llvm-6502/tools/llvm-prof/llvm-prof.cpp
Reid Spencer 78b0e6a42e General cleanup:
1. Don't mix C++ and C standard I/O, convert to C++ iostreams
2. Wrap long lines
3. use the std namespace to simplify/shorten the code


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@25042 91177308-0d34-0410-b5e6-96231b3b80d8
2005-12-29 21:13:45 +00:00

243 lines
8.4 KiB
C++

//===- llvm-prof.cpp - Read in and process llvmprof.out data files --------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tools is meant for use with the various LLVM profiling instrumentation
// passes. It reads in the data file produced by executing an instrumented
// program, and outputs a nice report.
//
//===----------------------------------------------------------------------===//
#include "llvm/InstrTypes.h"
#include "llvm/Module.h"
#include "llvm/Assembly/AsmAnnotationWriter.h"
#include "llvm/Analysis/ProfileInfoLoader.h"
#include "llvm/Bytecode/Reader.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/System/Signals.h"
#include <iostream>
#include <iomanip>
#include <map>
#include <set>
using namespace llvm;
using namespace std;
namespace {
cl::opt<string>
BytecodeFile(cl::Positional, cl::desc("<program bytecode file>"),
cl::Required);
cl::opt<string>
ProfileDataFile(cl::Positional, cl::desc("<llvmprof.out file>"),
cl::Optional, cl::init("llvmprof.out"));
cl::opt<bool>
PrintAnnotatedLLVM("annotated-llvm",
cl::desc("Print LLVM code with frequency annotations"));
cl::alias PrintAnnotated2("A", cl::desc("Alias for --annotated-llvm"),
cl::aliasopt(PrintAnnotatedLLVM));
cl::opt<bool>
PrintAllCode("print-all-code",
cl::desc("Print annotated code for the entire program"));
}
// PairSecondSort - A sorting predicate to sort by the second element of a pair.
template<class T>
struct PairSecondSortReverse
: public binary_function<pair<T, unsigned>,
pair<T, unsigned>, bool> {
bool operator()(const pair<T, unsigned> &LHS,
const pair<T, unsigned> &RHS) const {
return LHS.second > RHS.second;
}
};
namespace {
class ProfileAnnotator : public AssemblyAnnotationWriter {
map<const Function *, unsigned> &FuncFreqs;
map<const BasicBlock*, unsigned> &BlockFreqs;
map<ProfileInfoLoader::Edge, unsigned> &EdgeFreqs;
public:
ProfileAnnotator(map<const Function *, unsigned> &FF,
map<const BasicBlock*, unsigned> &BF,
map<ProfileInfoLoader::Edge, unsigned> &EF)
: FuncFreqs(FF), BlockFreqs(BF), EdgeFreqs(EF) {}
virtual void emitFunctionAnnot(const Function *F, ostream &OS) {
OS << ";;; %" << F->getName() << " called " << FuncFreqs[F]
<< " times.\n;;;\n";
}
virtual void emitBasicBlockStartAnnot(const BasicBlock *BB,
ostream &OS) {
if (BlockFreqs.empty()) return;
if (unsigned Count = BlockFreqs[BB])
OS << "\t;;; Basic block executed " << Count << " times.\n";
else
OS << "\t;;; Never executed!\n";
}
virtual void emitBasicBlockEndAnnot(const BasicBlock *BB, ostream &OS){
if (EdgeFreqs.empty()) return;
// Figure out how many times each successor executed.
vector<pair<const BasicBlock*, unsigned> > SuccCounts;
const TerminatorInst *TI = BB->getTerminator();
map<ProfileInfoLoader::Edge, unsigned>::iterator I =
EdgeFreqs.lower_bound(make_pair(const_cast<BasicBlock*>(BB), 0U));
for (; I != EdgeFreqs.end() && I->first.first == BB; ++I)
if (I->second)
SuccCounts.push_back(make_pair(TI->getSuccessor(I->first.second),
I->second));
if (!SuccCounts.empty()) {
OS << "\t;;; Out-edge counts:";
for (unsigned i = 0, e = SuccCounts.size(); i != e; ++i)
OS << " [" << SuccCounts[i].second << " -> "
<< SuccCounts[i].first->getName() << "]";
OS << "\n";
}
}
};
}
int main(int argc, char **argv) {
try {
cl::ParseCommandLineOptions(argc, argv, " llvm profile dump decoder\n");
sys::PrintStackTraceOnErrorSignal();
// Read in the bytecode file...
string ErrorMessage;
Module *M = ParseBytecodeFile(BytecodeFile, &ErrorMessage);
if (M == 0) {
cerr << argv[0] << ": " << BytecodeFile << ": " << ErrorMessage << "\n";
return 1;
}
// Read the profiling information
ProfileInfoLoader PI(argv[0], ProfileDataFile, *M);
map<const Function *, unsigned> FuncFreqs;
map<const BasicBlock*, unsigned> BlockFreqs;
map<ProfileInfoLoader::Edge, unsigned> EdgeFreqs;
// Output a report. Eventually, there will be multiple reports selectable on
// the command line, for now, just keep things simple.
// Emit the most frequent function table...
vector<pair<Function*, unsigned> > FunctionCounts;
PI.getFunctionCounts(FunctionCounts);
FuncFreqs.insert(FunctionCounts.begin(), FunctionCounts.end());
// Sort by the frequency, backwards.
sort(FunctionCounts.begin(), FunctionCounts.end(),
PairSecondSortReverse<Function*>());
unsigned long long TotalExecutions = 0;
for (unsigned i = 0, e = FunctionCounts.size(); i != e; ++i)
TotalExecutions += FunctionCounts[i].second;
cout << "===" << string(73, '-') << "===\n"
<< "LLVM profiling output for execution";
if (PI.getNumExecutions() != 1) cout << "s";
cout << ":\n";
for (unsigned i = 0, e = PI.getNumExecutions(); i != e; ++i) {
cout << " ";
if (e != 1) cout << i+1 << ". ";
cout << PI.getExecution(i) << "\n";
}
cout << "\n===" << string(73, '-') << "===\n";
cout << "Function execution frequencies:\n\n";
// Print out the function frequencies...
cout << " ## Frequency\n";
for (unsigned i = 0, e = FunctionCounts.size(); i != e; ++i) {
if (FunctionCounts[i].second == 0) {
cout << "\n NOTE: " << e-i << " function" <<
(e-i-1 ? "s were" : " was") << " never executed!\n";
break;
}
cout << setw(3) << i+1 << ". "
<< setw(5) << FunctionCounts[i].second << "/"
<< TotalExecutions << " "
<< FunctionCounts[i].first->getName().c_str() << "\n";
}
set<Function*> FunctionsToPrint;
// If we have block count information, print out the LLVM module with
// frequency annotations.
if (PI.hasAccurateBlockCounts()) {
vector<pair<BasicBlock*, unsigned> > Counts;
PI.getBlockCounts(Counts);
TotalExecutions = 0;
for (unsigned i = 0, e = Counts.size(); i != e; ++i)
TotalExecutions += Counts[i].second;
// Sort by the frequency, backwards.
sort(Counts.begin(), Counts.end(),
PairSecondSortReverse<BasicBlock*>());
cout << "\n===" << string(73, '-') << "===\n";
cout << "Top 20 most frequently executed basic blocks:\n\n";
// Print out the function frequencies...
cout <<" ## %% \tFrequency\n";
unsigned BlocksToPrint = Counts.size();
if (BlocksToPrint > 20) BlocksToPrint = 20;
for (unsigned i = 0; i != BlocksToPrint; ++i) {
if (Counts[i].second == 0) break;
Function *F = Counts[i].first->getParent();
cout << setw(3) << i+1 << ". "
<< setw(5) << setprecision(2)
<< Counts[i].second/(double)TotalExecutions*100 << "% "
<< setw(5) << Counts[i].second << "/"
<< TotalExecutions << "\t"
<< F->getName().c_str() << "() - "
<< Counts[i].first->getName().c_str() << "\n";
FunctionsToPrint.insert(F);
}
BlockFreqs.insert(Counts.begin(), Counts.end());
}
if (PI.hasAccurateEdgeCounts()) {
vector<pair<ProfileInfoLoader::Edge, unsigned> > Counts;
PI.getEdgeCounts(Counts);
EdgeFreqs.insert(Counts.begin(), Counts.end());
}
if (PrintAnnotatedLLVM || PrintAllCode) {
cout << "\n===" << string(73, '-') << "===\n";
cout << "Annotated LLVM code for the module:\n\n";
ProfileAnnotator PA(FuncFreqs, BlockFreqs, EdgeFreqs);
if (FunctionsToPrint.empty() || PrintAllCode)
M->print(cout, &PA);
else
// Print just a subset of the functions...
for (set<Function*>::iterator I = FunctionsToPrint.begin(),
E = FunctionsToPrint.end(); I != E; ++I)
(*I)->print(cout, &PA);
}
return 0;
} catch (const string& msg) {
cerr << argv[0] << ": " << msg << "\n";
} catch (...) {
cerr << argv[0] << ": Unexpected unknown exception occurred.\n";
}
return 1;
}