mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-16 14:31:59 +00:00
10e412ec6b
the compact unwind claiming that one register was saved before another, which isn't all that great in general. Process them in the natural order. Reverse the list only when necessary for the algorithm. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146612 91177308-0d34-0410-b5e6-96231b3b80d8
1454 lines
52 KiB
C++
1454 lines
52 KiB
C++
//=======- X86FrameLowering.cpp - X86 Frame Information --------*- C++ -*-====//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the X86 implementation of TargetFrameLowering class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "X86FrameLowering.h"
|
|
#include "X86InstrBuilder.h"
|
|
#include "X86InstrInfo.h"
|
|
#include "X86MachineFunctionInfo.h"
|
|
#include "X86Subtarget.h"
|
|
#include "X86TargetMachine.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCSymbol.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
|
|
using namespace llvm;
|
|
|
|
// FIXME: completely move here.
|
|
extern cl::opt<bool> ForceStackAlign;
|
|
|
|
bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
|
|
return !MF.getFrameInfo()->hasVarSizedObjects();
|
|
}
|
|
|
|
/// hasFP - Return true if the specified function should have a dedicated frame
|
|
/// pointer register. This is true if the function has variable sized allocas
|
|
/// or if frame pointer elimination is disabled.
|
|
bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
|
|
const MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
const MachineModuleInfo &MMI = MF.getMMI();
|
|
const TargetRegisterInfo *RI = TM.getRegisterInfo();
|
|
|
|
return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
|
|
RI->needsStackRealignment(MF) ||
|
|
MFI->hasVarSizedObjects() ||
|
|
MFI->isFrameAddressTaken() ||
|
|
MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
|
|
MMI.callsUnwindInit());
|
|
}
|
|
|
|
static unsigned getSUBriOpcode(unsigned is64Bit, int64_t Imm) {
|
|
if (is64Bit) {
|
|
if (isInt<8>(Imm))
|
|
return X86::SUB64ri8;
|
|
return X86::SUB64ri32;
|
|
} else {
|
|
if (isInt<8>(Imm))
|
|
return X86::SUB32ri8;
|
|
return X86::SUB32ri;
|
|
}
|
|
}
|
|
|
|
static unsigned getADDriOpcode(unsigned is64Bit, int64_t Imm) {
|
|
if (is64Bit) {
|
|
if (isInt<8>(Imm))
|
|
return X86::ADD64ri8;
|
|
return X86::ADD64ri32;
|
|
} else {
|
|
if (isInt<8>(Imm))
|
|
return X86::ADD32ri8;
|
|
return X86::ADD32ri;
|
|
}
|
|
}
|
|
|
|
/// findDeadCallerSavedReg - Return a caller-saved register that isn't live
|
|
/// when it reaches the "return" instruction. We can then pop a stack object
|
|
/// to this register without worry about clobbering it.
|
|
static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator &MBBI,
|
|
const TargetRegisterInfo &TRI,
|
|
bool Is64Bit) {
|
|
const MachineFunction *MF = MBB.getParent();
|
|
const Function *F = MF->getFunction();
|
|
if (!F || MF->getMMI().callsEHReturn())
|
|
return 0;
|
|
|
|
static const unsigned CallerSavedRegs32Bit[] = {
|
|
X86::EAX, X86::EDX, X86::ECX, 0
|
|
};
|
|
|
|
static const unsigned CallerSavedRegs64Bit[] = {
|
|
X86::RAX, X86::RDX, X86::RCX, X86::RSI, X86::RDI,
|
|
X86::R8, X86::R9, X86::R10, X86::R11, 0
|
|
};
|
|
|
|
unsigned Opc = MBBI->getOpcode();
|
|
switch (Opc) {
|
|
default: return 0;
|
|
case X86::RET:
|
|
case X86::RETI:
|
|
case X86::TCRETURNdi:
|
|
case X86::TCRETURNri:
|
|
case X86::TCRETURNmi:
|
|
case X86::TCRETURNdi64:
|
|
case X86::TCRETURNri64:
|
|
case X86::TCRETURNmi64:
|
|
case X86::EH_RETURN:
|
|
case X86::EH_RETURN64: {
|
|
SmallSet<unsigned, 8> Uses;
|
|
for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MBBI->getOperand(i);
|
|
if (!MO.isReg() || MO.isDef())
|
|
continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (!Reg)
|
|
continue;
|
|
for (const unsigned *AsI = TRI.getOverlaps(Reg); *AsI; ++AsI)
|
|
Uses.insert(*AsI);
|
|
}
|
|
|
|
const unsigned *CS = Is64Bit ? CallerSavedRegs64Bit : CallerSavedRegs32Bit;
|
|
for (; *CS; ++CS)
|
|
if (!Uses.count(*CS))
|
|
return *CS;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/// emitSPUpdate - Emit a series of instructions to increment / decrement the
|
|
/// stack pointer by a constant value.
|
|
static
|
|
void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
|
|
unsigned StackPtr, int64_t NumBytes,
|
|
bool Is64Bit, const TargetInstrInfo &TII,
|
|
const TargetRegisterInfo &TRI) {
|
|
bool isSub = NumBytes < 0;
|
|
uint64_t Offset = isSub ? -NumBytes : NumBytes;
|
|
unsigned Opc = isSub ?
|
|
getSUBriOpcode(Is64Bit, Offset) :
|
|
getADDriOpcode(Is64Bit, Offset);
|
|
uint64_t Chunk = (1LL << 31) - 1;
|
|
DebugLoc DL = MBB.findDebugLoc(MBBI);
|
|
|
|
while (Offset) {
|
|
uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset;
|
|
if (ThisVal == (Is64Bit ? 8 : 4)) {
|
|
// Use push / pop instead.
|
|
unsigned Reg = isSub
|
|
? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
|
|
: findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
|
|
if (Reg) {
|
|
Opc = isSub
|
|
? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
|
|
: (Is64Bit ? X86::POP64r : X86::POP32r);
|
|
MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc))
|
|
.addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub));
|
|
if (isSub)
|
|
MI->setFlag(MachineInstr::FrameSetup);
|
|
Offset -= ThisVal;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
MachineInstr *MI =
|
|
BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
|
|
.addReg(StackPtr)
|
|
.addImm(ThisVal);
|
|
if (isSub)
|
|
MI->setFlag(MachineInstr::FrameSetup);
|
|
MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
|
|
Offset -= ThisVal;
|
|
}
|
|
}
|
|
|
|
/// mergeSPUpdatesUp - Merge two stack-manipulating instructions upper iterator.
|
|
static
|
|
void mergeSPUpdatesUp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
|
|
unsigned StackPtr, uint64_t *NumBytes = NULL) {
|
|
if (MBBI == MBB.begin()) return;
|
|
|
|
MachineBasicBlock::iterator PI = prior(MBBI);
|
|
unsigned Opc = PI->getOpcode();
|
|
if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
|
|
Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
|
|
PI->getOperand(0).getReg() == StackPtr) {
|
|
if (NumBytes)
|
|
*NumBytes += PI->getOperand(2).getImm();
|
|
MBB.erase(PI);
|
|
} else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
|
|
Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
|
|
PI->getOperand(0).getReg() == StackPtr) {
|
|
if (NumBytes)
|
|
*NumBytes -= PI->getOperand(2).getImm();
|
|
MBB.erase(PI);
|
|
}
|
|
}
|
|
|
|
/// mergeSPUpdatesDown - Merge two stack-manipulating instructions lower iterator.
|
|
static
|
|
void mergeSPUpdatesDown(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator &MBBI,
|
|
unsigned StackPtr, uint64_t *NumBytes = NULL) {
|
|
// FIXME: THIS ISN'T RUN!!!
|
|
return;
|
|
|
|
if (MBBI == MBB.end()) return;
|
|
|
|
MachineBasicBlock::iterator NI = llvm::next(MBBI);
|
|
if (NI == MBB.end()) return;
|
|
|
|
unsigned Opc = NI->getOpcode();
|
|
if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
|
|
Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
|
|
NI->getOperand(0).getReg() == StackPtr) {
|
|
if (NumBytes)
|
|
*NumBytes -= NI->getOperand(2).getImm();
|
|
MBB.erase(NI);
|
|
MBBI = NI;
|
|
} else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
|
|
Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
|
|
NI->getOperand(0).getReg() == StackPtr) {
|
|
if (NumBytes)
|
|
*NumBytes += NI->getOperand(2).getImm();
|
|
MBB.erase(NI);
|
|
MBBI = NI;
|
|
}
|
|
}
|
|
|
|
/// mergeSPUpdates - Checks the instruction before/after the passed
|
|
/// instruction. If it is an ADD/SUB instruction it is deleted argument and the
|
|
/// stack adjustment is returned as a positive value for ADD and a negative for
|
|
/// SUB.
|
|
static int mergeSPUpdates(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator &MBBI,
|
|
unsigned StackPtr,
|
|
bool doMergeWithPrevious) {
|
|
if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
|
|
(!doMergeWithPrevious && MBBI == MBB.end()))
|
|
return 0;
|
|
|
|
MachineBasicBlock::iterator PI = doMergeWithPrevious ? prior(MBBI) : MBBI;
|
|
MachineBasicBlock::iterator NI = doMergeWithPrevious ? 0 : llvm::next(MBBI);
|
|
unsigned Opc = PI->getOpcode();
|
|
int Offset = 0;
|
|
|
|
if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
|
|
Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
|
|
PI->getOperand(0).getReg() == StackPtr){
|
|
Offset += PI->getOperand(2).getImm();
|
|
MBB.erase(PI);
|
|
if (!doMergeWithPrevious) MBBI = NI;
|
|
} else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
|
|
Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
|
|
PI->getOperand(0).getReg() == StackPtr) {
|
|
Offset -= PI->getOperand(2).getImm();
|
|
MBB.erase(PI);
|
|
if (!doMergeWithPrevious) MBBI = NI;
|
|
}
|
|
|
|
return Offset;
|
|
}
|
|
|
|
static bool isEAXLiveIn(MachineFunction &MF) {
|
|
for (MachineRegisterInfo::livein_iterator II = MF.getRegInfo().livein_begin(),
|
|
EE = MF.getRegInfo().livein_end(); II != EE; ++II) {
|
|
unsigned Reg = II->first;
|
|
|
|
if (Reg == X86::EAX || Reg == X86::AX ||
|
|
Reg == X86::AH || Reg == X86::AL)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void X86FrameLowering::emitCalleeSavedFrameMoves(MachineFunction &MF,
|
|
MCSymbol *Label,
|
|
unsigned FramePtr) const {
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
MachineModuleInfo &MMI = MF.getMMI();
|
|
|
|
// Add callee saved registers to move list.
|
|
const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
|
|
if (CSI.empty()) return;
|
|
|
|
std::vector<MachineMove> &Moves = MMI.getFrameMoves();
|
|
const TargetData *TD = TM.getTargetData();
|
|
bool HasFP = hasFP(MF);
|
|
|
|
// Calculate amount of bytes used for return address storing.
|
|
int stackGrowth = -TD->getPointerSize();
|
|
|
|
// FIXME: This is dirty hack. The code itself is pretty mess right now.
|
|
// It should be rewritten from scratch and generalized sometimes.
|
|
|
|
// Determine maximum offset (minimum due to stack growth).
|
|
int64_t MaxOffset = 0;
|
|
for (std::vector<CalleeSavedInfo>::const_iterator
|
|
I = CSI.begin(), E = CSI.end(); I != E; ++I)
|
|
MaxOffset = std::min(MaxOffset,
|
|
MFI->getObjectOffset(I->getFrameIdx()));
|
|
|
|
// Calculate offsets.
|
|
int64_t saveAreaOffset = (HasFP ? 3 : 2) * stackGrowth;
|
|
for (std::vector<CalleeSavedInfo>::const_iterator
|
|
I = CSI.begin(), E = CSI.end(); I != E; ++I) {
|
|
int64_t Offset = MFI->getObjectOffset(I->getFrameIdx());
|
|
unsigned Reg = I->getReg();
|
|
Offset = MaxOffset - Offset + saveAreaOffset;
|
|
|
|
// Don't output a new machine move if we're re-saving the frame
|
|
// pointer. This happens when the PrologEpilogInserter has inserted an extra
|
|
// "PUSH" of the frame pointer -- the "emitPrologue" method automatically
|
|
// generates one when frame pointers are used. If we generate a "machine
|
|
// move" for this extra "PUSH", the linker will lose track of the fact that
|
|
// the frame pointer should have the value of the first "PUSH" when it's
|
|
// trying to unwind.
|
|
//
|
|
// FIXME: This looks inelegant. It's possibly correct, but it's covering up
|
|
// another bug. I.e., one where we generate a prolog like this:
|
|
//
|
|
// pushl %ebp
|
|
// movl %esp, %ebp
|
|
// pushl %ebp
|
|
// pushl %esi
|
|
// ...
|
|
//
|
|
// The immediate re-push of EBP is unnecessary. At the least, it's an
|
|
// optimization bug. EBP can be used as a scratch register in certain
|
|
// cases, but probably not when we have a frame pointer.
|
|
if (HasFP && FramePtr == Reg)
|
|
continue;
|
|
|
|
MachineLocation CSDst(MachineLocation::VirtualFP, Offset);
|
|
MachineLocation CSSrc(Reg);
|
|
Moves.push_back(MachineMove(Label, CSDst, CSSrc));
|
|
}
|
|
}
|
|
|
|
/// getCompactUnwindRegNum - Get the compact unwind number for a given
|
|
/// register. The number corresponds to the enum lists in
|
|
/// compact_unwind_encoding.h.
|
|
static int getCompactUnwindRegNum(const unsigned *CURegs, unsigned Reg) {
|
|
for (int Idx = 1; *CURegs; ++CURegs, ++Idx)
|
|
if (*CURegs == Reg)
|
|
return Idx;
|
|
|
|
return -1;
|
|
}
|
|
|
|
// Number of registers that can be saved in a compact unwind encoding.
|
|
#define CU_NUM_SAVED_REGS 6
|
|
|
|
/// encodeCompactUnwindRegistersWithoutFrame - Create the permutation encoding
|
|
/// used with frameless stacks. It is passed the number of registers to be saved
|
|
/// and an array of the registers saved.
|
|
static uint32_t
|
|
encodeCompactUnwindRegistersWithoutFrame(unsigned SavedRegs[CU_NUM_SAVED_REGS],
|
|
unsigned RegCount, bool Is64Bit) {
|
|
// The saved registers are numbered from 1 to 6. In order to encode the order
|
|
// in which they were saved, we re-number them according to their place in the
|
|
// register order. The re-numbering is relative to the last re-numbered
|
|
// register. E.g., if we have registers {6, 2, 4, 5} saved in that order:
|
|
//
|
|
// Orig Re-Num
|
|
// ---- ------
|
|
// 6 6
|
|
// 2 2
|
|
// 4 3
|
|
// 5 3
|
|
//
|
|
static const unsigned CU32BitRegs[] = {
|
|
X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0
|
|
};
|
|
static const unsigned CU64BitRegs[] = {
|
|
X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
|
|
};
|
|
const unsigned *CURegs = (Is64Bit ? CU64BitRegs : CU32BitRegs);
|
|
|
|
for (unsigned i = 0; i != CU_NUM_SAVED_REGS; ++i) {
|
|
int CUReg = getCompactUnwindRegNum(CURegs, SavedRegs[i]);
|
|
if (CUReg == -1) return ~0U;
|
|
SavedRegs[i] = CUReg;
|
|
}
|
|
|
|
// Reverse the list.
|
|
std::swap(SavedRegs[0], SavedRegs[5]);
|
|
std::swap(SavedRegs[1], SavedRegs[4]);
|
|
std::swap(SavedRegs[2], SavedRegs[3]);
|
|
|
|
uint32_t RenumRegs[CU_NUM_SAVED_REGS];
|
|
for (unsigned i = CU_NUM_SAVED_REGS - RegCount; i < CU_NUM_SAVED_REGS; ++i) {
|
|
unsigned Countless = 0;
|
|
for (unsigned j = CU_NUM_SAVED_REGS - RegCount; j < i; ++j)
|
|
if (SavedRegs[j] < SavedRegs[i])
|
|
++Countless;
|
|
|
|
RenumRegs[i] = SavedRegs[i] - Countless - 1;
|
|
}
|
|
|
|
// Take the renumbered values and encode them into a 10-bit number.
|
|
uint32_t permutationEncoding = 0;
|
|
switch (RegCount) {
|
|
case 6:
|
|
permutationEncoding |= 120 * RenumRegs[0] + 24 * RenumRegs[1]
|
|
+ 6 * RenumRegs[2] + 2 * RenumRegs[3]
|
|
+ RenumRegs[4];
|
|
break;
|
|
case 5:
|
|
permutationEncoding |= 120 * RenumRegs[1] + 24 * RenumRegs[2]
|
|
+ 6 * RenumRegs[3] + 2 * RenumRegs[4]
|
|
+ RenumRegs[5];
|
|
break;
|
|
case 4:
|
|
permutationEncoding |= 60 * RenumRegs[2] + 12 * RenumRegs[3]
|
|
+ 3 * RenumRegs[4] + RenumRegs[5];
|
|
break;
|
|
case 3:
|
|
permutationEncoding |= 20 * RenumRegs[3] + 4 * RenumRegs[4]
|
|
+ RenumRegs[5];
|
|
break;
|
|
case 2:
|
|
permutationEncoding |= 5 * RenumRegs[4] + RenumRegs[5];
|
|
break;
|
|
case 1:
|
|
permutationEncoding |= RenumRegs[5];
|
|
break;
|
|
}
|
|
|
|
assert((permutationEncoding & 0x3FF) == permutationEncoding &&
|
|
"Invalid compact register encoding!");
|
|
return permutationEncoding;
|
|
}
|
|
|
|
/// encodeCompactUnwindRegistersWithFrame - Return the registers encoded for a
|
|
/// compact encoding with a frame pointer.
|
|
static uint32_t
|
|
encodeCompactUnwindRegistersWithFrame(unsigned SavedRegs[CU_NUM_SAVED_REGS],
|
|
bool Is64Bit) {
|
|
static const unsigned CU32BitRegs[] = {
|
|
X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0
|
|
};
|
|
static const unsigned CU64BitRegs[] = {
|
|
X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
|
|
};
|
|
const unsigned *CURegs = (Is64Bit ? CU64BitRegs : CU32BitRegs);
|
|
|
|
// Encode the registers in the order they were saved, 3-bits per register. The
|
|
// registers are numbered from 1 to 6.
|
|
uint32_t RegEnc = 0;
|
|
for (int I = 0; I != 6; --I) {
|
|
unsigned Reg = SavedRegs[I];
|
|
if (Reg == 0) break;
|
|
int CURegNum = getCompactUnwindRegNum(CURegs, Reg);
|
|
if (CURegNum == -1)
|
|
return ~0U;
|
|
|
|
// Encode the 3-bit register number in order, skipping over 3-bits for each
|
|
// register.
|
|
RegEnc |= (CURegNum & 0x7) << ((5 - I) * 3);
|
|
}
|
|
|
|
assert((RegEnc & 0x7FFF) == RegEnc && "Invalid compact register encoding!");
|
|
return RegEnc;
|
|
}
|
|
|
|
uint32_t X86FrameLowering::getCompactUnwindEncoding(MachineFunction &MF) const {
|
|
const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
|
|
unsigned FramePtr = RegInfo->getFrameRegister(MF);
|
|
unsigned StackPtr = RegInfo->getStackRegister();
|
|
|
|
bool Is64Bit = STI.is64Bit();
|
|
bool HasFP = hasFP(MF);
|
|
|
|
unsigned SavedRegs[CU_NUM_SAVED_REGS] = { 0, 0, 0, 0, 0, 0 };
|
|
unsigned SavedRegIdx = 0;
|
|
|
|
unsigned OffsetSize = (Is64Bit ? 8 : 4);
|
|
|
|
unsigned PushInstr = (Is64Bit ? X86::PUSH64r : X86::PUSH32r);
|
|
unsigned PushInstrSize = 1;
|
|
unsigned MoveInstr = (Is64Bit ? X86::MOV64rr : X86::MOV32rr);
|
|
unsigned MoveInstrSize = (Is64Bit ? 3 : 2);
|
|
unsigned SubtractInstrIdx = (Is64Bit ? 3 : 2);
|
|
|
|
unsigned StackDivide = (Is64Bit ? 8 : 4);
|
|
|
|
unsigned InstrOffset = 0;
|
|
unsigned StackAdjust = 0;
|
|
unsigned StackSize = 0;
|
|
|
|
MachineBasicBlock &MBB = MF.front(); // Prologue is in entry BB.
|
|
bool ExpectEnd = false;
|
|
for (MachineBasicBlock::iterator
|
|
MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ++MBBI) {
|
|
MachineInstr &MI = *MBBI;
|
|
unsigned Opc = MI.getOpcode();
|
|
if (Opc == X86::PROLOG_LABEL) continue;
|
|
if (!MI.getFlag(MachineInstr::FrameSetup)) break;
|
|
|
|
// We don't exect any more prolog instructions.
|
|
if (ExpectEnd) return 0;
|
|
|
|
if (Opc == PushInstr) {
|
|
// If there are too many saved registers, we cannot use compact encoding.
|
|
if (SavedRegIdx >= CU_NUM_SAVED_REGS) return 0;
|
|
|
|
SavedRegs[SavedRegIdx++] = MI.getOperand(0).getReg();
|
|
StackAdjust += OffsetSize;
|
|
InstrOffset += PushInstrSize;
|
|
} else if (Opc == MoveInstr) {
|
|
unsigned SrcReg = MI.getOperand(1).getReg();
|
|
unsigned DstReg = MI.getOperand(0).getReg();
|
|
|
|
if (DstReg != FramePtr || SrcReg != StackPtr)
|
|
return 0;
|
|
|
|
StackAdjust = 0;
|
|
memset(SavedRegs, 0, sizeof(SavedRegs));
|
|
SavedRegIdx = 0;
|
|
InstrOffset += MoveInstrSize;
|
|
} else if (Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
|
|
Opc == X86::SUB32ri || Opc == X86::SUB32ri8) {
|
|
if (StackSize)
|
|
// We already have a stack size.
|
|
return 0;
|
|
|
|
if (!MI.getOperand(0).isReg() ||
|
|
MI.getOperand(0).getReg() != MI.getOperand(1).getReg() ||
|
|
MI.getOperand(0).getReg() != StackPtr || !MI.getOperand(2).isImm())
|
|
// We need this to be a stack adjustment pointer. Something like:
|
|
//
|
|
// %RSP<def> = SUB64ri8 %RSP, 48
|
|
return 0;
|
|
|
|
StackSize = MI.getOperand(2).getImm() / StackDivide;
|
|
SubtractInstrIdx += InstrOffset;
|
|
ExpectEnd = true;
|
|
}
|
|
}
|
|
|
|
// Encode that we are using EBP/RBP as the frame pointer.
|
|
uint32_t CompactUnwindEncoding = 0;
|
|
StackAdjust /= StackDivide;
|
|
if (HasFP) {
|
|
if ((StackAdjust & 0xFF) != StackAdjust)
|
|
// Offset was too big for compact encoding.
|
|
return 0;
|
|
|
|
// Get the encoding of the saved registers when we have a frame pointer.
|
|
uint32_t RegEnc = encodeCompactUnwindRegistersWithFrame(SavedRegs, Is64Bit);
|
|
if (RegEnc == ~0U) return 0;
|
|
|
|
CompactUnwindEncoding |= 0x01000000;
|
|
CompactUnwindEncoding |= (StackAdjust & 0xFF) << 16;
|
|
CompactUnwindEncoding |= RegEnc & 0x7FFF;
|
|
} else {
|
|
++StackAdjust;
|
|
uint32_t TotalStackSize = StackAdjust + StackSize;
|
|
if ((TotalStackSize & 0xFF) == TotalStackSize) {
|
|
// Frameless stack with a small stack size.
|
|
CompactUnwindEncoding |= 0x02000000;
|
|
|
|
// Encode the stack size.
|
|
CompactUnwindEncoding |= (TotalStackSize & 0xFF) << 16;
|
|
} else {
|
|
if ((StackAdjust & 0x7) != StackAdjust)
|
|
// The extra stack adjustments are too big for us to handle.
|
|
return 0;
|
|
|
|
// Frameless stack with an offset too large for us to encode compactly.
|
|
CompactUnwindEncoding |= 0x03000000;
|
|
|
|
// Encode the offset to the nnnnnn value in the 'subl $nnnnnn, ESP'
|
|
// instruction.
|
|
CompactUnwindEncoding |= (SubtractInstrIdx & 0xFF) << 16;
|
|
|
|
// Encode any extra stack stack adjustments (done via push instructions).
|
|
CompactUnwindEncoding |= (StackAdjust & 0x7) << 13;
|
|
}
|
|
|
|
// Encode the number of registers saved.
|
|
CompactUnwindEncoding |= (SavedRegIdx & 0x7) << 10;
|
|
|
|
// Get the encoding of the saved registers when we don't have a frame
|
|
// pointer.
|
|
uint32_t RegEnc =
|
|
encodeCompactUnwindRegistersWithoutFrame(SavedRegs, SavedRegIdx,
|
|
Is64Bit);
|
|
if (RegEnc == ~0U) return 0;
|
|
|
|
// Encode the register encoding.
|
|
CompactUnwindEncoding |= RegEnc & 0x3FF;
|
|
}
|
|
|
|
return CompactUnwindEncoding;
|
|
}
|
|
|
|
/// emitPrologue - Push callee-saved registers onto the stack, which
|
|
/// automatically adjust the stack pointer. Adjust the stack pointer to allocate
|
|
/// space for local variables. Also emit labels used by the exception handler to
|
|
/// generate the exception handling frames.
|
|
void X86FrameLowering::emitPrologue(MachineFunction &MF) const {
|
|
MachineBasicBlock &MBB = MF.front(); // Prologue goes in entry BB.
|
|
MachineBasicBlock::iterator MBBI = MBB.begin();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
const Function *Fn = MF.getFunction();
|
|
const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
|
|
const X86InstrInfo &TII = *TM.getInstrInfo();
|
|
MachineModuleInfo &MMI = MF.getMMI();
|
|
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
|
|
bool needsFrameMoves = MMI.hasDebugInfo() ||
|
|
Fn->needsUnwindTableEntry();
|
|
uint64_t MaxAlign = MFI->getMaxAlignment(); // Desired stack alignment.
|
|
uint64_t StackSize = MFI->getStackSize(); // Number of bytes to allocate.
|
|
bool HasFP = hasFP(MF);
|
|
bool Is64Bit = STI.is64Bit();
|
|
bool IsWin64 = STI.isTargetWin64();
|
|
unsigned StackAlign = getStackAlignment();
|
|
unsigned SlotSize = RegInfo->getSlotSize();
|
|
unsigned FramePtr = RegInfo->getFrameRegister(MF);
|
|
unsigned StackPtr = RegInfo->getStackRegister();
|
|
DebugLoc DL;
|
|
|
|
// If we're forcing a stack realignment we can't rely on just the frame
|
|
// info, we need to know the ABI stack alignment as well in case we
|
|
// have a call out. Otherwise just make sure we have some alignment - we'll
|
|
// go with the minimum SlotSize.
|
|
if (ForceStackAlign) {
|
|
if (MFI->hasCalls())
|
|
MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
|
|
else if (MaxAlign < SlotSize)
|
|
MaxAlign = SlotSize;
|
|
}
|
|
|
|
// Add RETADDR move area to callee saved frame size.
|
|
int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
|
|
if (TailCallReturnAddrDelta < 0)
|
|
X86FI->setCalleeSavedFrameSize(
|
|
X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
|
|
|
|
// If this is x86-64 and the Red Zone is not disabled, if we are a leaf
|
|
// function, and use up to 128 bytes of stack space, don't have a frame
|
|
// pointer, calls, or dynamic alloca then we do not need to adjust the
|
|
// stack pointer (we fit in the Red Zone).
|
|
if (Is64Bit && !Fn->hasFnAttr(Attribute::NoRedZone) &&
|
|
!RegInfo->needsStackRealignment(MF) &&
|
|
!MFI->hasVarSizedObjects() && // No dynamic alloca.
|
|
!MFI->adjustsStack() && // No calls.
|
|
!IsWin64 && // Win64 has no Red Zone
|
|
!MF.getTarget().Options.EnableSegmentedStacks) { // Regular stack
|
|
uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
|
|
if (HasFP) MinSize += SlotSize;
|
|
StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
|
|
MFI->setStackSize(StackSize);
|
|
}
|
|
|
|
// Insert stack pointer adjustment for later moving of return addr. Only
|
|
// applies to tail call optimized functions where the callee argument stack
|
|
// size is bigger than the callers.
|
|
if (TailCallReturnAddrDelta < 0) {
|
|
MachineInstr *MI =
|
|
BuildMI(MBB, MBBI, DL,
|
|
TII.get(getSUBriOpcode(Is64Bit, -TailCallReturnAddrDelta)),
|
|
StackPtr)
|
|
.addReg(StackPtr)
|
|
.addImm(-TailCallReturnAddrDelta)
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
|
|
}
|
|
|
|
// Mapping for machine moves:
|
|
//
|
|
// DST: VirtualFP AND
|
|
// SRC: VirtualFP => DW_CFA_def_cfa_offset
|
|
// ELSE => DW_CFA_def_cfa
|
|
//
|
|
// SRC: VirtualFP AND
|
|
// DST: Register => DW_CFA_def_cfa_register
|
|
//
|
|
// ELSE
|
|
// OFFSET < 0 => DW_CFA_offset_extended_sf
|
|
// REG < 64 => DW_CFA_offset + Reg
|
|
// ELSE => DW_CFA_offset_extended
|
|
|
|
std::vector<MachineMove> &Moves = MMI.getFrameMoves();
|
|
const TargetData *TD = MF.getTarget().getTargetData();
|
|
uint64_t NumBytes = 0;
|
|
int stackGrowth = -TD->getPointerSize();
|
|
|
|
if (HasFP) {
|
|
// Calculate required stack adjustment.
|
|
uint64_t FrameSize = StackSize - SlotSize;
|
|
if (RegInfo->needsStackRealignment(MF))
|
|
FrameSize = (FrameSize + MaxAlign - 1) / MaxAlign * MaxAlign;
|
|
|
|
NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
|
|
|
|
// Get the offset of the stack slot for the EBP register, which is
|
|
// guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
|
|
// Update the frame offset adjustment.
|
|
MFI->setOffsetAdjustment(-NumBytes);
|
|
|
|
// Save EBP/RBP into the appropriate stack slot.
|
|
BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
|
|
.addReg(FramePtr, RegState::Kill)
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
|
|
if (needsFrameMoves) {
|
|
// Mark the place where EBP/RBP was saved.
|
|
MCSymbol *FrameLabel = MMI.getContext().CreateTempSymbol();
|
|
BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL))
|
|
.addSym(FrameLabel);
|
|
|
|
// Define the current CFA rule to use the provided offset.
|
|
if (StackSize) {
|
|
MachineLocation SPDst(MachineLocation::VirtualFP);
|
|
MachineLocation SPSrc(MachineLocation::VirtualFP, 2 * stackGrowth);
|
|
Moves.push_back(MachineMove(FrameLabel, SPDst, SPSrc));
|
|
} else {
|
|
MachineLocation SPDst(StackPtr);
|
|
MachineLocation SPSrc(StackPtr, stackGrowth);
|
|
Moves.push_back(MachineMove(FrameLabel, SPDst, SPSrc));
|
|
}
|
|
|
|
// Change the rule for the FramePtr to be an "offset" rule.
|
|
MachineLocation FPDst(MachineLocation::VirtualFP, 2 * stackGrowth);
|
|
MachineLocation FPSrc(FramePtr);
|
|
Moves.push_back(MachineMove(FrameLabel, FPDst, FPSrc));
|
|
}
|
|
|
|
// Update EBP with the new base value.
|
|
BuildMI(MBB, MBBI, DL,
|
|
TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), FramePtr)
|
|
.addReg(StackPtr)
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
|
|
if (needsFrameMoves) {
|
|
// Mark effective beginning of when frame pointer becomes valid.
|
|
MCSymbol *FrameLabel = MMI.getContext().CreateTempSymbol();
|
|
BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL))
|
|
.addSym(FrameLabel);
|
|
|
|
// Define the current CFA to use the EBP/RBP register.
|
|
MachineLocation FPDst(FramePtr);
|
|
MachineLocation FPSrc(MachineLocation::VirtualFP);
|
|
Moves.push_back(MachineMove(FrameLabel, FPDst, FPSrc));
|
|
}
|
|
|
|
// Mark the FramePtr as live-in in every block except the entry.
|
|
for (MachineFunction::iterator I = llvm::next(MF.begin()), E = MF.end();
|
|
I != E; ++I)
|
|
I->addLiveIn(FramePtr);
|
|
|
|
// Realign stack
|
|
if (RegInfo->needsStackRealignment(MF)) {
|
|
MachineInstr *MI =
|
|
BuildMI(MBB, MBBI, DL,
|
|
TII.get(Is64Bit ? X86::AND64ri32 : X86::AND32ri), StackPtr)
|
|
.addReg(StackPtr)
|
|
.addImm(-MaxAlign)
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
|
|
// The EFLAGS implicit def is dead.
|
|
MI->getOperand(3).setIsDead();
|
|
}
|
|
} else {
|
|
NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
|
|
}
|
|
|
|
// Skip the callee-saved push instructions.
|
|
bool PushedRegs = false;
|
|
int StackOffset = 2 * stackGrowth;
|
|
|
|
while (MBBI != MBB.end() &&
|
|
(MBBI->getOpcode() == X86::PUSH32r ||
|
|
MBBI->getOpcode() == X86::PUSH64r)) {
|
|
PushedRegs = true;
|
|
MBBI->setFlag(MachineInstr::FrameSetup);
|
|
++MBBI;
|
|
|
|
if (!HasFP && needsFrameMoves) {
|
|
// Mark callee-saved push instruction.
|
|
MCSymbol *Label = MMI.getContext().CreateTempSymbol();
|
|
BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL)).addSym(Label);
|
|
|
|
// Define the current CFA rule to use the provided offset.
|
|
unsigned Ptr = StackSize ? MachineLocation::VirtualFP : StackPtr;
|
|
MachineLocation SPDst(Ptr);
|
|
MachineLocation SPSrc(Ptr, StackOffset);
|
|
Moves.push_back(MachineMove(Label, SPDst, SPSrc));
|
|
StackOffset += stackGrowth;
|
|
}
|
|
}
|
|
|
|
DL = MBB.findDebugLoc(MBBI);
|
|
|
|
// If there is an SUB32ri of ESP immediately before this instruction, merge
|
|
// the two. This can be the case when tail call elimination is enabled and
|
|
// the callee has more arguments then the caller.
|
|
NumBytes -= mergeSPUpdates(MBB, MBBI, StackPtr, true);
|
|
|
|
// If there is an ADD32ri or SUB32ri of ESP immediately after this
|
|
// instruction, merge the two instructions.
|
|
mergeSPUpdatesDown(MBB, MBBI, StackPtr, &NumBytes);
|
|
|
|
// Adjust stack pointer: ESP -= numbytes.
|
|
|
|
// Windows and cygwin/mingw require a prologue helper routine when allocating
|
|
// more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw
|
|
// uses __alloca. __alloca and the 32-bit version of __chkstk will probe the
|
|
// stack and adjust the stack pointer in one go. The 64-bit version of
|
|
// __chkstk is only responsible for probing the stack. The 64-bit prologue is
|
|
// responsible for adjusting the stack pointer. Touching the stack at 4K
|
|
// increments is necessary to ensure that the guard pages used by the OS
|
|
// virtual memory manager are allocated in correct sequence.
|
|
if (NumBytes >= 4096 && STI.isTargetCOFF() && !STI.isTargetEnvMacho()) {
|
|
const char *StackProbeSymbol;
|
|
bool isSPUpdateNeeded = false;
|
|
|
|
if (Is64Bit) {
|
|
if (STI.isTargetCygMing())
|
|
StackProbeSymbol = "___chkstk";
|
|
else {
|
|
StackProbeSymbol = "__chkstk";
|
|
isSPUpdateNeeded = true;
|
|
}
|
|
} else if (STI.isTargetCygMing())
|
|
StackProbeSymbol = "_alloca";
|
|
else
|
|
StackProbeSymbol = "_chkstk";
|
|
|
|
// Check whether EAX is livein for this function.
|
|
bool isEAXAlive = isEAXLiveIn(MF);
|
|
|
|
if (isEAXAlive) {
|
|
// Sanity check that EAX is not livein for this function.
|
|
// It should not be, so throw an assert.
|
|
assert(!Is64Bit && "EAX is livein in x64 case!");
|
|
|
|
// Save EAX
|
|
BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
|
|
.addReg(X86::EAX, RegState::Kill)
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
}
|
|
|
|
if (Is64Bit) {
|
|
// Handle the 64-bit Windows ABI case where we need to call __chkstk.
|
|
// Function prologue is responsible for adjusting the stack pointer.
|
|
BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
|
|
.addImm(NumBytes)
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
} else {
|
|
// Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
|
|
// We'll also use 4 already allocated bytes for EAX.
|
|
BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
|
|
.addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
}
|
|
|
|
BuildMI(MBB, MBBI, DL,
|
|
TII.get(Is64Bit ? X86::W64ALLOCA : X86::CALLpcrel32))
|
|
.addExternalSymbol(StackProbeSymbol)
|
|
.addReg(StackPtr, RegState::Define | RegState::Implicit)
|
|
.addReg(X86::EFLAGS, RegState::Define | RegState::Implicit)
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
|
|
// MSVC x64's __chkstk needs to adjust %rsp.
|
|
// FIXME: %rax preserves the offset and should be available.
|
|
if (isSPUpdateNeeded)
|
|
emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit,
|
|
TII, *RegInfo);
|
|
|
|
if (isEAXAlive) {
|
|
// Restore EAX
|
|
MachineInstr *MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm),
|
|
X86::EAX),
|
|
StackPtr, false, NumBytes - 4);
|
|
MI->setFlag(MachineInstr::FrameSetup);
|
|
MBB.insert(MBBI, MI);
|
|
}
|
|
} else if (NumBytes)
|
|
emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit,
|
|
TII, *RegInfo);
|
|
|
|
if (( (!HasFP && NumBytes) || PushedRegs) && needsFrameMoves) {
|
|
// Mark end of stack pointer adjustment.
|
|
MCSymbol *Label = MMI.getContext().CreateTempSymbol();
|
|
BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL))
|
|
.addSym(Label);
|
|
|
|
if (!HasFP && NumBytes) {
|
|
// Define the current CFA rule to use the provided offset.
|
|
if (StackSize) {
|
|
MachineLocation SPDst(MachineLocation::VirtualFP);
|
|
MachineLocation SPSrc(MachineLocation::VirtualFP,
|
|
-StackSize + stackGrowth);
|
|
Moves.push_back(MachineMove(Label, SPDst, SPSrc));
|
|
} else {
|
|
MachineLocation SPDst(StackPtr);
|
|
MachineLocation SPSrc(StackPtr, stackGrowth);
|
|
Moves.push_back(MachineMove(Label, SPDst, SPSrc));
|
|
}
|
|
}
|
|
|
|
// Emit DWARF info specifying the offsets of the callee-saved registers.
|
|
if (PushedRegs)
|
|
emitCalleeSavedFrameMoves(MF, Label, HasFP ? FramePtr : StackPtr);
|
|
}
|
|
|
|
// Darwin 10.7 and greater has support for compact unwind encoding.
|
|
if (STI.getTargetTriple().isMacOSX() &&
|
|
!STI.getTargetTriple().isMacOSXVersionLT(10, 7))
|
|
MMI.setCompactUnwindEncoding(getCompactUnwindEncoding(MF));
|
|
}
|
|
|
|
void X86FrameLowering::emitEpilogue(MachineFunction &MF,
|
|
MachineBasicBlock &MBB) const {
|
|
const MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
|
|
const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
|
|
const X86InstrInfo &TII = *TM.getInstrInfo();
|
|
MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
|
|
assert(MBBI != MBB.end() && "Returning block has no instructions");
|
|
unsigned RetOpcode = MBBI->getOpcode();
|
|
DebugLoc DL = MBBI->getDebugLoc();
|
|
bool Is64Bit = STI.is64Bit();
|
|
unsigned StackAlign = getStackAlignment();
|
|
unsigned SlotSize = RegInfo->getSlotSize();
|
|
unsigned FramePtr = RegInfo->getFrameRegister(MF);
|
|
unsigned StackPtr = RegInfo->getStackRegister();
|
|
|
|
switch (RetOpcode) {
|
|
default:
|
|
llvm_unreachable("Can only insert epilog into returning blocks");
|
|
case X86::RET:
|
|
case X86::RETI:
|
|
case X86::TCRETURNdi:
|
|
case X86::TCRETURNri:
|
|
case X86::TCRETURNmi:
|
|
case X86::TCRETURNdi64:
|
|
case X86::TCRETURNri64:
|
|
case X86::TCRETURNmi64:
|
|
case X86::EH_RETURN:
|
|
case X86::EH_RETURN64:
|
|
break; // These are ok
|
|
}
|
|
|
|
// Get the number of bytes to allocate from the FrameInfo.
|
|
uint64_t StackSize = MFI->getStackSize();
|
|
uint64_t MaxAlign = MFI->getMaxAlignment();
|
|
unsigned CSSize = X86FI->getCalleeSavedFrameSize();
|
|
uint64_t NumBytes = 0;
|
|
|
|
// If we're forcing a stack realignment we can't rely on just the frame
|
|
// info, we need to know the ABI stack alignment as well in case we
|
|
// have a call out. Otherwise just make sure we have some alignment - we'll
|
|
// go with the minimum.
|
|
if (ForceStackAlign) {
|
|
if (MFI->hasCalls())
|
|
MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
|
|
else
|
|
MaxAlign = MaxAlign ? MaxAlign : 4;
|
|
}
|
|
|
|
if (hasFP(MF)) {
|
|
// Calculate required stack adjustment.
|
|
uint64_t FrameSize = StackSize - SlotSize;
|
|
if (RegInfo->needsStackRealignment(MF))
|
|
FrameSize = (FrameSize + MaxAlign - 1)/MaxAlign*MaxAlign;
|
|
|
|
NumBytes = FrameSize - CSSize;
|
|
|
|
// Pop EBP.
|
|
BuildMI(MBB, MBBI, DL,
|
|
TII.get(Is64Bit ? X86::POP64r : X86::POP32r), FramePtr);
|
|
} else {
|
|
NumBytes = StackSize - CSSize;
|
|
}
|
|
|
|
// Skip the callee-saved pop instructions.
|
|
MachineBasicBlock::iterator LastCSPop = MBBI;
|
|
while (MBBI != MBB.begin()) {
|
|
MachineBasicBlock::iterator PI = prior(MBBI);
|
|
unsigned Opc = PI->getOpcode();
|
|
|
|
if (Opc != X86::POP32r && Opc != X86::POP64r && Opc != X86::DBG_VALUE &&
|
|
!PI->isTerminator())
|
|
break;
|
|
|
|
--MBBI;
|
|
}
|
|
|
|
DL = MBBI->getDebugLoc();
|
|
|
|
// If there is an ADD32ri or SUB32ri of ESP immediately before this
|
|
// instruction, merge the two instructions.
|
|
if (NumBytes || MFI->hasVarSizedObjects())
|
|
mergeSPUpdatesUp(MBB, MBBI, StackPtr, &NumBytes);
|
|
|
|
// If dynamic alloca is used, then reset esp to point to the last callee-saved
|
|
// slot before popping them off! Same applies for the case, when stack was
|
|
// realigned.
|
|
if (RegInfo->needsStackRealignment(MF)) {
|
|
// We cannot use LEA here, because stack pointer was realigned. We need to
|
|
// deallocate local frame back.
|
|
if (CSSize) {
|
|
emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII, *RegInfo);
|
|
MBBI = prior(LastCSPop);
|
|
}
|
|
|
|
BuildMI(MBB, MBBI, DL,
|
|
TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
|
|
StackPtr).addReg(FramePtr);
|
|
} else if (MFI->hasVarSizedObjects()) {
|
|
if (CSSize) {
|
|
unsigned Opc = Is64Bit ? X86::LEA64r : X86::LEA32r;
|
|
MachineInstr *MI =
|
|
addRegOffset(BuildMI(MF, DL, TII.get(Opc), StackPtr),
|
|
FramePtr, false, -CSSize);
|
|
MBB.insert(MBBI, MI);
|
|
} else {
|
|
BuildMI(MBB, MBBI, DL,
|
|
TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), StackPtr)
|
|
.addReg(FramePtr);
|
|
}
|
|
} else if (NumBytes) {
|
|
// Adjust stack pointer back: ESP += numbytes.
|
|
emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII, *RegInfo);
|
|
}
|
|
|
|
// We're returning from function via eh_return.
|
|
if (RetOpcode == X86::EH_RETURN || RetOpcode == X86::EH_RETURN64) {
|
|
MBBI = MBB.getLastNonDebugInstr();
|
|
MachineOperand &DestAddr = MBBI->getOperand(0);
|
|
assert(DestAddr.isReg() && "Offset should be in register!");
|
|
BuildMI(MBB, MBBI, DL,
|
|
TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
|
|
StackPtr).addReg(DestAddr.getReg());
|
|
} else if (RetOpcode == X86::TCRETURNri || RetOpcode == X86::TCRETURNdi ||
|
|
RetOpcode == X86::TCRETURNmi ||
|
|
RetOpcode == X86::TCRETURNri64 || RetOpcode == X86::TCRETURNdi64 ||
|
|
RetOpcode == X86::TCRETURNmi64) {
|
|
bool isMem = RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNmi64;
|
|
// Tail call return: adjust the stack pointer and jump to callee.
|
|
MBBI = MBB.getLastNonDebugInstr();
|
|
MachineOperand &JumpTarget = MBBI->getOperand(0);
|
|
MachineOperand &StackAdjust = MBBI->getOperand(isMem ? 5 : 1);
|
|
assert(StackAdjust.isImm() && "Expecting immediate value.");
|
|
|
|
// Adjust stack pointer.
|
|
int StackAdj = StackAdjust.getImm();
|
|
int MaxTCDelta = X86FI->getTCReturnAddrDelta();
|
|
int Offset = 0;
|
|
assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");
|
|
|
|
// Incoporate the retaddr area.
|
|
Offset = StackAdj-MaxTCDelta;
|
|
assert(Offset >= 0 && "Offset should never be negative");
|
|
|
|
if (Offset) {
|
|
// Check for possible merge with preceding ADD instruction.
|
|
Offset += mergeSPUpdates(MBB, MBBI, StackPtr, true);
|
|
emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, TII, *RegInfo);
|
|
}
|
|
|
|
// Jump to label or value in register.
|
|
if (RetOpcode == X86::TCRETURNdi || RetOpcode == X86::TCRETURNdi64) {
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(MBB, MBBI, DL, TII.get((RetOpcode == X86::TCRETURNdi)
|
|
? X86::TAILJMPd : X86::TAILJMPd64));
|
|
if (JumpTarget.isGlobal())
|
|
MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(),
|
|
JumpTarget.getTargetFlags());
|
|
else {
|
|
assert(JumpTarget.isSymbol());
|
|
MIB.addExternalSymbol(JumpTarget.getSymbolName(),
|
|
JumpTarget.getTargetFlags());
|
|
}
|
|
} else if (RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNmi64) {
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(MBB, MBBI, DL, TII.get((RetOpcode == X86::TCRETURNmi)
|
|
? X86::TAILJMPm : X86::TAILJMPm64));
|
|
for (unsigned i = 0; i != 5; ++i)
|
|
MIB.addOperand(MBBI->getOperand(i));
|
|
} else if (RetOpcode == X86::TCRETURNri64) {
|
|
BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr64)).
|
|
addReg(JumpTarget.getReg(), RegState::Kill);
|
|
} else {
|
|
BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr)).
|
|
addReg(JumpTarget.getReg(), RegState::Kill);
|
|
}
|
|
|
|
MachineInstr *NewMI = prior(MBBI);
|
|
for (unsigned i = 2, e = MBBI->getNumOperands(); i != e; ++i)
|
|
NewMI->addOperand(MBBI->getOperand(i));
|
|
|
|
// Delete the pseudo instruction TCRETURN.
|
|
MBB.erase(MBBI);
|
|
} else if ((RetOpcode == X86::RET || RetOpcode == X86::RETI) &&
|
|
(X86FI->getTCReturnAddrDelta() < 0)) {
|
|
// Add the return addr area delta back since we are not tail calling.
|
|
int delta = -1*X86FI->getTCReturnAddrDelta();
|
|
MBBI = MBB.getLastNonDebugInstr();
|
|
|
|
// Check for possible merge with preceding ADD instruction.
|
|
delta += mergeSPUpdates(MBB, MBBI, StackPtr, true);
|
|
emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, TII, *RegInfo);
|
|
}
|
|
}
|
|
|
|
int X86FrameLowering::getFrameIndexOffset(const MachineFunction &MF, int FI) const {
|
|
const X86RegisterInfo *RI =
|
|
static_cast<const X86RegisterInfo*>(MF.getTarget().getRegisterInfo());
|
|
const MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea();
|
|
uint64_t StackSize = MFI->getStackSize();
|
|
|
|
if (RI->needsStackRealignment(MF)) {
|
|
if (FI < 0) {
|
|
// Skip the saved EBP.
|
|
Offset += RI->getSlotSize();
|
|
} else {
|
|
assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0);
|
|
return Offset + StackSize;
|
|
}
|
|
// FIXME: Support tail calls
|
|
} else {
|
|
if (!hasFP(MF))
|
|
return Offset + StackSize;
|
|
|
|
// Skip the saved EBP.
|
|
Offset += RI->getSlotSize();
|
|
|
|
// Skip the RETADDR move area
|
|
const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
|
|
int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
|
|
if (TailCallReturnAddrDelta < 0)
|
|
Offset -= TailCallReturnAddrDelta;
|
|
}
|
|
|
|
return Offset;
|
|
}
|
|
|
|
bool X86FrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI,
|
|
const std::vector<CalleeSavedInfo> &CSI,
|
|
const TargetRegisterInfo *TRI) const {
|
|
if (CSI.empty())
|
|
return false;
|
|
|
|
DebugLoc DL = MBB.findDebugLoc(MI);
|
|
|
|
MachineFunction &MF = *MBB.getParent();
|
|
|
|
unsigned SlotSize = STI.is64Bit() ? 8 : 4;
|
|
unsigned FPReg = TRI->getFrameRegister(MF);
|
|
unsigned CalleeFrameSize = 0;
|
|
|
|
const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
|
|
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
|
|
|
|
// Push GPRs. It increases frame size.
|
|
unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
|
|
for (unsigned i = CSI.size(); i != 0; --i) {
|
|
unsigned Reg = CSI[i-1].getReg();
|
|
if (!X86::GR64RegClass.contains(Reg) &&
|
|
!X86::GR32RegClass.contains(Reg))
|
|
continue;
|
|
// Add the callee-saved register as live-in. It's killed at the spill.
|
|
MBB.addLiveIn(Reg);
|
|
if (Reg == FPReg)
|
|
// X86RegisterInfo::emitPrologue will handle spilling of frame register.
|
|
continue;
|
|
CalleeFrameSize += SlotSize;
|
|
BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, RegState::Kill)
|
|
.setMIFlag(MachineInstr::FrameSetup);
|
|
}
|
|
|
|
X86FI->setCalleeSavedFrameSize(CalleeFrameSize);
|
|
|
|
// Make XMM regs spilled. X86 does not have ability of push/pop XMM.
|
|
// It can be done by spilling XMMs to stack frame.
|
|
// Note that only Win64 ABI might spill XMMs.
|
|
for (unsigned i = CSI.size(); i != 0; --i) {
|
|
unsigned Reg = CSI[i-1].getReg();
|
|
if (X86::GR64RegClass.contains(Reg) ||
|
|
X86::GR32RegClass.contains(Reg))
|
|
continue;
|
|
// Add the callee-saved register as live-in. It's killed at the spill.
|
|
MBB.addLiveIn(Reg);
|
|
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
|
|
TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i-1].getFrameIdx(),
|
|
RC, TRI);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI,
|
|
const std::vector<CalleeSavedInfo> &CSI,
|
|
const TargetRegisterInfo *TRI) const {
|
|
if (CSI.empty())
|
|
return false;
|
|
|
|
DebugLoc DL = MBB.findDebugLoc(MI);
|
|
|
|
MachineFunction &MF = *MBB.getParent();
|
|
const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
|
|
|
|
// Reload XMMs from stack frame.
|
|
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
|
|
unsigned Reg = CSI[i].getReg();
|
|
if (X86::GR64RegClass.contains(Reg) ||
|
|
X86::GR32RegClass.contains(Reg))
|
|
continue;
|
|
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
|
|
TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(),
|
|
RC, TRI);
|
|
}
|
|
|
|
// POP GPRs.
|
|
unsigned FPReg = TRI->getFrameRegister(MF);
|
|
unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
|
|
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
|
|
unsigned Reg = CSI[i].getReg();
|
|
if (!X86::GR64RegClass.contains(Reg) &&
|
|
!X86::GR32RegClass.contains(Reg))
|
|
continue;
|
|
if (Reg == FPReg)
|
|
// X86RegisterInfo::emitEpilogue will handle restoring of frame register.
|
|
continue;
|
|
BuildMI(MBB, MI, DL, TII.get(Opc), Reg);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void
|
|
X86FrameLowering::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
|
|
RegScavenger *RS) const {
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
|
|
unsigned SlotSize = RegInfo->getSlotSize();
|
|
|
|
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
|
|
int32_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
|
|
|
|
if (TailCallReturnAddrDelta < 0) {
|
|
// create RETURNADDR area
|
|
// arg
|
|
// arg
|
|
// RETADDR
|
|
// { ...
|
|
// RETADDR area
|
|
// ...
|
|
// }
|
|
// [EBP]
|
|
MFI->CreateFixedObject(-TailCallReturnAddrDelta,
|
|
(-1U*SlotSize)+TailCallReturnAddrDelta, true);
|
|
}
|
|
|
|
if (hasFP(MF)) {
|
|
assert((TailCallReturnAddrDelta <= 0) &&
|
|
"The Delta should always be zero or negative");
|
|
const TargetFrameLowering &TFI = *MF.getTarget().getFrameLowering();
|
|
|
|
// Create a frame entry for the EBP register that must be saved.
|
|
int FrameIdx = MFI->CreateFixedObject(SlotSize,
|
|
-(int)SlotSize +
|
|
TFI.getOffsetOfLocalArea() +
|
|
TailCallReturnAddrDelta,
|
|
true);
|
|
assert(FrameIdx == MFI->getObjectIndexBegin() &&
|
|
"Slot for EBP register must be last in order to be found!");
|
|
(void)FrameIdx;
|
|
}
|
|
}
|
|
|
|
static bool
|
|
HasNestArgument(const MachineFunction *MF) {
|
|
const Function *F = MF->getFunction();
|
|
for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
|
|
I != E; I++) {
|
|
if (I->hasNestAttr())
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static unsigned
|
|
GetScratchRegister(bool Is64Bit, const MachineFunction &MF) {
|
|
if (Is64Bit) {
|
|
return X86::R11;
|
|
} else {
|
|
CallingConv::ID CallingConvention = MF.getFunction()->getCallingConv();
|
|
bool IsNested = HasNestArgument(&MF);
|
|
|
|
if (CallingConvention == CallingConv::X86_FastCall) {
|
|
if (IsNested) {
|
|
report_fatal_error("Segmented stacks does not support fastcall with "
|
|
"nested function.");
|
|
return -1;
|
|
} else {
|
|
return X86::EAX;
|
|
}
|
|
} else {
|
|
if (IsNested)
|
|
return X86::EDX;
|
|
else
|
|
return X86::ECX;
|
|
}
|
|
}
|
|
}
|
|
|
|
// The stack limit in the TCB is set to this many bytes above the actual stack
|
|
// limit.
|
|
static const uint64_t kSplitStackAvailable = 256;
|
|
|
|
void
|
|
X86FrameLowering::adjustForSegmentedStacks(MachineFunction &MF) const {
|
|
MachineBasicBlock &prologueMBB = MF.front();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
const X86InstrInfo &TII = *TM.getInstrInfo();
|
|
uint64_t StackSize;
|
|
bool Is64Bit = STI.is64Bit();
|
|
unsigned TlsReg, TlsOffset;
|
|
DebugLoc DL;
|
|
const X86Subtarget *ST = &MF.getTarget().getSubtarget<X86Subtarget>();
|
|
|
|
unsigned ScratchReg = GetScratchRegister(Is64Bit, MF);
|
|
assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
|
|
"Scratch register is live-in");
|
|
|
|
if (MF.getFunction()->isVarArg())
|
|
report_fatal_error("Segmented stacks do not support vararg functions.");
|
|
if (!ST->isTargetLinux())
|
|
report_fatal_error("Segmented stacks supported only on linux.");
|
|
|
|
MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
|
|
MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
|
|
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
|
|
bool IsNested = false;
|
|
|
|
// We need to know if the function has a nest argument only in 64 bit mode.
|
|
if (Is64Bit)
|
|
IsNested = HasNestArgument(&MF);
|
|
|
|
// The MOV R10, RAX needs to be in a different block, since the RET we emit in
|
|
// allocMBB needs to be last (terminating) instruction.
|
|
|
|
for (MachineBasicBlock::livein_iterator i = prologueMBB.livein_begin(),
|
|
e = prologueMBB.livein_end(); i != e; i++) {
|
|
allocMBB->addLiveIn(*i);
|
|
checkMBB->addLiveIn(*i);
|
|
}
|
|
|
|
if (IsNested)
|
|
allocMBB->addLiveIn(X86::R10);
|
|
|
|
MF.push_front(allocMBB);
|
|
MF.push_front(checkMBB);
|
|
|
|
// Eventually StackSize will be calculated by a link-time pass; which will
|
|
// also decide whether checking code needs to be injected into this particular
|
|
// prologue.
|
|
StackSize = MFI->getStackSize();
|
|
|
|
// Read the limit off the current stacklet off the stack_guard location.
|
|
if (Is64Bit) {
|
|
TlsReg = X86::FS;
|
|
TlsOffset = 0x70;
|
|
|
|
if (StackSize < kSplitStackAvailable)
|
|
ScratchReg = X86::RSP;
|
|
else
|
|
BuildMI(checkMBB, DL, TII.get(X86::LEA64r), ScratchReg).addReg(X86::RSP)
|
|
.addImm(0).addReg(0).addImm(-StackSize).addReg(0);
|
|
|
|
BuildMI(checkMBB, DL, TII.get(X86::CMP64rm)).addReg(ScratchReg)
|
|
.addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
|
|
} else {
|
|
TlsReg = X86::GS;
|
|
TlsOffset = 0x30;
|
|
|
|
if (StackSize < kSplitStackAvailable)
|
|
ScratchReg = X86::ESP;
|
|
else
|
|
BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
|
|
.addImm(0).addReg(0).addImm(-StackSize).addReg(0);
|
|
|
|
BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
|
|
.addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
|
|
}
|
|
|
|
// This jump is taken if SP >= (Stacklet Limit + Stack Space required).
|
|
// It jumps to normal execution of the function body.
|
|
BuildMI(checkMBB, DL, TII.get(X86::JG_4)).addMBB(&prologueMBB);
|
|
|
|
// On 32 bit we first push the arguments size and then the frame size. On 64
|
|
// bit, we pass the stack frame size in r10 and the argument size in r11.
|
|
if (Is64Bit) {
|
|
// Functions with nested arguments use R10, so it needs to be saved across
|
|
// the call to _morestack
|
|
|
|
if (IsNested)
|
|
BuildMI(allocMBB, DL, TII.get(X86::MOV64rr), X86::RAX).addReg(X86::R10);
|
|
|
|
BuildMI(allocMBB, DL, TII.get(X86::MOV64ri), X86::R10)
|
|
.addImm(StackSize);
|
|
BuildMI(allocMBB, DL, TII.get(X86::MOV64ri), X86::R11)
|
|
.addImm(X86FI->getArgumentStackSize());
|
|
MF.getRegInfo().setPhysRegUsed(X86::R10);
|
|
MF.getRegInfo().setPhysRegUsed(X86::R11);
|
|
} else {
|
|
BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
|
|
.addImm(X86FI->getArgumentStackSize());
|
|
BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
|
|
.addImm(StackSize);
|
|
}
|
|
|
|
// __morestack is in libgcc
|
|
if (Is64Bit)
|
|
BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
|
|
.addExternalSymbol("__morestack");
|
|
else
|
|
BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
|
|
.addExternalSymbol("__morestack");
|
|
|
|
if (IsNested)
|
|
BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
|
|
else
|
|
BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
|
|
|
|
allocMBB->addSuccessor(&prologueMBB);
|
|
|
|
checkMBB->addSuccessor(allocMBB);
|
|
checkMBB->addSuccessor(&prologueMBB);
|
|
|
|
#ifdef XDEBUG
|
|
MF.verify();
|
|
#endif
|
|
}
|