register for it.
|
|
unsigned Reg = lookUpRegForValue(V);
|
|
if (Reg)
|
|
return Reg;
|
|
|
|
// In bottom-up mode, just create the virtual register which will be used
|
|
// to hold the value. It will be materialized later.
|
|
if (isa<Instruction>(V) &&
|
|
(!isa<AllocaInst>(V) ||
|
|
!FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
|
|
return FuncInfo.InitializeRegForValue(V);
|
|
|
|
SavePoint SaveInsertPt = enterLocalValueArea();
|
|
|
|
// Materialize the value in a register. Emit any instructions in the
|
|
// local value area.
|
|
Reg = materializeRegForValue(V, VT);
|
|
|
|
leaveLocalValueArea(SaveInsertPt);
|
|
|
|
return Reg;
|
|
}
|
|
|
|
unsigned FastISel::materializeConstant(const Value *V, MVT VT) {
|
|
unsigned Reg = 0;
|
|
if (const auto *CI = dyn_cast<ConstantInt>(V)) {
|
|
if (CI->getValue().getActiveBits() <= 64)
|
|
Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
|
|
} else if (isa<AllocaInst>(V))
|
|
Reg = fastMaterializeAlloca(cast<AllocaInst>(V));
|
|
else if (isa<ConstantPointerNull>(V))
|
|
// Translate this as an integer zero so that it can be
|
|
// local-CSE'd with actual integer zeros.
|
|
Reg = getRegForValue(
|
|
Constant::getNullValue(DL.getIntPtrType(V->getContext())));
|
|
else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
|
|
if (CF->isNullValue())
|
|
Reg = fastMaterializeFloatZero(CF);
|
|
else
|
|
// Try to emit the constant directly.
|
|
Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF);
|
|
|
|
if (!Reg) {
|
|
// Try to emit the constant by using an integer constant with a cast.
|
|
const APFloat &Flt = CF->getValueAPF();
|
|
EVT IntVT = TLI.getPointerTy();
|
|
|
|
uint64_t x[2];
|
|
uint32_t IntBitWidth = IntVT.getSizeInBits();
|
|
bool isExact;
|
|
(void)Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
|
|
APFloat::rmTowardZero, &isExact);
|
|
if (isExact) {
|
|
APInt IntVal(IntBitWidth, x);
|
|
|
|
unsigned IntegerReg =
|
|
getRegForValue(ConstantInt::get(V->getContext(), IntVal));
|
|
if (IntegerReg != 0)
|
|
Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg,
|
|
/*Kill=*/false);
|
|
}
|
|
}
|
|
} else if (const auto *Op = dyn_cast<Operator>(V)) {
|
|
if (!selectOperator(Op, Op->getOpcode()))
|
|
if (!isa<Instruction>(Op) ||
|
|
!fastSelectInstruction(cast<Instruction>(Op)))
|
|
return 0;
|
|
Reg = lookUpRegForValue(Op);
|
|
} else if (isa<UndefValue>(V)) {
|
|
Reg = createResultReg(TLI.getRegClassFor(VT));
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
|
|
}
|
|
return Reg;
|
|
}
|
|
|
|
/// Helper for getRegForValue. This function is called when the value isn't
|
|
/// already available in a register and must be materialized with new
|
|
/// instructions.
|
|
unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
|
|
unsigned Reg = 0;
|
|
// Give the target-specific code a try first.
|
|
if (isa<Constant>(V))
|
|
Reg = fastMaterializeConstant(cast<Constant>(V));
|
|
|
|
// If target-specific code couldn't or didn't want to handle the value, then
|
|
// give target-independent code a try.
|
|
if (!Reg)
|
|
Reg = materializeConstant(V, VT);
|
|
|
|
// Don't cache constant materializations in the general ValueMap.
|
|
// To do so would require tracking what uses they dominate.
|
|
if (Reg) {
|
|
LocalValueMap[V] = Reg;
|
|
LastLocalValue = MRI.getVRegDef(Reg);
|
|
}
|
|
return Reg;
|
|
}
|
|
|
|
unsigned FastISel::lookUpRegForValue(const Value *V) {
|
|
// Look up the value to see if we already have a register for it. We
|
|
// cache values defined by Instructions across blocks, and other values
|
|
// only locally. This is because Instructions already have the SSA
|
|
// def-dominates-use requirement enforced.
|
|
DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
|
|
if (I != FuncInfo.ValueMap.end())
|
|
return I->second;
|
|
return LocalValueMap[V];
|
|
}
|
|
|
|
void FastISel::updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) {
|
|
if (!isa<Instruction>(I)) {
|
|
LocalValueMap[I] = Reg;
|
|
return;
|
|
}
|
|
|
|
unsigned &AssignedReg = FuncInfo.ValueMap[I];
|
|
if (AssignedReg == 0)
|
|
// Use the new register.
|
|
AssignedReg = Reg;
|
|
else if (Reg != AssignedReg) {
|
|
// Arrange for uses of AssignedReg to be replaced by uses of Reg.
|
|
for (unsigned i = 0; i < NumRegs; i++)
|
|
FuncInfo.RegFixups[AssignedReg + i] = Reg + i;
|
|
|
|
AssignedReg = Reg;
|
|
}
|
|
}
|
|
|
|
std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
|
|
unsigned IdxN = getRegForValue(Idx);
|
|
if (IdxN == 0)
|
|
// Unhandled operand. Halt "fast" selection and bail.
|
|
return std::pair<unsigned, bool>(0, false);
|
|
|
|
bool IdxNIsKill = hasTrivialKill(Idx);
|
|
|
|
// If the index is smaller or larger than intptr_t, truncate or extend it.
|
|
MVT PtrVT = TLI.getPointerTy();
|
|
EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
|
|
if (IdxVT.bitsLT(PtrVT)) {
|
|
IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN,
|
|
IdxNIsKill);
|
|
IdxNIsKill = true;
|
|
} else if (IdxVT.bitsGT(PtrVT)) {
|
|
IdxN =
|
|
fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill);
|
|
IdxNIsKill = true;
|
|
}
|
|
return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
|
|
}
|
|
|
|
void FastISel::recomputeInsertPt() {
|
|
if (getLastLocalValue()) {
|
|
FuncInfo.InsertPt = getLastLocalValue();
|
|
FuncInfo.MBB = FuncInfo.InsertPt->getParent();
|
|
++FuncInfo.InsertPt;
|
|
} else
|
|
FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
|
|
|
|
// Now skip past any EH_LABELs, which must remain at the beginning.
|
|
while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
|
|
FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
|
|
++FuncInfo.InsertPt;
|
|
}
|
|
|
|
void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
|
|
MachineBasicBlock::iterator E) {
|
|
assert(I && E && std::distance(I, E) > 0 && "Invalid iterator!");
|
|
while (I != E) {
|
|
MachineInstr *Dead = &*I;
|
|
++I;
|
|
Dead->eraseFromParent();
|
|
++NumFastIselDead;
|
|
}
|
|
recomputeInsertPt();
|
|
}
|
|
|
|
FastISel::SavePoint FastISel::enterLocalValueArea() {
|
|
MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt;
|
|
DebugLoc OldDL = DbgLoc;
|
|
recomputeInsertPt();
|
|
DbgLoc = DebugLoc();
|
|
SavePoint SP = {OldInsertPt, OldDL};
|
|
return SP;
|
|
}
|
|
|
|
void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
|
|
if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
|
|
LastLocalValue = std::prev(FuncInfo.InsertPt);
|
|
|
|
// Restore the previous insert position.
|
|
FuncInfo.InsertPt = OldInsertPt.InsertPt;
|
|
DbgLoc = OldInsertPt.DL;
|
|
}
|
|
|
|
bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) {
|
|
EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
|
|
if (VT == MVT::Other || !VT.isSimple())
|
|
// Unhandled type. Halt "fast" selection and bail.
|
|
return false;
|
|
|
|
// We only handle legal types. For example, on x86-32 the instruction
|
|
// selector contains all of the 64-bit instructions from x86-64,
|
|
// under the assumption that i64 won't be used if the target doesn't
|
|
// support it.
|
|
if (!TLI.isTypeLegal(VT)) {
|
|
// MVT::i1 is special. Allow AND, OR, or XOR because they
|
|
// don't require additional zeroing, which makes them easy.
|
|
if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
|
|
ISDOpcode == ISD::XOR))
|
|
VT = TLI.getTypeToTransformTo(I->getContext(), VT);
|
|
else
|
|
return false;
|
|
}
|
|
|
|
// Check if the first operand is a constant, and handle it as "ri". At -O0,
|
|
// we don't have anything that canonicalizes operand order.
|
|
if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
|
|
if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
|
|
unsigned Op1 = getRegForValue(I->getOperand(1));
|
|
if (!Op1)
|
|
return false;
|
|
bool Op1IsKill = hasTrivialKill(I->getOperand(1));
|
|
|
|
unsigned ResultReg =
|
|
fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill,
|
|
CI->getZExtValue(), VT.getSimpleVT());
|
|
if (!ResultReg)
|
|
return false;
|
|
|
|
// We successfully emitted code for the given LLVM Instruction.
|
|
updateValueMap(I, ResultReg);
|
|
return true;
|
|
}
|
|
|
|
unsigned Op0 = getRegForValue(I->getOperand(0));
|
|
if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
|
|
return false;
|
|
bool Op0IsKill = hasTrivialKill(I->getOperand(0));
|
|
|
|
// Check if the second operand is a constant and handle it appropriately.
|
|
if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
|
|
uint64_t Imm = CI->getZExtValue();
|
|
|
|
// Transform "sdiv exact X, 8" -> "sra X, 3".
|
|
if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
|
|
cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) {
|
|
Imm = Log2_64(Imm);
|
|
ISDOpcode = ISD::SRA;
|
|
}
|
|
|
|
// Transform "urem x, pow2" -> "and x, pow2-1".
|
|
if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
|
|
isPowerOf2_64(Imm)) {
|
|
--Imm;
|
|
ISDOpcode = ISD::AND;
|
|
}
|
|
|
|
unsigned ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
|
|
Op0IsKill, Imm, VT.getSimpleVT());
|
|
if (!ResultReg)
|
|
return false;
|
|
|
|
// We successfully emitted code for the given LLVM Instruction.
|
|
updateValueMap(I, ResultReg);
|
|
return true;
|
|
}
|
|
|
|
// Check if the second operand is a constant float.
|
|
if (const auto *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
|
|
unsigned ResultReg = fastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
|
|
ISDOpcode, Op0, Op0IsKill, CF);
|
|
if (ResultReg) {
|
|
// We successfully emitted code for the given LLVM Instruction.
|
|
updateValueMap(I, ResultReg);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
unsigned Op1 = getRegForValue(I->getOperand(1));
|
|
if (!Op1) // Unhandled operand. Halt "fast" selection and bail.
|
|
return false;
|
|
bool Op1IsKill = hasTrivialKill(I->getOperand(1));
|
|
|
|
// Now we have both operands in registers. Emit the instruction.
|
|
unsigned ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
|
|
ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill);
|
|
if (!ResultReg)
|
|
// Target-specific code wasn't able to find a machine opcode for
|
|
// the given ISD opcode and type. Halt "fast" selection and bail.
|
|
return false;
|
|
|
|
// We successfully emitted code for the given LLVM Instruction.
|
|
updateValueMap(I, ResultReg);
|
|
return true;
|
|
}
|
|
|
|
bool FastISel::selectGetElementPtr(const User *I) {
|
|
unsigned N = getRegForValue(I->getOperand(0));
|
|
if (!N) // Unhandled operand. Halt "fast" selection and bail.
|
|
return false;
|
|
bool NIsKill = hasTrivialKill(I->getOperand(0));
|
|
|
|
// Keep a running tab of the total offset to coalesce multiple N = N + Offset
|
|
// into a single N = N + TotalOffset.
|
|
uint64_t TotalOffs = 0;
|
|
// FIXME: What's a good SWAG number for MaxOffs?
|
|
uint64_t MaxOffs = 2048;
|
|
Type *Ty = I->getOperand(0)->getType();
|
|
MVT VT = TLI.getPointerTy();
|
|
for (GetElementPtrInst::const_op_iterator OI = I->op_begin() + 1,
|
|
E = I->op_end();
|
|
OI != E; ++OI) {
|
|
const Value *Idx = *OI;
|
|
if (auto *StTy = dyn_cast<StructType>(Ty)) {
|
|
unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
|
|
if (Field) {
|
|
// N = N + Offset
|
|
TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
|
|
if (TotalOffs >= MaxOffs) {
|
|
N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
|
|
if (!N) // Unhandled operand. Halt "fast" selection and bail.
|
|
return false;
|
|
NIsKill = true;
|
|
TotalOffs = 0;
|
|
}
|
|
}
|
|
Ty = StTy->getElementType(Field);
|
|
} else {
|
|
Ty = cast<SequentialType>(Ty)->getElementType();
|
|
|
|
// If this is a constant subscript, handle it quickly.
|
|
if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
|
|
if (CI->isZero())
|
|
continue;
|
|
// N = N + Offset
|
|
TotalOffs +=
|
|
DL.getTypeAllocSize(Ty) * cast<ConstantInt>(CI)->getSExtValue();
|
|
if (TotalOffs >= MaxOffs) {
|
|
N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
|
|
if (!N) // Unhandled operand. Halt "fast" selection and bail.
|
|
return false;
|
|
NIsKill = true;
|
|
TotalOffs = 0;
|
|
}
|
|
continue;
|
|
}
|
|
if (TotalOffs) {
|
|
N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
|
|
if (!N) // Unhandled operand. Halt "fast" selection and bail.
|
|
return false;
|
|
NIsKill = true;
|
|
TotalOffs = 0;
|
|
}
|
|
|
|
// N = N + Idx * ElementSize;
|
|
uint64_t ElementSize = DL.getTypeAllocSize(Ty);
|
|
std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
|
|
unsigned IdxN = Pair.first;
|
|
bool IdxNIsKill = Pair.second;
|
|
if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
|
|
return false;
|
|
|
|
if (ElementSize != 1) {
|
|
IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
|
|
if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
|
|
return false;
|
|
IdxNIsKill = true;
|
|
}
|
|
N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
|
|
if (!N) // Unhandled operand. Halt "fast" selection and bail.
|
|
return false;
|
|
}
|
|
}
|
|
if (TotalOffs) {
|
|
N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
|
|
if (!N) // Unhandled operand. Halt "fast" selection and bail.
|
|
return false;
|
|
}
|
|
|
|
// We successfully emitted code for the given LLVM Instruction.
|
|
updateValueMap(I, N);
|
|
return true;
|
|
}
|
|
|
|
bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
|
|
const CallInst *CI, unsigned StartIdx) {
|
|
for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) {
|
|
Value *Val = CI->getArgOperand(i);
|
|
// Check for constants and encode them with a StackMaps::ConstantOp prefix.
|
|
if (const auto *C = dyn_cast<ConstantInt>(Val)) {
|
|
Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
|
|
Ops.push_back(MachineOperand::CreateImm(C->getSExtValue()));
|
|
} else if (isa<ConstantPointerNull>(Val)) {
|
|
Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
|
|
Ops.push_back(MachineOperand::CreateImm(0));
|
|
} else if (auto *AI = dyn_cast<AllocaInst>(Val)) {
|
|
// Values coming from a stack location also require a sepcial encoding,
|
|
// but that is added later on by the target specific frame index
|
|
// elimination implementation.
|
|
auto SI = FuncInfo.StaticAllocaMap.find(AI);
|
|
if (SI != FuncInfo.StaticAllocaMap.end())
|
|
Ops.push_back(MachineOperand::CreateFI(SI->second));
|
|
else
|
|
return false;
|
|
} else {
|
|
unsigned Reg = getRegForValue(Val);
|
|
if (!Reg)
|
|
return false;
|
|
Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool FastISel::selectStackmap(const CallInst *I) {
|
|
// void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
|
|
// [live variables...])
|
|
assert(I->getCalledFunction()->getReturnType()->isVoidTy() &&
|
|
"Stackmap cannot return a value.");
|
|
|
|
// The stackmap intrinsic only records the live variables (the arguments
|
|
// passed to it) and emits NOPS (if requested). Unlike the patchpoint
|
|
// intrinsic, this won't be lowered to a function call. This means we don't
|
|
// have to worry about calling conventions and target-specific lowering code.
|
|
// Instead we perform the call lowering right here.
|
|
//
|
|
// CALLSEQ_START(0)
|
|
// STACKMAP(id, nbytes, ...)
|
|
// CALLSEQ_END(0, 0)
|
|
//
|
|
SmallVector<MachineOperand, 32> Ops;
|
|
|
|
// Add the <id> and <numBytes> constants.
|
|
assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
|
|
"Expected a constant integer.");
|
|
const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
|
|
Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
|
|
|
|
assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
|
|
"Expected a constant integer.");
|
|
const auto *NumBytes =
|
|
cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
|
|
Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
|
|
|
|
// Push live variables for the stack map (skipping the first two arguments
|
|
// <id> and <numBytes>).
|
|
if (!addStackMapLiveVars(Ops, I, 2))
|
|
return false;
|
|
|
|
// We are not adding any register mask info here, because the stackmap doesn't
|
|
// clobber anything.
|
|
|
|
// Add scratch registers as implicit def and early clobber.
|
|
CallingConv::ID CC = I->getCallingConv();
|
|
const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
|
|
for (unsigned i = 0; ScratchRegs[i]; ++i)
|
|
Ops.push_back(MachineOperand::CreateReg(
|
|
ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false,
|
|
/*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true));
|
|
|
|
// Issue CALLSEQ_START
|
|
unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
|
|
.addImm(0);
|
|
|
|
// Issue STACKMAP.
|
|
MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(TargetOpcode::STACKMAP));
|
|
for (auto const &MO : Ops)
|
|
MIB.addOperand(MO);
|
|
|
|
// Issue CALLSEQ_END
|
|
unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
|
|
.addImm(0)
|
|
.addImm(0);
|
|
|
|
// Inform the Frame Information that we have a stackmap in this function.
|
|
FuncInfo.MF->getFrameInfo()->setHasStackMap();
|
|
|
|
return true;
|
|
}
|
|
|
|
/// \brief Lower an argument list according to the target calling convention.
|
|
///
|
|
/// This is a helper for lowering intrinsics that follow a target calling
|
|
/// convention or require stack pointer adjustment. Only a subset of the
|
|
/// intrinsic's operands need to participate in the calling convention.
|
|
bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx,
|
|
unsigned NumArgs, const Value *Callee,
|
|
bool ForceRetVoidTy, CallLoweringInfo &CLI) {
|
|
ArgListTy Args;
|
|
Args.reserve(NumArgs);
|
|
|
|
// Populate the argument list.
|
|
// Attributes for args start at offset 1, after the return attribute.
|
|
ImmutableCallSite CS(CI);
|
|
for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
|
|
ArgI != ArgE; ++ArgI) {
|
|
Value *V = CI->getOperand(ArgI);
|
|
|
|
assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
|
|
|
|
ArgListEntry Entry;
|
|
Entry.Val = V;
|
|
Entry.Ty = V->getType();
|
|
Entry.setAttributes(&CS, AttrI);
|
|
Args.push_back(Entry);
|
|
}
|
|
|
|
Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext())
|
|
: CI->getType();
|
|
CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs);
|
|
|
|
return lowerCallTo(CLI);
|
|
}
|
|
|
|
bool FastISel::selectPatchpoint(const CallInst *I) {
|
|
// void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
|
|
// i32 <numBytes>,
|
|
// i8* <target>,
|
|
// i32 <numArgs>,
|
|
// [Args...],
|
|
// [live variables...])
|
|
CallingConv::ID CC = I->getCallingConv();
|
|
bool IsAnyRegCC = CC == CallingConv::AnyReg;
|
|
bool HasDef = !I->getType()->isVoidTy();
|
|
Value *Callee = I->getOperand(PatchPointOpers::TargetPos);
|
|
|
|
// Get the real number of arguments participating in the call <numArgs>
|
|
assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) &&
|
|
"Expected a constant integer.");
|
|
const auto *NumArgsVal =
|
|
cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos));
|
|
unsigned NumArgs = NumArgsVal->getZExtValue();
|
|
|
|
// Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
|
|
// This includes all meta-operands up to but not including CC.
|
|
unsigned NumMetaOpers = PatchPointOpers::CCPos;
|
|
assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs &&
|
|
"Not enough arguments provided to the patchpoint intrinsic");
|
|
|
|
// For AnyRegCC the arguments are lowered later on manually.
|
|
unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
|
|
CallLoweringInfo CLI;
|
|
if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI))
|
|
return false;
|
|
|
|
assert(CLI.Call && "No call instruction specified.");
|
|
|
|
SmallVector<MachineOperand, 32> Ops;
|
|
|
|
// Add an explicit result reg if we use the anyreg calling convention.
|
|
if (IsAnyRegCC && HasDef) {
|
|
assert(CLI.NumResultRegs == 0 && "Unexpected result register.");
|
|
CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64));
|
|
CLI.NumResultRegs = 1;
|
|
Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*IsDef=*/true));
|
|
}
|
|
|
|
// Add the <id> and <numBytes> constants.
|
|
assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
|
|
"Expected a constant integer.");
|
|
const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
|
|
Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
|
|
|
|
assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
|
|
"Expected a constant integer.");
|
|
const auto *NumBytes =
|
|
cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
|
|
Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
|
|
|
|
// Assume that the callee is a constant address or null pointer.
|
|
// FIXME: handle function symbols in the future.
|
|
uint64_t CalleeAddr;
|
|
if (const auto *C = dyn_cast<IntToPtrInst>(Callee))
|
|
CalleeAddr = cast<ConstantInt>(C->getOperand(0))->getZExtValue();
|
|
else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) {
|
|
if (C->getOpcode() == Instruction::IntToPtr)
|
|
CalleeAddr = cast<ConstantInt>(C->getOperand(0))->getZExtValue();
|
|
else
|
|
llvm_unreachable("Unsupported ConstantExpr.");
|
|
} else if (isa<ConstantPointerNull>(Callee))
|
|
CalleeAddr = 0;
|
|
else
|
|
llvm_unreachable("Unsupported callee address.");
|
|
|
|
Ops.push_back(MachineOperand::CreateImm(CalleeAddr));
|
|
|
|
// Adjust <numArgs> to account for any arguments that have been passed on
|
|
// the stack instead.
|
|
unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size();
|
|
Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs));
|
|
|
|
// Add the calling convention
|
|
Ops.push_back(MachineOperand::CreateImm((unsigned)CC));
|
|
|
|
// Add the arguments we omitted previously. The register allocator should
|
|
// place these in any free register.
|
|
if (IsAnyRegCC) {
|
|
for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) {
|
|
unsigned Reg = getRegForValue(I->getArgOperand(i));
|
|
if (!Reg)
|
|
return false;
|
|
Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
|
|
}
|
|
}
|
|
|
|
// Push the arguments from the call instruction.
|
|
for (auto Reg : CLI.OutRegs)
|
|
Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
|
|
|
|
// Push live variables for the stack map.
|
|
if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs))
|
|
return false;
|
|
|
|
// Push the register mask info.
|
|
Ops.push_back(MachineOperand::CreateRegMask(TRI.getCallPreservedMask(CC)));
|
|
|
|
// Add scratch registers as implicit def and early clobber.
|
|
const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
|
|
for (unsigned i = 0; ScratchRegs[i]; ++i)
|
|
Ops.push_back(MachineOperand::CreateReg(
|
|
ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false,
|
|
/*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true));
|
|
|
|
// Add implicit defs (return values).
|
|
for (auto Reg : CLI.InRegs)
|
|
Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/true,
|
|
/*IsImpl=*/true));
|
|
|
|
// Insert the patchpoint instruction before the call generated by the target.
|
|
MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc,
|
|
TII.get(TargetOpcode::PATCHPOINT));
|
|
|
|
for (auto &MO : Ops)
|
|
MIB.addOperand(MO);
|
|
|
|
MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI);
|
|
|
|
// Delete the original call instruction.
|
|
CLI.Call->eraseFromParent();
|
|
|
|
// Inform the Frame Information that we have a patchpoint in this function.
|
|
FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
|
|
|
|
if (CLI.NumResultRegs)
|
|
updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs);
|
|
return true;
|
|
}
|
|
|
|
/// Returns an AttributeSet representing the attributes applied to the return
|
|
/// value of the given call.
|
|
static AttributeSet getReturnAttrs(FastISel::CallLoweringInfo &CLI) {
|
|
SmallVector<Attribute::AttrKind, 2> Attrs;
|
|
if (CLI.RetSExt)
|
|
Attrs.push_back(Attribute::SExt);
|
|
if (CLI.RetZExt)
|
|
Attrs.push_back(Attribute::ZExt);
|
|
if (CLI.IsInReg)
|
|
Attrs.push_back(Attribute::InReg);
|
|
|
|
return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
|
|
Attrs);
|
|
}
|
|
|
|
bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName,
|
|
unsigned NumArgs) {
|
|
ImmutableCallSite CS(CI);
|
|
|
|
PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
|
|
FunctionType *FTy = cast<FunctionType>(PT->getElementType());
|
|
Type *RetTy = FTy->getReturnType();
|
|
|
|
ArgListTy Args;
|
|
Args.reserve(NumArgs);
|
|
|
|
// Populate the argument list.
|
|
// Attributes for args start at offset 1, after the return attribute.
|
|
for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) {
|
|
Value *V = CI->getOperand(ArgI);
|
|
|
|
assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
|
|
|
|
ArgListEntry Entry;
|
|
Entry.Val = V;
|
|
Entry.Ty = V->getType();
|
|
Entry.setAttributes(&CS, ArgI + 1);
|
|
Args.push_back(Entry);
|
|
}
|
|
|
|
CallLoweringInfo CLI;
|
|
CLI.setCallee(RetTy, FTy, SymName, std::move(Args), CS, NumArgs);
|
|
|
|
return lowerCallTo(CLI);
|
|
}
|
|
|
|
bool FastISel::lowerCallTo(CallLoweringInfo &CLI) {
|
|
// Handle the incoming return values from the call.
|
|
CLI.clearIns();
|
|
SmallVector<EVT, 4> RetTys;
|
|
ComputeValueVTs(TLI, CLI.RetTy, RetTys);
|
|
|
|
SmallVector<ISD::OutputArg, 4> Outs;
|
|
GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, TLI);
|
|
|
|
bool CanLowerReturn = TLI.CanLowerReturn(
|
|
CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext());
|
|
|
|
// FIXME: sret demotion isn't supported yet - bail out.
|
|
if (!CanLowerReturn)
|
|
return false;
|
|
|
|
for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
|
|
EVT VT = RetTys[I];
|
|
MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT);
|
|
unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT);
|
|
for (unsigned i = 0; i != NumRegs; ++i) {
|
|
ISD::InputArg MyFlags;
|
|
MyFlags.VT = RegisterVT;
|
|
MyFlags.ArgVT = VT;
|
|
MyFlags.Used = CLI.IsReturnValueUsed;
|
|
if (CLI.RetSExt)
|
|
MyFlags.Flags.setSExt();
|
|
if (CLI.RetZExt)
|
|
MyFlags.Flags.setZExt();
|
|
if (CLI.IsInReg)
|
|
MyFlags.Flags.setInReg();
|
|
CLI.Ins.push_back(MyFlags);
|
|
}
|
|
}
|
|
|
|
// Handle all of the outgoing arguments.
|
|
CLI.clearOuts();
|
|
for (auto &Arg : CLI.getArgs()) {
|
|
Type *FinalType = Arg.Ty;
|
|
if (Arg.IsByVal)
|
|
FinalType = cast<PointerType>(Arg.Ty)->getElementType();
|
|
bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
|
|
FinalType, CLI.CallConv, CLI.IsVarArg);
|
|
|
|
ISD::ArgFlagsTy Flags;
|
|
if (Arg.IsZExt)
|
|
Flags.setZExt();
|
|
if (Arg.IsSExt)
|
|
Flags.setSExt();
|
|
if (Arg.IsInReg)
|
|
Flags.setInReg();
|
|
if (Arg.IsSRet)
|
|
Flags.setSRet();
|
|
if (Arg.IsByVal)
|
|
Flags.setByVal();
|
|
if (Arg.IsInAlloca) {
|
|
Flags.setInAlloca();
|
|
// Set the byval flag for CCAssignFn callbacks that don't know about
|
|
// inalloca. This way we can know how many bytes we should've allocated
|
|
// and how many bytes a callee cleanup function will pop. If we port
|
|
// inalloca to more targets, we'll have to add custom inalloca handling in
|
|
// the various CC lowering callbacks.
|
|
Flags.setByVal();
|
|
}
|
|
if (Arg.IsByVal || Arg.IsInAlloca) {
|
|
PointerType *Ty = cast<PointerType>(Arg.Ty);
|
|
Type *ElementTy = Ty->getElementType();
|
|
unsigned FrameSize = DL.getTypeAllocSize(ElementTy);
|
|
// For ByVal, alignment should come from FE. BE will guess if this info is
|
|
// not there, but there are cases it cannot get right.
|
|
unsigned FrameAlign = Arg.Alignment;
|
|
if (!FrameAlign)
|
|
FrameAlign = TLI.getByValTypeAlignment(ElementTy);
|
|
Flags.setByValSize(FrameSize);
|
|
Flags.setByValAlign(FrameAlign);
|
|
}
|
|
if (Arg.IsNest)
|
|
Flags.setNest();
|
|
if (NeedsRegBlock)
|
|
Flags.setInConsecutiveRegs();
|
|
unsigned OriginalAlignment = DL.getABITypeAlignment(Arg.Ty);
|
|
Flags.setOrigAlign(OriginalAlignment);
|
|
|
|
CLI.OutVals.push_back(Arg.Val);
|
|
CLI.OutFlags.push_back(Flags);
|
|
}
|
|
|
|
if (!fastLowerCall(CLI))
|
|
return false;
|
|
|
|
// Set all unused physreg defs as dead.
|
|
assert(CLI.Call && "No call instruction specified.");
|
|
CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI);
|
|
|
|
if (CLI.NumResultRegs && CLI.CS)
|
|
updateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool FastISel::lowerCall(const CallInst *CI) {
|
|
ImmutableCallSite CS(CI);
|
|
|
|
PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
|
|
FunctionType *FuncTy = cast<FunctionType>(PT->getElementType());
|
|
Type *RetTy = FuncTy->getReturnType();
|
|
|
|
ArgListTy Args;
|
|
ArgListEntry Entry;
|
|
Args.reserve(CS.arg_size());
|
|
|
|
for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
|
|
i != e; ++i) {
|
|
Value *V = *i;
|
|
|
|
// Skip empty types
|
|
if (V->getType()->isEmptyTy())
|
|
continue;
|
|
|
|
Entry.Val = V;
|
|
Entry.Ty = V->getType();
|
|
|
|
// Skip the first return-type Attribute to get to params.
|
|
Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
|
|
Args.push_back(Entry);
|
|
}
|
|
|
|
// Check if target-independent constraints permit a tail call here.
|
|
// Target-dependent constraints are checked within fastLowerCall.
|
|
bool IsTailCall = CI->isTailCall();
|
|
if (IsTailCall && !isInTailCallPosition(CS, TM))
|
|
IsTailCall = false;
|
|
|
|
CallLoweringInfo CLI;
|
|
CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS)
|
|
.setTailCall(IsTailCall);
|
|
|
|
return lowerCallTo(CLI);
|
|
}
|
|
|
|
bool FastISel::selectCall(const User *I) {
|
|
const CallInst *Call = cast<CallInst>(I);
|
|
|
|
// Handle simple inline asms.
|
|
if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) {
|
|
// If the inline asm has side effects, then make sure that no local value
|
|
// lives across by flushing the local value map.
|
|
if (IA->hasSideEffects())
|
|
flushLocalValueMap();
|
|
|
|
// Don't attempt to handle constraints.
|
|
if (!IA->getConstraintString().empty())
|
|
return false;
|
|
|
|
unsigned ExtraInfo = 0;
|
|
if (IA->hasSideEffects())
|
|
ExtraInfo |= InlineAsm::Extra_HasSideEffects;
|
|
if (IA->isAlignStack())
|
|
ExtraInfo |= InlineAsm::Extra_IsAlignStack;
|
|
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(TargetOpcode::INLINEASM))
|
|
.addExternalSymbol(IA->getAsmString().c_str())
|
|
.addImm(ExtraInfo);
|
|
return true;
|
|
}
|
|
|
|
MachineModuleInfo &MMI = FuncInfo.MF->getMMI();
|
|
ComputeUsesVAFloatArgument(*Call, &MMI);
|
|
|
|
// Handle intrinsic function calls.
|
|
if (const auto *II = dyn_cast<IntrinsicInst>(Call))
|
|
return selectIntrinsicCall(II);
|
|
|
|
// Usually, it does not make sense to initialize a value,
|
|
// make an unrelated function call and use the value, because
|
|
// it tends to be spilled on the stack. So, we move the pointer
|
|
// to the last local value to the beginning of the block, so that
|
|
// all the values which have already been materialized,
|
|
// appear after the call. It also makes sense to skip intrinsics
|
|
// since they tend to be inlined.
|
|
flushLocalValueMap();
|
|
|
|
return lowerCall(Call);
|
|
}
|
|
|
|
bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) {
|
|
switch (II->getIntrinsicID()) {
|
|
default:
|
|
break;
|
|
// At -O0 we don't care about the lifetime intrinsics.
|
|
case Intrinsic::lifetime_start:
|
|
case Intrinsic::lifetime_end:
|
|
// The donothing intrinsic does, well, nothing.
|
|
case Intrinsic::donothing:
|
|
return true;
|
|
case Intrinsic::dbg_declare: {
|
|
const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
|
|
DIVariable DIVar(DI->getVariable());
|
|
assert((!DIVar || DIVar.isVariable()) &&
|
|
"Variable in DbgDeclareInst should be either null or a DIVariable.");
|
|
if (!DIVar || !FuncInfo.MF->getMMI().hasDebugInfo()) {
|
|
DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
|
|
return true;
|
|
}
|
|
|
|
const Value *Address = DI->getAddress();
|
|
if (!Address || isa<UndefValue>(Address)) {
|
|
DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
|
|
return true;
|
|
}
|
|
|
|
unsigned Offset = 0;
|
|
Optional<MachineOperand> Op;
|
|
if (const auto *Arg = dyn_cast<Argument>(Address))
|
|
// Some arguments' frame index is recorded during argument lowering.
|
|
Offset = FuncInfo.getArgumentFrameIndex(Arg);
|
|
if (Offset)
|
|
Op = MachineOperand::CreateFI(Offset);
|
|
if (!Op)
|
|
if (unsigned Reg = lookUpRegForValue(Address))
|
|
Op = MachineOperand::CreateReg(Reg, false);
|
|
|
|
// If we have a VLA that has a "use" in a metadata node that's then used
|
|
// here but it has no other uses, then we have a problem. E.g.,
|
|
//
|
|
// int foo (const int *x) {
|
|
// char a[*x];
|
|
// return 0;
|
|
// }
|
|
//
|
|
// If we assign 'a' a vreg and fast isel later on has to use the selection
|
|
// DAG isel, it will want to copy the value to the vreg. However, there are
|
|
// no uses, which goes counter to what selection DAG isel expects.
|
|
if (!Op && !Address->use_empty() && isa<Instruction>(Address) &&
|
|
(!isa<AllocaInst>(Address) ||
|
|
!FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
|
|
Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address),
|
|
false);
|
|
|
|
if (Op) {
|
|
if (Op->isReg()) {
|
|
Op->setIsDebug(true);
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(TargetOpcode::DBG_VALUE), false, Op->getReg(), 0,
|
|
DI->getVariable());
|
|
} else
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(TargetOpcode::DBG_VALUE))
|
|
.addOperand(*Op)
|
|
.addImm(0)
|
|
.addMetadata(DI->getVariable());
|
|
} else {
|
|
// We can't yet handle anything else here because it would require
|
|
// generating code, thus altering codegen because of debug info.
|
|
DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
|
|
}
|
|
return true;
|
|
}
|
|
case Intrinsic::dbg_value: {
|
|
// This form of DBG_VALUE is target-independent.
|
|
const DbgValueInst *DI = cast<DbgValueInst>(II);
|
|
const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
|
|
const Value *V = DI->getValue();
|
|
if (!V) {
|
|
// Currently the optimizer can produce this; insert an undef to
|
|
// help debugging. Probably the optimizer should not do this.
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
|
|
.addReg(0U)
|
|
.addImm(DI->getOffset())
|
|
.addMetadata(DI->getVariable());
|
|
} else if (const auto *CI = dyn_cast<ConstantInt>(V)) {
|
|
if (CI->getBitWidth() > 64)
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
|
|
.addCImm(CI)
|
|
.addImm(DI->getOffset())
|
|
.addMetadata(DI->getVariable());
|
|
else
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
|
|
.addImm(CI->getZExtValue())
|
|
.addImm(DI->getOffset())
|
|
.addMetadata(DI->getVariable());
|
|
} else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
|
|
.addFPImm(CF)
|
|
.addImm(DI->getOffset())
|
|
.addMetadata(DI->getVariable());
|
|
} else if (unsigned Reg = lookUpRegForValue(V)) {
|
|
// FIXME: This does not handle register-indirect values at offset 0.
|
|
bool IsIndirect = DI->getOffset() != 0;
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg,
|
|
DI->getOffset(), DI->getVariable());
|
|
} else {
|
|
// We can't yet handle anything else here because it would require
|
|
// generating code, thus altering codegen because of debug info.
|
|
DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
|
|
}
|
|
return true;
|
|
}
|
|
case Intrinsic::objectsize: {
|
|
ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
|
|
unsigned long long Res = CI->isZero() ? -1ULL : 0;
|
|
Constant *ResCI = ConstantInt::get(II->getType(), Res);
|
|
unsigned ResultReg = getRegForValue(ResCI);
|
|
if (!ResultReg)
|
|
return false;
|
|
updateValueMap(II, ResultReg);
|
|
return true;
|
|
}
|
|
case Intrinsic::expect: {
|
|
unsigned ResultReg = getRegForValue(II->getArgOperand(0));
|
|
if (!ResultReg)
|
|
return false;
|
|
updateValueMap(II, ResultReg);
|
|
return true;
|
|
}
|
|
case Intrinsic::experimental_stackmap:
|
|
return selectStackmap(II);
|
|
case Intrinsic::experimental_patchpoint_void:
|
|
case Intrinsic::experimental_patchpoint_i64:
|
|
return selectPatchpoint(II);
|
|
}
|
|
|
|
return fastLowerIntrinsicCall(II);
|
|
}
|
|
|
|
bool FastISel::selectCast(const User *I, unsigned Opcode) {
|
|
EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
|
|
EVT DstVT = TLI.getValueType(I->getType());
|
|
|
|
if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other ||
|
|
!DstVT.isSimple())
|
|
// Unhandled type. Halt "fast" selection and bail.
|
|
return false;
|
|
|
|
// Check if the destination type is legal.
|
|
if (!TLI.isTypeLegal(DstVT))
|
|
return false;
|
|
|
|
// Check if the source operand is legal.
|
|
if (!TLI.isTypeLegal(SrcVT))
|
|
return false;
|
|
|
|
unsigned InputReg = getRegForValue(I->getOperand(0));
|
|
if (!InputReg)
|
|
// Unhandled operand. Halt "fast" selection and bail.
|
|
return false;
|
|
|
|
bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
|
|
|
|
unsigned ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
|
|
Opcode, InputReg, InputRegIsKill);
|
|
if (!ResultReg)
|
|
return false;
|
|
|
|
updateValueMap(I, ResultReg);
|
|
return true;
|
|
}
|
|
|
|
bool FastISel::selectBitCast(const User *I) {
|
|
// If the bitcast doesn't change the type, just use the operand value.
|
|
if (I->getType() == I->getOperand(0)->getType()) {
|
|
unsigned Reg = getRegForValue(I->getOperand(0));
|
|
if (!Reg)
|
|
return false;
|
|
updateValueMap(I, Reg);
|
|
return true;
|
|
}
|
|
|
|
// Bitcasts of other values become reg-reg copies or BITCAST operators.
|
|
EVT SrcEVT = TLI.getValueType(I->getOperand(0)->getType());
|
|
EVT DstEVT = TLI.getValueType(I->getType());
|
|
if (SrcEVT == MVT::Other || DstEVT == MVT::Other ||
|
|
!TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT))
|
|
// Unhandled type. Halt "fast" selection and bail.
|
|
return false;
|
|
|
|
MVT SrcVT = SrcEVT.getSimpleVT();
|
|
MVT DstVT = DstEVT.getSimpleVT();
|
|
unsigned Op0 = getRegForValue(I->getOperand(0));
|
|
if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
|
|
return false;
|
|
bool Op0IsKill = hasTrivialKill(I->getOperand(0));
|
|
|
|
// First, try to perform the bitcast by inserting a reg-reg copy.
|
|
unsigned ResultReg = 0;
|
|
if (SrcVT == DstVT) {
|
|
const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT);
|
|
const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT);
|
|
// Don't attempt a cross-class copy. It will likely fail.
|
|
if (SrcClass == DstClass) {
|
|
ResultReg = createResultReg(DstClass);
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0);
|
|
}
|
|
}
|
|
|
|
// If the reg-reg copy failed, select a BITCAST opcode.
|
|
if (!ResultReg)
|
|
ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill);
|
|
|
|
if (!ResultReg)
|
|
return false;
|
|
|
|
updateValueMap(I, ResultReg);
|
|
return true;
|
|
}
|
|
|
|
bool FastISel::selectInstruction(const Instruction *I) {
|
|
// Just before the terminator instruction, insert instructions to
|
|
// feed PHI nodes in successor blocks.
|
|
if (isa<TerminatorInst>(I))
|
|
if (!handlePHINodesInSuccessorBlocks(I->getParent()))
|
|
return false;
|
|
|
|
DbgLoc = I->getDebugLoc();
|
|
|
|
SavedInsertPt = FuncInfo.InsertPt;
|
|
|
|
if (const auto *Call = dyn_cast<CallInst>(I)) {
|
|
const Function *F = Call->getCalledFunction();
|
|
LibFunc::Func Func;
|
|
|
|
// As a special case, don't handle calls to builtin library functions that
|
|
// may be translated directly to target instructions.
|
|
if (F && !F->hasLocalLinkage() && F->hasName() &&
|
|
LibInfo->getLibFunc(F->getName(), Func) &&
|
|
LibInfo->hasOptimizedCodeGen(Func))
|
|
return false;
|
|
|
|
// Don't handle Intrinsic::trap if a trap funciton is specified.
|
|
if (F && F->getIntrinsicID() == Intrinsic::trap &&
|
|
!TM.Options.getTrapFunctionName().empty())
|
|
return false;
|
|
}
|
|
|
|
// First, try doing target-independent selection.
|
|
if (!SkipTargetIndependentISel) {
|
|
if (selectOperator(I, I->getOpcode())) {
|
|
++NumFastIselSuccessIndependent;
|
|
DbgLoc = DebugLoc();
|
|
return true;
|
|
}
|
|
// Remove dead code.
|
|
recomputeInsertPt();
|
|
if (SavedInsertPt != FuncInfo.InsertPt)
|
|
removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
|
|
SavedInsertPt = FuncInfo.InsertPt;
|
|
}
|
|
// Next, try calling the target to attempt to handle the instruction.
|
|
if (fastSelectInstruction(I)) {
|
|
++NumFastIselSuccessTarget;
|
|
DbgLoc = DebugLoc();
|
|
return true;
|
|
}
|
|
// Remove dead code.
|
|
recomputeInsertPt();
|
|
if (SavedInsertPt != FuncInfo.InsertPt)
|
|
removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
|
|
|
|
DbgLoc = DebugLoc();
|
|
// Undo phi node updates, because they will be added again by SelectionDAG.
|
|
if (isa<TerminatorInst>(I))
|
|
FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
|
|
return false;
|
|
}
|
|
|
|
/// Emit an unconditional branch to the given block, unless it is the immediate
|
|
/// (fall-through) successor, and update the CFG.
|
|
void FastISel::fastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DbgLoc) {
|
|
if (FuncInfo.MBB->getBasicBlock()->size() > 1 &&
|
|
FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
|
|
// For more accurate line information if this is the only instruction
|
|
// in the block then emit it, otherwise we have the unconditional
|
|
// fall-through case, which needs no instructions.
|
|
} else {
|
|
// The unconditional branch case.
|
|
TII.InsertBranch(*FuncInfo.MBB, MSucc, nullptr,
|
|
SmallVector<MachineOperand, 0>(), DbgLoc);
|
|
}
|
|
uint32_t BranchWeight = 0;
|
|
if (FuncInfo.BPI)
|
|
BranchWeight = FuncInfo.BPI->getEdgeWeight(FuncInfo.MBB->getBasicBlock(),
|
|
MSucc->getBasicBlock());
|
|
FuncInfo.MBB->addSuccessor(MSucc, BranchWeight);
|
|
}
|
|
|
|
/// Emit an FNeg operation.
|
|
bool FastISel::selectFNeg(const User *I) {
|
|
unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
|
|
if (!OpReg)
|
|
return false;
|
|
bool OpRegIsKill = hasTrivialKill(I);
|
|
|
|
// If the target has ISD::FNEG, use it.
|
|
EVT VT = TLI.getValueType(I->getType());
|
|
unsigned ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG,
|
|
OpReg, OpRegIsKill);
|
|
if (ResultReg) {
|
|
updateValueMap(I, ResultReg);
|
|
return true;
|
|
}
|
|
|
|
// Bitcast the value to integer, twiddle the sign bit with xor,
|
|
// and then bitcast it back to floating-point.
|
|
if (VT.getSizeInBits() > 64)
|
|
return false;
|
|
EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
|
|
if (!TLI.isTypeLegal(IntVT))
|
|
return false;
|
|
|
|
unsigned IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
|
|
ISD::BITCAST, OpReg, OpRegIsKill);
|
|
if (!IntReg)
|
|
return false;
|
|
|
|
unsigned IntResultReg = fastEmit_ri_(
|
|
IntVT.getSimpleVT(), ISD::XOR, IntReg, /*IsKill=*/true,
|
|
UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT());
|
|
if (!IntResultReg)
|
|
return false;
|
|
|
|
ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST,
|
|
IntResultReg, /*IsKill=*/true);
|
|
if (!ResultReg)
|
|
return false;
|
|
|
|
updateValueMap(I, ResultReg);
|
|
return true;
|
|
}
|
|
|
|
bool FastISel::selectExtractValue(const User *U) {
|
|
const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
|
|
if (!EVI)
|
|
return false;
|
|
|
|
// Make sure we only try to handle extracts with a legal result. But also
|
|
// allow i1 because it's easy.
|
|
EVT RealVT = TLI.getValueType(EVI->getType(), /*AllowUnknown=*/true);
|
|
if (!RealVT.isSimple())
|
|
return false;
|
|
MVT VT = RealVT.getSimpleVT();
|
|
if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
|
|
return false;
|
|
|
|
const Value *Op0 = EVI->getOperand(0);
|
|
Type *AggTy = Op0->getType();
|
|
|
|
// Get the base result register.
|
|
unsigned ResultReg;
|
|
DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0);
|
|
if (I != FuncInfo.ValueMap.end())
|
|
ResultReg = I->second;
|
|
else if (isa<Instruction>(Op0))
|
|
ResultReg = FuncInfo.InitializeRegForValue(Op0);
|
|
else
|
|
return false; // fast-isel can't handle aggregate constants at the moment
|
|
|
|
// Get the actual result register, which is an offset from the base register.
|
|
unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
|
|
|
|
SmallVector<EVT, 4> AggValueVTs;
|
|
ComputeValueVTs(TLI, AggTy, AggValueVTs);
|
|
|
|
for (unsigned i = 0; i < VTIndex; i++)
|
|
ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
|
|
|
|
updateValueMap(EVI, ResultReg);
|
|
return true;
|
|
}
|
|
|
|
bool FastISel::selectOperator(const User *I, unsigned Opcode) {
|
|
switch (Opcode) {
|
|
case Instruction::Add:
|
|
return selectBinaryOp(I, ISD::ADD);
|
|
case Instruction::FAdd:
|
|
return selectBinaryOp(I, ISD::FADD);
|
|
case Instruction::Sub:
|
|
return selectBinaryOp(I, ISD::SUB);
|
|
case Instruction::FSub:
|
|
// FNeg is currently represented in LLVM IR as a special case of FSub.
|
|
if (BinaryOperator::isFNeg(I))
|
|
return selectFNeg(I);
|
|
return selectBinaryOp(I, ISD::FSUB);
|
|
case Instruction::Mul:
|
|
return selectBinaryOp(I, ISD::MUL);
|
|
case Instruction::FMul:
|
|
return selectBinaryOp(I, ISD::FMUL);
|
|
case Instruction::SDiv:
|
|
return selectBinaryOp(I, ISD::SDIV);
|
|
case Instruction::UDiv:
|
|
return selectBinaryOp(I, ISD::UDIV);
|
|
case Instruction::FDiv:
|
|
return selectBinaryOp(I, ISD::FDIV);
|
|
case Instruction::SRem:
|
|
return selectBinaryOp(I, ISD::SREM);
|
|
case Instruction::URem:
|
|
return selectBinaryOp(I, ISD::UREM);
|
|
case Instruction::FRem:
|
|
return selectBinaryOp(I, ISD::FREM);
|
|
case Instruction::Shl:
|
|
return selectBinaryOp(I, ISD::SHL);
|
|
case Instruction::LShr:
|
|
return selectBinaryOp(I, ISD::SRL);
|
|
case Instruction::AShr:
|
|
return selectBinaryOp(I, ISD::SRA);
|
|
case Instruction::And:
|
|
return selectBinaryOp(I, ISD::AND);
|
|
case Instruction::Or:
|
|
return selectBinaryOp(I, ISD::OR);
|
|
case Instruction::Xor:
|
|
return selectBinaryOp(I, ISD::XOR);
|
|
|
|
case Instruction::GetElementPtr:
|
|
return selectGetElementPtr(I);
|
|
|
|
case Instruction::Br: {
|
|
const BranchInst *BI = cast<BranchInst>(I);
|
|
|
|
if (BI->isUnconditional()) {
|
|
const BasicBlock *LLVMSucc = BI->getSuccessor(0);
|
|
MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
|
|
fastEmitBranch(MSucc, BI->getDebugLoc());
|
|
return true;
|
|
}
|
|
|
|
// Conditional branches are not handed yet.
|
|
// Halt "fast" selection and bail.
|
|
return false;
|
|
}
|
|
|
|
case Instruction::Unreachable:
|
|
if (TM.Options.TrapUnreachable)
|
|
return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0;
|
|
else
|
|
return true;
|
|
|
|
case Instruction::Alloca:
|
|
// FunctionLowering has the static-sized case covered.
|
|
if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
|
|
return true;
|
|
|
|
// Dynamic-sized alloca is not handled yet.
|
|
return false;
|
|
|
|
case Instruction::Call:
|
|
return selectCall(I);
|
|
|
|
case Instruction::BitCast:
|
|
return selectBitCast(I);
|
|
|
|
case Instruction::FPToSI:
|
|
return selectCast(I, ISD::FP_TO_SINT);
|
|
case Instruction::ZExt:
|
|
return selectCast(I, ISD::ZERO_EXTEND);
|
|
case Instruction::SExt:
|
|
return selectCast(I, ISD::SIGN_EXTEND);
|
|
case Instruction::Trunc:
|
|
return selectCast(I, ISD::TRUNCATE);
|
|
case Instruction::SIToFP:
|
|
return selectCast(I, ISD::SINT_TO_FP);
|
|
|
|
case Instruction::IntToPtr: // Deliberate fall-through.
|
|
case Instruction::PtrToInt: {
|
|
EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
|
|
EVT DstVT = TLI.getValueType(I->getType());
|
|
if (DstVT.bitsGT(SrcVT))
|
|
return selectCast(I, ISD::ZERO_EXTEND);
|
|
if (DstVT.bitsLT(SrcVT))
|
|
return selectCast(I, ISD::TRUNCATE);
|
|
unsigned Reg = getRegForValue(I->getOperand(0));
|
|
if (!Reg)
|
|
return false;
|
|
updateValueMap(I, Reg);
|
|
return true;
|
|
}
|
|
|
|
case Instruction::ExtractValue:
|
|
return selectExtractValue(I);
|
|
|
|
case Instruction::PHI:
|
|
llvm_unreachable("FastISel shouldn't visit PHI nodes!");
|
|
|
|
default:
|
|
// Unhandled instruction. Halt "fast" selection and bail.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
FastISel::FastISel(FunctionLoweringInfo &FuncInfo,
|
|
const TargetLibraryInfo *LibInfo,
|
|
bool SkipTargetIndependentISel)
|
|
: FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()),
|
|
MFI(*FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()),
|
|
TM(FuncInfo.MF->getTarget()), DL(*TM.getSubtargetImpl()->getDataLayout()),
|
|
TII(*TM.getSubtargetImpl()->getInstrInfo()),
|
|
TLI(*TM.getSubtargetImpl()->getTargetLowering()),
|
|
TRI(*TM.getSubtargetImpl()->getRegisterInfo()), LibInfo(LibInfo),
|
|
SkipTargetIndependentISel(SkipTargetIndependentISel) {}
|
|
|
|
FastISel::~FastISel() {}
|
|
|
|
bool FastISel::fastLowerArguments() { return false; }
|
|
|
|
bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; }
|
|
|
|
bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) {
|
|
return false;
|
|
}
|
|
|
|
unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; }
|
|
|
|
unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/,
|
|
bool /*Op0IsKill*/) {
|
|
return 0;
|
|
}
|
|
|
|
unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/,
|
|
bool /*Op0IsKill*/, unsigned /*Op1*/,
|
|
bool /*Op1IsKill*/) {
|
|
return 0;
|
|
}
|
|
|
|
unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
|
|
return 0;
|
|
}
|
|
|
|
unsigned FastISel::fastEmit_f(MVT, MVT, unsigned,
|
|
const ConstantFP * /*FPImm*/) {
|
|
return 0;
|
|
}
|
|
|
|
unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/,
|
|
bool /*Op0IsKill*/, uint64_t /*Imm*/) {
|
|
return 0;
|
|
}
|
|
|
|
unsigned FastISel::fastEmit_rf(MVT, MVT, unsigned, unsigned /*Op0*/,
|
|
bool /*Op0IsKill*/,
|
|
const ConstantFP * /*FPImm*/) {
|
|
return 0;
|
|
}
|
|
|
|
unsigned FastISel::fastEmit_rri(MVT, MVT, unsigned, unsigned /*Op0*/,
|
|
bool /*Op0IsKill*/, unsigned /*Op1*/,
|
|
bool /*Op1IsKill*/, uint64_t /*Imm*/) {
|
|
return 0;
|
|
}
|
|
|
|
/// This method is a wrapper of fastEmit_ri. It first tries to emit an
|
|
/// instruction with an immediate operand using fastEmit_ri.
|
|
/// If that fails, it materializes the immediate into a register and try
|
|
/// fastEmit_rr instead.
|
|
unsigned FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0,
|
|
bool Op0IsKill, uint64_t Imm, MVT ImmType) {
|
|
// If this is a multiply by a power of two, emit this as a shift left.
|
|
if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
|
|
Opcode = ISD::SHL;
|
|
Imm = Log2_64(Imm);
|
|
} else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
|
|
// div x, 8 -> srl x, 3
|
|
Opcode = ISD::SRL;
|
|
Imm = Log2_64(Imm);
|
|
}
|
|
|
|
// Horrible hack (to be removed), check to make sure shift amounts are
|
|
// in-range.
|
|
if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
|
|
Imm >= VT.getSizeInBits())
|
|
return 0;
|
|
|
|
// First check if immediate type is legal. If not, we can't use the ri form.
|
|
unsigned ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
|
|
if (ResultReg)
|
|
return ResultReg;
|
|
unsigned MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
|
|
if (!MaterialReg) {
|
|
// This is a bit ugly/slow, but failing here means falling out of
|
|
// fast-isel, which would be very slow.
|
|
IntegerType *ITy =
|
|
IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits());
|
|
MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
|
|
if (!MaterialReg)
|
|
return 0;
|
|
}
|
|
return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg,
|
|
/*IsKill=*/true);
|
|
}
|
|
|
|
unsigned FastISel::createResultReg(const TargetRegisterClass *RC) {
|
|
return MRI.createVirtualRegister(RC);
|
|
}
|
|
|
|
unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, unsigned Op,
|
|
unsigned OpNum) {
|
|
if (TargetRegisterInfo::isVirtualRegister(Op)) {
|
|
const TargetRegisterClass *RegClass =
|
|
TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF);
|
|
if (!MRI.constrainRegClass(Op, RegClass)) {
|
|
// If it's not legal to COPY between the register classes, something
|
|
// has gone very wrong before we got here.
|
|
unsigned NewOp = createResultReg(RegClass);
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(TargetOpcode::COPY), NewOp).addReg(Op);
|
|
return NewOp;
|
|
}
|
|
}
|
|
return Op;
|
|
}
|
|
|
|
unsigned FastISel::fastEmitInst_(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC) {
|
|
unsigned ResultReg = createResultReg(RC);
|
|
const MCInstrDesc &II = TII.get(MachineInstOpcode);
|
|
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg);
|
|
return ResultReg;
|
|
}
|
|
|
|
unsigned FastISel::fastEmitInst_r(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC, unsigned Op0,
|
|
bool Op0IsKill) {
|
|
const MCInstrDesc &II = TII.get(MachineInstOpcode);
|
|
|
|
unsigned ResultReg = createResultReg(RC);
|
|
Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
|
|
|
|
if (II.getNumDefs() >= 1)
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
|
|
.addReg(Op0, getKillRegState(Op0IsKill));
|
|
else {
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
|
|
.addReg(Op0, getKillRegState(Op0IsKill));
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
|
|
}
|
|
|
|
return ResultReg;
|
|
}
|
|
|
|
unsigned FastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC, unsigned Op0,
|
|
bool Op0IsKill, unsigned Op1,
|
|
bool Op1IsKill) {
|
|
const MCInstrDesc &II = TII.get(MachineInstOpcode);
|
|
|
|
unsigned ResultReg = createResultReg(RC);
|
|
Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
|
|
Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
|
|
|
|
if (II.getNumDefs() >= 1)
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
|
|
.addReg(Op0, getKillRegState(Op0IsKill))
|
|
.addReg(Op1, getKillRegState(Op1IsKill));
|
|
else {
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
|
|
.addReg(Op0, getKillRegState(Op0IsKill))
|
|
.addReg(Op1, getKillRegState(Op1IsKill));
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
|
|
}
|
|
return ResultReg;
|
|
}
|
|
|
|
unsigned FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC, unsigned Op0,
|
|
bool Op0IsKill, unsigned Op1,
|
|
bool Op1IsKill, unsigned Op2,
|
|
bool Op2IsKill) {
|
|
const MCInstrDesc &II = TII.get(MachineInstOpcode);
|
|
|
|
unsigned ResultReg = createResultReg(RC);
|
|
Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
|
|
Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
|
|
Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
|
|
|
|
if (II.getNumDefs() >= 1)
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
|
|
.addReg(Op0, getKillRegState(Op0IsKill))
|
|
.addReg(Op1, getKillRegState(Op1IsKill))
|
|
.addReg(Op2, getKillRegState(Op2IsKill));
|
|
else {
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
|
|
.addReg(Op0, getKillRegState(Op0IsKill))
|
|
.addReg(Op1, getKillRegState(Op1IsKill))
|
|
.addReg(Op2, getKillRegState(Op2IsKill));
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
|
|
}
|
|
return ResultReg;
|
|
}
|
|
|
|
unsigned FastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC, unsigned Op0,
|
|
bool Op0IsKill, uint64_t Imm) {
|
|
const MCInstrDesc &II = TII.get(MachineInstOpcode);
|
|
|
|
unsigned ResultReg = createResultReg(RC);
|
|
Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
|
|
|
|
if (II.getNumDefs() >= 1)
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
|
|
.addReg(Op0, getKillRegState(Op0IsKill))
|
|
.addImm(Imm);
|
|
else {
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
|
|
.addReg(Op0, getKillRegState(Op0IsKill))
|
|
.addImm(Imm);
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
|
|
}
|
|
return ResultReg;
|
|
}
|
|
|
|
unsigned FastISel::fastEmitInst_rii(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC, unsigned Op0,
|
|
bool Op0IsKill, uint64_t Imm1,
|
|
uint64_t Imm2) {
|
|
const MCInstrDesc &II = TII.get(MachineInstOpcode);
|
|
|
|
unsigned ResultReg = createResultReg(RC);
|
|
Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
|
|
|
|
if (II.getNumDefs() >= 1)
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
|
|
.addReg(Op0, getKillRegState(Op0IsKill))
|
|
.addImm(Imm1)
|
|
.addImm(Imm2);
|
|
else {
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
|
|
.addReg(Op0, getKillRegState(Op0IsKill))
|
|
.addImm(Imm1)
|
|
.addImm(Imm2);
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
|
|
}
|
|
return ResultReg;
|
|
}
|
|
|
|
unsigned FastISel::fastEmitInst_rf(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC, unsigned Op0,
|
|
bool Op0IsKill, const ConstantFP *FPImm) {
|
|
const MCInstrDesc &II = TII.get(MachineInstOpcode);
|
|
|
|
unsigned ResultReg = createResultReg(RC);
|
|
Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
|
|
|
|
if (II.getNumDefs() >= 1)
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
|
|
.addReg(Op0, getKillRegState(Op0IsKill))
|
|
.addFPImm(FPImm);
|
|
else {
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
|
|
.addReg(Op0, getKillRegState(Op0IsKill))
|
|
.addFPImm(FPImm);
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
|
|
}
|
|
return ResultReg;
|
|
}
|
|
|
|
unsigned FastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC, unsigned Op0,
|
|
bool Op0IsKill, unsigned Op1,
|
|
bool Op1IsKill, uint64_t Imm) {
|
|
const MCInstrDesc &II = TII.get(MachineInstOpcode);
|
|
|
|
unsigned ResultReg = createResultReg(RC);
|
|
Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
|
|
Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
|
|
|
|
if (II.getNumDefs() >= 1)
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
|
|
.addReg(Op0, getKillRegState(Op0IsKill))
|
|
.addReg(Op1, getKillRegState(Op1IsKill))
|
|
.addImm(Imm);
|
|
else {
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
|
|
.addReg(Op0, getKillRegState(Op0IsKill))
|
|
.addReg(Op1, getKillRegState(Op1IsKill))
|
|
.addImm(Imm);
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
|
|
}
|
|
return ResultReg;
|
|
}
|
|
|
|
unsigned FastISel::fastEmitInst_rrii(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC,
|
|
unsigned Op0, bool Op0IsKill, unsigned Op1,
|
|
bool Op1IsKill, uint64_t Imm1,
|
|
uint64_t Imm2) {
|
|
const MCInstrDesc &II = TII.get(MachineInstOpcode);
|
|
|
|
unsigned ResultReg = createResultReg(RC);
|
|
Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
|
|
Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
|
|
|
|
if (II.getNumDefs() >= 1)
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
|
|
.addReg(Op0, getKillRegState(Op0IsKill))
|
|
.addReg(Op1, getKillRegState(Op1IsKill))
|
|
.addImm(Imm1)
|
|
.addImm(Imm2);
|
|
else {
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
|
|
.addReg(Op0, getKillRegState(Op0IsKill))
|
|
.addReg(Op1, getKillRegState(Op1IsKill))
|
|
.addImm(Imm1)
|
|
.addImm(Imm2);
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
|
|
}
|
|
return ResultReg;
|
|
}
|
|
|
|
unsigned FastISel::fastEmitInst_i(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC, uint64_t Imm) {
|
|
unsigned ResultReg = createResultReg(RC);
|
|
const MCInstrDesc &II = TII.get(MachineInstOpcode);
|
|
|
|
if (II.getNumDefs() >= 1)
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
|
|
.addImm(Imm);
|
|
else {
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm);
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
|
|
}
|
|
return ResultReg;
|
|
}
|
|
|
|
unsigned FastISel::fastEmitInst_ii(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC, uint64_t Imm1,
|
|
uint64_t Imm2) {
|
|
unsigned ResultReg = createResultReg(RC);
|
|
const MCInstrDesc &II = TII.get(MachineInstOpcode);
|
|
|
|
if (II.getNumDefs() >= 1)
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
|
|
.addImm(Imm1)
|
|
.addImm(Imm2);
|
|
else {
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm1)
|
|
.addImm(Imm2);
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
|
|
}
|
|
return ResultReg;
|
|
}
|
|
|
|
unsigned FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0,
|
|
bool Op0IsKill, uint32_t Idx) {
|
|
unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
|
|
assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
|
|
"Cannot yet extract from physregs");
|
|
const TargetRegisterClass *RC = MRI.getRegClass(Op0);
|
|
MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx));
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
|
|
ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx);
|
|
return ResultReg;
|
|
}
|
|
|
|
/// Emit MachineInstrs to compute the value of Op with all but the least
|
|
/// significant bit set to zero.
|
|
unsigned FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
|
|
return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
|
|
}
|
|
|
|
/// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
|
|
/// Emit code to ensure constants are copied into registers when needed.
|
|
/// Remember the virtual registers that need to be added to the Machine PHI
|
|
/// nodes as input. We cannot just directly add them, because expansion
|
|
/// might result in multiple MBB's for one BB. As such, the start of the
|
|
/// BB might correspond to a different MBB than the end.
|
|
bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
|
|
const TerminatorInst *TI = LLVMBB->getTerminator();
|
|
|
|
SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
|
|
FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
|
|
|
|
// Check successor nodes' PHI nodes that expect a constant to be available
|
|
// from this block.
|
|
for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
|
|
const BasicBlock *SuccBB = TI->getSuccessor(succ);
|
|
if (!isa<PHINode>(SuccBB->begin()))
|
|
continue;
|
|
MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
|
|
|
|
// If this terminator has multiple identical successors (common for
|
|
// switches), only handle each succ once.
|
|
if (!SuccsHandled.insert(SuccMBB))
|
|
continue;
|
|
|
|
MachineBasicBlock::iterator MBBI = SuccMBB->begin();
|
|
|
|
// At this point we know that there is a 1-1 correspondence between LLVM PHI
|
|
// nodes and Machine PHI nodes, but the incoming operands have not been
|
|
// emitted yet.
|
|
for (BasicBlock::const_iterator I = SuccBB->begin();
|
|
const auto *PN = dyn_cast<PHINode>(I); ++I) {
|
|
|
|
// Ignore dead phi's.
|
|
if (PN->use_empty())
|
|
continue;
|
|
|
|
// Only handle legal types. Two interesting things to note here. First,
|
|
// by bailing out early, we may leave behind some dead instructions,
|
|
// since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
|
|
// own moves. Second, this check is necessary because FastISel doesn't
|
|
// use CreateRegs to create registers, so it always creates
|
|
// exactly one register for each non-void instruction.
|
|
EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
|
|
if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
|
|
// Handle integer promotions, though, because they're common and easy.
|
|
if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
|
|
VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT);
|
|
else {
|
|
FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
|
|
|
|
// Set the DebugLoc for the copy. Prefer the location of the operand
|
|
// if there is one; use the location of the PHI otherwise.
|
|
DbgLoc = PN->getDebugLoc();
|
|
if (const auto *Inst = dyn_cast<Instruction>(PHIOp))
|
|
DbgLoc = Inst->getDebugLoc();
|
|
|
|
unsigned Reg = getRegForValue(PHIOp);
|
|
if (!Reg) {
|
|
FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
|
|
return false;
|
|
}
|
|
FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
|
|
DbgLoc = DebugLoc();
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
|
|
assert(LI->hasOneUse() &&
|
|
"tryToFoldLoad expected a LoadInst with a single use");
|
|
// We know that the load has a single use, but don't know what it is. If it
|
|
// isn't one of the folded instructions, then we can't succeed here. Handle
|
|
// this by scanning the single-use users of the load until we get to FoldInst.
|
|
unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs.
|
|
|
|
const Instruction *TheUser = LI->user_back();
|
|
while (TheUser != FoldInst && // Scan up until we find FoldInst.
|
|
// Stay in the right block.
|
|
TheUser->getParent() == FoldInst->getParent() &&
|
|
--MaxUsers) { // Don't scan too far.
|
|
// If there are multiple or no uses of this instruction, then bail out.
|
|
if (!TheUser->hasOneUse())
|
|
return false;
|
|
|
|
TheUser = TheUser->user_back();
|
|
}
|
|
|
|
// If we didn't find the fold instruction, then we failed to collapse the
|
|
// sequence.
|
|
if (TheUser != FoldInst)
|
|
return false;
|
|
|
|
// Don't try to fold volatile loads. Target has to deal with alignment
|
|
// constraints.
|
|
if (LI->isVolatile())
|
|
return false;
|
|
|
|
// Figure out which vreg this is going into. If there is no assigned vreg yet
|
|
// then there actually was no reference to it. Perhaps the load is referenced
|
|
// by a dead instruction.
|
|
unsigned LoadReg = getRegForValue(LI);
|
|
if (!LoadReg)
|
|
return false;
|
|
|
|
// We can't fold if this vreg has no uses or more than one use. Multiple uses
|
|
// may mean that the instruction got lowered to multiple MIs, or the use of
|
|
// the loaded value ended up being multiple operands of the result.
|
|
if (!MRI.hasOneUse(LoadReg))
|
|
return false;
|
|
|
|
MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg);
|
|
MachineInstr *User = RI->getParent();
|
|
|
|
// Set the insertion point properly. Folding the load can cause generation of
|
|
// other random instructions (like sign extends) for addressing modes; make
|
|
// sure they get inserted in a logical place before the new instruction.
|
|
FuncInfo.InsertPt = User;
|
|
FuncInfo.MBB = User->getParent();
|
|
|
|
// Ask the target to try folding the load.
|
|
return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI);
|
|
}
|
|
|
|
bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) {
|
|
// Must be an add.
|
|
if (!isa<AddOperator>(Add))
|
|
return false;
|
|
// Type size needs to match.
|
|
if (DL.getTypeSizeInBits(GEP->getType()) !=
|
|
DL.getTypeSizeInBits(Add->getType()))
|
|
return false;
|
|
// Must be in the same basic block.
|
|
if (isa<Instruction>(Add) &&
|
|
FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB)
|
|
return false;
|
|
// Must have a constant operand.
|
|
return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1));
|
|
}
|
|
|
|
MachineMemOperand *
|
|
FastISel::createMachineMemOperandFor(const Instruction *I) const {
|
|
const Value *Ptr;
|
|
Type *ValTy;
|
|
unsigned Alignment;
|
|
unsigned Flags;
|
|
bool IsVolatile;
|
|
|
|
if (const auto *LI = dyn_cast<LoadInst>(I)) {
|
|
Alignment = LI->getAlignment();
|
|
IsVolatile = LI->isVolatile();
|
|
Flags = MachineMemOperand::MOLoad;
|
|
Ptr = LI->getPointerOperand();
|
|
ValTy = LI->getType();
|
|
} else if (const auto *SI = dyn_cast<StoreInst>(I)) {
|
|
Alignment = SI->getAlignment();
|
|
IsVolatile = SI->isVolatile();
|
|
Flags = MachineMemOperand::MOStore;
|
|
Ptr = SI->getPointerOperand();
|
|
ValTy = SI->getValueOperand()->getType();
|
|
} else
|
|
return nullptr;
|
|
|
|
bool IsNonTemporal = I->getMetadata("nontemporal") != nullptr;
|
|
bool IsInvariant = I->getMetadata("invariant.load") != nullptr;
|
|
const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range);
|
|
|
|
AAMDNodes AAInfo;
|
|
I->getAAMetadata(AAInfo);
|
|
|
|
if (Alignment == 0) // Ensure that codegen never sees alignment 0.
|
|
Alignment = DL.getABITypeAlignment(ValTy);
|
|
|
|
unsigned Size =
|
|
TM.getSubtargetImpl()->getDataLayout()->getTypeStoreSize(ValTy);
|
|
|
|
if (IsVolatile)
|
|
Flags |= MachineMemOperand::MOVolatile;
|
|
if (IsNonTemporal)
|
|
Flags |= MachineMemOperand::MONonTemporal;
|
|
if (IsInvariant)
|
|
Flags |= MachineMemOperand::MOInvariant;
|
|
|
|
return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size,
|
|
Alignment, AAInfo, Ranges);
|
|
}
|