llvm-6502/lib/Bytecode/Reader/ReaderInternals.h
Chris Lattner 7969dc2bec Change all of the bytecode reader primitives to throw exceptions instead of
returning error codes.  Because they don't return an error code, they can
return the value read, which simplifies the code and makes the reader more
efficient (yaay!).

Also eliminate the special case code for little endian machines.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@10871 91177308-0d34-0410-b5e6-96231b3b80d8
2004-01-15 06:13:09 +00:00

227 lines
8.0 KiB
C++

//===-- ReaderInternals.h - Definitions internal to the reader --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This header file defines various stuff that is used by the bytecode reader.
//
//===----------------------------------------------------------------------===//
#ifndef READER_INTERNALS_H
#define READER_INTERNALS_H
#include "ReaderPrimitives.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/ModuleProvider.h"
#include <utility>
#include <map>
namespace llvm {
// Enable to trace to figure out what the heck is going on when parsing fails
//#define TRACE_LEVEL 10
//#define DEBUG_OUTPUT
#if TRACE_LEVEL // ByteCodeReading_TRACEr
#define BCR_TRACE(n, X) \
if (n < TRACE_LEVEL) std::cerr << std::string(n*2, ' ') << X
#else
#define BCR_TRACE(n, X)
#endif
struct LazyFunctionInfo {
const unsigned char *Buf, *EndBuf;
LazyFunctionInfo(const unsigned char *B = 0, const unsigned char *EB = 0)
: Buf(B), EndBuf(EB) {}
};
class BytecodeParser : public ModuleProvider {
BytecodeParser(const BytecodeParser &); // DO NOT IMPLEMENT
void operator=(const BytecodeParser &); // DO NOT IMPLEMENT
public:
BytecodeParser() {
// Define this in case we don't see a ModuleGlobalInfo block.
FirstDerivedTyID = Type::FirstDerivedTyID;
}
~BytecodeParser() {
freeState();
}
void freeState() {
freeTable(Values);
freeTable(ModuleValues);
}
Module* releaseModule() {
// Since we're losing control of this Module, we must hand it back complete
Module *M = ModuleProvider::releaseModule();
freeState();
return M;
}
void ParseBytecode(const unsigned char *Buf, unsigned Length,
const std::string &ModuleID);
void dump() const {
std::cerr << "BytecodeParser instance!\n";
}
private:
struct ValueList : public User {
ValueList() : User(Type::TypeTy, Value::TypeVal) {}
// vector compatibility methods
unsigned size() const { return getNumOperands(); }
void push_back(Value *V) { Operands.push_back(Use(V, this)); }
Value *back() const { return Operands.back(); }
void pop_back() { Operands.pop_back(); }
bool empty() const { return Operands.empty(); }
virtual void print(std::ostream& OS) const {
OS << "Bytecode Reader UseHandle!";
}
};
// Information about the module, extracted from the bytecode revision number.
unsigned char RevisionNum; // The rev # itself
unsigned char FirstDerivedTyID; // First variable index to use for type
bool hasExtendedLinkageSpecs; // Supports more than 4 linkage types
bool hasOldStyleVarargs; // Has old version of varargs intrinsics?
bool hasVarArgCallPadding; // Bytecode has extra padding in vararg call
bool usesOldStyleVarargs; // Does this module USE old style varargs?
typedef std::vector<ValueList*> ValueTable;
ValueTable Values;
ValueTable ModuleValues;
std::map<std::pair<unsigned,unsigned>, Value*> ForwardReferences;
std::vector<BasicBlock*> ParsedBasicBlocks;
// ConstantFwdRefs - This maintains a mapping between <Type, Slot #>'s and
// forward references to constants. Such values may be referenced before they
// are defined, and if so, the temporary object that they represent is held
// here.
//
typedef std::map<std::pair<const Type*,unsigned>, Constant*> ConstantRefsType;
ConstantRefsType ConstantFwdRefs;
// TypesLoaded - This vector mirrors the Values[TypeTyID] plane. It is used
// to deal with forward references to types.
//
typedef std::vector<PATypeHolder> TypeValuesListTy;
TypeValuesListTy ModuleTypeValues;
TypeValuesListTy FunctionTypeValues;
// When the ModuleGlobalInfo section is read, we create a function object for
// each function in the module. When the function is loaded, this function is
// filled in.
//
std::vector<Function*> FunctionSignatureList;
// Constant values are read in after global variables. Because of this, we
// must defer setting the initializers on global variables until after module
// level constants have been read. In the mean time, this list keeps track of
// what we must do.
//
std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
// For lazy reading-in of functions, we need to save away several pieces of
// information about each function: its begin and end pointer in the buffer
// and its FunctionSlot.
//
std::map<Function*, LazyFunctionInfo> LazyFunctionLoadMap;
private:
void freeTable(ValueTable &Tab) {
while (!Tab.empty()) {
delete Tab.back();
Tab.pop_back();
}
}
public:
void ParseModule(const unsigned char * Buf, const unsigned char *End);
void materializeFunction(Function *F);
private:
void ParseVersionInfo (const unsigned char *&Buf, const unsigned char *End);
void ParseModuleGlobalInfo(const unsigned char *&Buf, const unsigned char *E);
void ParseSymbolTable(const unsigned char *&Buf, const unsigned char *End,
SymbolTable *, Function *CurrentFunction);
void ParseFunction(const unsigned char *&Buf, const unsigned char *End);
void ParseGlobalTypes(const unsigned char *&Buf, const unsigned char *EndBuf);
BasicBlock *ParseBasicBlock(const unsigned char *&Buf,
const unsigned char *End,
unsigned BlockNo);
unsigned ParseInstructionList(Function *F, const unsigned char *&Buf,
const unsigned char *EndBuf);
void ParseInstruction(const unsigned char *&Buf, const unsigned char *End,
std::vector<unsigned> &Args, BasicBlock *BB);
void ParseConstantPool(const unsigned char *&Buf, const unsigned char *EndBuf,
ValueTable &Tab, TypeValuesListTy &TypeTab);
Constant *parseConstantValue(const unsigned char *&Buf,
const unsigned char *End,
unsigned TypeID);
void parseTypeConstants(const unsigned char *&Buf,
const unsigned char *EndBuf,
TypeValuesListTy &Tab, unsigned NumEntries);
const Type *parseTypeConstant(const unsigned char *&Buf,
const unsigned char *EndBuf);
void parseStringConstants(const unsigned char *&Buf,
const unsigned char *EndBuf,
unsigned NumEntries, ValueTable &Tab);
Value *getValue(unsigned TypeID, unsigned num, bool Create = true);
const Type *getType(unsigned ID);
BasicBlock *getBasicBlock(unsigned ID);
Constant *getConstantValue(unsigned TypeID, unsigned num);
Constant *getConstantValue(const Type *Ty, unsigned num) {
return getConstantValue(getTypeSlot(Ty), num);
}
unsigned insertValue(Value *V, unsigned Type, ValueTable &Table);
unsigned getTypeSlot(const Type *Ty);
// resolve all references to the placeholder (if any) for the given constant
void ResolveReferencesToConstant(Constant *C, unsigned Slot);
};
template<class SuperType>
class PlaceholderDef : public SuperType {
unsigned ID;
PlaceholderDef(); // DO NOT IMPLEMENT
void operator=(const PlaceholderDef &); // DO NOT IMPLEMENT
public:
PlaceholderDef(const Type *Ty, unsigned id) : SuperType(Ty), ID(id) {}
unsigned getID() { return ID; }
};
struct ConstantPlaceHolderHelper : public ConstantExpr {
ConstantPlaceHolderHelper(const Type *Ty)
: ConstantExpr(Instruction::UserOp1, Constant::getNullValue(Ty), Ty) {}
};
typedef PlaceholderDef<ConstantPlaceHolderHelper> ConstPHolder;
static inline void readBlock(const unsigned char *&Buf,
const unsigned char *EndBuf,
unsigned &Type, unsigned &Size) {
Type = read(Buf, EndBuf);
Size = read(Buf, EndBuf);
}
} // End llvm namespace
#endif