mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-26 05:32:25 +00:00
4586d257ab
bundles. This method takes a bundle start and an MI being bundled, and makes the intervals for the MI's operands appear to start/end on the bundle start. Also fixes some minor cosmetic issues (whitespace, naming convention) in the HMEditor code. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151099 91177308-0d34-0410-b5e6-96231b3b80d8
1541 lines
55 KiB
C++
1541 lines
55 KiB
C++
//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the LiveInterval analysis pass which is used
|
|
// by the Linear Scan Register allocator. This pass linearizes the
|
|
// basic blocks of the function in DFS order and uses the
|
|
// LiveVariables pass to conservatively compute live intervals for
|
|
// each virtual and physical register.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "regalloc"
|
|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
|
#include "llvm/Value.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/CodeGen/LiveVariables.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include <algorithm>
|
|
#include <limits>
|
|
#include <cmath>
|
|
using namespace llvm;
|
|
|
|
// Hidden options for help debugging.
|
|
static cl::opt<bool> DisableReMat("disable-rematerialization",
|
|
cl::init(false), cl::Hidden);
|
|
|
|
STATISTIC(numIntervals , "Number of original intervals");
|
|
|
|
char LiveIntervals::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
|
|
"Live Interval Analysis", false, false)
|
|
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
|
|
INITIALIZE_PASS_DEPENDENCY(LiveVariables)
|
|
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
|
|
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
|
|
INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
|
|
"Live Interval Analysis", false, false)
|
|
|
|
void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<AliasAnalysis>();
|
|
AU.addPreserved<AliasAnalysis>();
|
|
AU.addRequired<LiveVariables>();
|
|
AU.addPreserved<LiveVariables>();
|
|
AU.addPreservedID(MachineLoopInfoID);
|
|
AU.addPreservedID(MachineDominatorsID);
|
|
AU.addPreserved<SlotIndexes>();
|
|
AU.addRequiredTransitive<SlotIndexes>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
void LiveIntervals::releaseMemory() {
|
|
// Free the live intervals themselves.
|
|
for (DenseMap<unsigned, LiveInterval*>::iterator I = r2iMap_.begin(),
|
|
E = r2iMap_.end(); I != E; ++I)
|
|
delete I->second;
|
|
|
|
r2iMap_.clear();
|
|
RegMaskSlots.clear();
|
|
RegMaskBits.clear();
|
|
RegMaskBlocks.clear();
|
|
|
|
// Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
|
|
VNInfoAllocator.Reset();
|
|
}
|
|
|
|
/// runOnMachineFunction - Register allocate the whole function
|
|
///
|
|
bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
|
|
mf_ = &fn;
|
|
mri_ = &mf_->getRegInfo();
|
|
tm_ = &fn.getTarget();
|
|
tri_ = tm_->getRegisterInfo();
|
|
tii_ = tm_->getInstrInfo();
|
|
aa_ = &getAnalysis<AliasAnalysis>();
|
|
lv_ = &getAnalysis<LiveVariables>();
|
|
indexes_ = &getAnalysis<SlotIndexes>();
|
|
allocatableRegs_ = tri_->getAllocatableSet(fn);
|
|
reservedRegs_ = tri_->getReservedRegs(fn);
|
|
|
|
computeIntervals();
|
|
|
|
numIntervals += getNumIntervals();
|
|
|
|
DEBUG(dump());
|
|
return true;
|
|
}
|
|
|
|
/// print - Implement the dump method.
|
|
void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
|
|
OS << "********** INTERVALS **********\n";
|
|
|
|
// Dump the physregs.
|
|
for (unsigned Reg = 1, RegE = tri_->getNumRegs(); Reg != RegE; ++Reg)
|
|
if (const LiveInterval *LI = r2iMap_.lookup(Reg)) {
|
|
LI->print(OS, tri_);
|
|
OS << '\n';
|
|
}
|
|
|
|
// Dump the virtregs.
|
|
for (unsigned Reg = 0, RegE = mri_->getNumVirtRegs(); Reg != RegE; ++Reg)
|
|
if (const LiveInterval *LI =
|
|
r2iMap_.lookup(TargetRegisterInfo::index2VirtReg(Reg))) {
|
|
LI->print(OS, tri_);
|
|
OS << '\n';
|
|
}
|
|
|
|
printInstrs(OS);
|
|
}
|
|
|
|
void LiveIntervals::printInstrs(raw_ostream &OS) const {
|
|
OS << "********** MACHINEINSTRS **********\n";
|
|
mf_->print(OS, indexes_);
|
|
}
|
|
|
|
void LiveIntervals::dumpInstrs() const {
|
|
printInstrs(dbgs());
|
|
}
|
|
|
|
static
|
|
bool MultipleDefsBySameMI(const MachineInstr &MI, unsigned MOIdx) {
|
|
unsigned Reg = MI.getOperand(MOIdx).getReg();
|
|
for (unsigned i = MOIdx+1, e = MI.getNumOperands(); i < e; ++i) {
|
|
const MachineOperand &MO = MI.getOperand(i);
|
|
if (!MO.isReg())
|
|
continue;
|
|
if (MO.getReg() == Reg && MO.isDef()) {
|
|
assert(MI.getOperand(MOIdx).getSubReg() != MO.getSubReg() &&
|
|
MI.getOperand(MOIdx).getSubReg() &&
|
|
(MO.getSubReg() || MO.isImplicit()));
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// isPartialRedef - Return true if the specified def at the specific index is
|
|
/// partially re-defining the specified live interval. A common case of this is
|
|
/// a definition of the sub-register.
|
|
bool LiveIntervals::isPartialRedef(SlotIndex MIIdx, MachineOperand &MO,
|
|
LiveInterval &interval) {
|
|
if (!MO.getSubReg() || MO.isEarlyClobber())
|
|
return false;
|
|
|
|
SlotIndex RedefIndex = MIIdx.getRegSlot();
|
|
const LiveRange *OldLR =
|
|
interval.getLiveRangeContaining(RedefIndex.getRegSlot(true));
|
|
MachineInstr *DefMI = getInstructionFromIndex(OldLR->valno->def);
|
|
if (DefMI != 0) {
|
|
return DefMI->findRegisterDefOperandIdx(interval.reg) != -1;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
|
|
MachineBasicBlock::iterator mi,
|
|
SlotIndex MIIdx,
|
|
MachineOperand& MO,
|
|
unsigned MOIdx,
|
|
LiveInterval &interval) {
|
|
DEBUG(dbgs() << "\t\tregister: " << PrintReg(interval.reg, tri_));
|
|
|
|
// Virtual registers may be defined multiple times (due to phi
|
|
// elimination and 2-addr elimination). Much of what we do only has to be
|
|
// done once for the vreg. We use an empty interval to detect the first
|
|
// time we see a vreg.
|
|
LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
|
|
if (interval.empty()) {
|
|
// Get the Idx of the defining instructions.
|
|
SlotIndex defIndex = MIIdx.getRegSlot(MO.isEarlyClobber());
|
|
|
|
// Make sure the first definition is not a partial redefinition. Add an
|
|
// <imp-def> of the full register.
|
|
// FIXME: LiveIntervals shouldn't modify the code like this. Whoever
|
|
// created the machine instruction should annotate it with <undef> flags
|
|
// as needed. Then we can simply assert here. The REG_SEQUENCE lowering
|
|
// is the main suspect.
|
|
if (MO.getSubReg()) {
|
|
mi->addRegisterDefined(interval.reg);
|
|
// Mark all defs of interval.reg on this instruction as reading <undef>.
|
|
for (unsigned i = MOIdx, e = mi->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO2 = mi->getOperand(i);
|
|
if (MO2.isReg() && MO2.getReg() == interval.reg && MO2.getSubReg())
|
|
MO2.setIsUndef();
|
|
}
|
|
}
|
|
|
|
VNInfo *ValNo = interval.getNextValue(defIndex, VNInfoAllocator);
|
|
assert(ValNo->id == 0 && "First value in interval is not 0?");
|
|
|
|
// Loop over all of the blocks that the vreg is defined in. There are
|
|
// two cases we have to handle here. The most common case is a vreg
|
|
// whose lifetime is contained within a basic block. In this case there
|
|
// will be a single kill, in MBB, which comes after the definition.
|
|
if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
|
|
// FIXME: what about dead vars?
|
|
SlotIndex killIdx;
|
|
if (vi.Kills[0] != mi)
|
|
killIdx = getInstructionIndex(vi.Kills[0]).getRegSlot();
|
|
else
|
|
killIdx = defIndex.getDeadSlot();
|
|
|
|
// If the kill happens after the definition, we have an intra-block
|
|
// live range.
|
|
if (killIdx > defIndex) {
|
|
assert(vi.AliveBlocks.empty() &&
|
|
"Shouldn't be alive across any blocks!");
|
|
LiveRange LR(defIndex, killIdx, ValNo);
|
|
interval.addRange(LR);
|
|
DEBUG(dbgs() << " +" << LR << "\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
// The other case we handle is when a virtual register lives to the end
|
|
// of the defining block, potentially live across some blocks, then is
|
|
// live into some number of blocks, but gets killed. Start by adding a
|
|
// range that goes from this definition to the end of the defining block.
|
|
LiveRange NewLR(defIndex, getMBBEndIdx(mbb), ValNo);
|
|
DEBUG(dbgs() << " +" << NewLR);
|
|
interval.addRange(NewLR);
|
|
|
|
bool PHIJoin = lv_->isPHIJoin(interval.reg);
|
|
|
|
if (PHIJoin) {
|
|
// A phi join register is killed at the end of the MBB and revived as a new
|
|
// valno in the killing blocks.
|
|
assert(vi.AliveBlocks.empty() && "Phi join can't pass through blocks");
|
|
DEBUG(dbgs() << " phi-join");
|
|
ValNo->setHasPHIKill(true);
|
|
} else {
|
|
// Iterate over all of the blocks that the variable is completely
|
|
// live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
|
|
// live interval.
|
|
for (SparseBitVector<>::iterator I = vi.AliveBlocks.begin(),
|
|
E = vi.AliveBlocks.end(); I != E; ++I) {
|
|
MachineBasicBlock *aliveBlock = mf_->getBlockNumbered(*I);
|
|
LiveRange LR(getMBBStartIdx(aliveBlock), getMBBEndIdx(aliveBlock), ValNo);
|
|
interval.addRange(LR);
|
|
DEBUG(dbgs() << " +" << LR);
|
|
}
|
|
}
|
|
|
|
// Finally, this virtual register is live from the start of any killing
|
|
// block to the 'use' slot of the killing instruction.
|
|
for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
|
|
MachineInstr *Kill = vi.Kills[i];
|
|
SlotIndex Start = getMBBStartIdx(Kill->getParent());
|
|
SlotIndex killIdx = getInstructionIndex(Kill).getRegSlot();
|
|
|
|
// Create interval with one of a NEW value number. Note that this value
|
|
// number isn't actually defined by an instruction, weird huh? :)
|
|
if (PHIJoin) {
|
|
assert(getInstructionFromIndex(Start) == 0 &&
|
|
"PHI def index points at actual instruction.");
|
|
ValNo = interval.getNextValue(Start, VNInfoAllocator);
|
|
ValNo->setIsPHIDef(true);
|
|
}
|
|
LiveRange LR(Start, killIdx, ValNo);
|
|
interval.addRange(LR);
|
|
DEBUG(dbgs() << " +" << LR);
|
|
}
|
|
|
|
} else {
|
|
if (MultipleDefsBySameMI(*mi, MOIdx))
|
|
// Multiple defs of the same virtual register by the same instruction.
|
|
// e.g. %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ...
|
|
// This is likely due to elimination of REG_SEQUENCE instructions. Return
|
|
// here since there is nothing to do.
|
|
return;
|
|
|
|
// If this is the second time we see a virtual register definition, it
|
|
// must be due to phi elimination or two addr elimination. If this is
|
|
// the result of two address elimination, then the vreg is one of the
|
|
// def-and-use register operand.
|
|
|
|
// It may also be partial redef like this:
|
|
// 80 %reg1041:6<def> = VSHRNv4i16 %reg1034<kill>, 12, pred:14, pred:%reg0
|
|
// 120 %reg1041:5<def> = VSHRNv4i16 %reg1039<kill>, 12, pred:14, pred:%reg0
|
|
bool PartReDef = isPartialRedef(MIIdx, MO, interval);
|
|
if (PartReDef || mi->isRegTiedToUseOperand(MOIdx)) {
|
|
// If this is a two-address definition, then we have already processed
|
|
// the live range. The only problem is that we didn't realize there
|
|
// are actually two values in the live interval. Because of this we
|
|
// need to take the LiveRegion that defines this register and split it
|
|
// into two values.
|
|
SlotIndex RedefIndex = MIIdx.getRegSlot(MO.isEarlyClobber());
|
|
|
|
const LiveRange *OldLR =
|
|
interval.getLiveRangeContaining(RedefIndex.getRegSlot(true));
|
|
VNInfo *OldValNo = OldLR->valno;
|
|
SlotIndex DefIndex = OldValNo->def.getRegSlot();
|
|
|
|
// Delete the previous value, which should be short and continuous,
|
|
// because the 2-addr copy must be in the same MBB as the redef.
|
|
interval.removeRange(DefIndex, RedefIndex);
|
|
|
|
// The new value number (#1) is defined by the instruction we claimed
|
|
// defined value #0.
|
|
VNInfo *ValNo = interval.createValueCopy(OldValNo, VNInfoAllocator);
|
|
|
|
// Value#0 is now defined by the 2-addr instruction.
|
|
OldValNo->def = RedefIndex;
|
|
|
|
// Add the new live interval which replaces the range for the input copy.
|
|
LiveRange LR(DefIndex, RedefIndex, ValNo);
|
|
DEBUG(dbgs() << " replace range with " << LR);
|
|
interval.addRange(LR);
|
|
|
|
// If this redefinition is dead, we need to add a dummy unit live
|
|
// range covering the def slot.
|
|
if (MO.isDead())
|
|
interval.addRange(LiveRange(RedefIndex, RedefIndex.getDeadSlot(),
|
|
OldValNo));
|
|
|
|
DEBUG({
|
|
dbgs() << " RESULT: ";
|
|
interval.print(dbgs(), tri_);
|
|
});
|
|
} else if (lv_->isPHIJoin(interval.reg)) {
|
|
// In the case of PHI elimination, each variable definition is only
|
|
// live until the end of the block. We've already taken care of the
|
|
// rest of the live range.
|
|
|
|
SlotIndex defIndex = MIIdx.getRegSlot();
|
|
if (MO.isEarlyClobber())
|
|
defIndex = MIIdx.getRegSlot(true);
|
|
|
|
VNInfo *ValNo = interval.getNextValue(defIndex, VNInfoAllocator);
|
|
|
|
SlotIndex killIndex = getMBBEndIdx(mbb);
|
|
LiveRange LR(defIndex, killIndex, ValNo);
|
|
interval.addRange(LR);
|
|
ValNo->setHasPHIKill(true);
|
|
DEBUG(dbgs() << " phi-join +" << LR);
|
|
} else {
|
|
llvm_unreachable("Multiply defined register");
|
|
}
|
|
}
|
|
|
|
DEBUG(dbgs() << '\n');
|
|
}
|
|
|
|
static bool isRegLiveIntoSuccessor(const MachineBasicBlock *MBB, unsigned Reg) {
|
|
for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
|
|
SE = MBB->succ_end();
|
|
SI != SE; ++SI) {
|
|
const MachineBasicBlock* succ = *SI;
|
|
if (succ->isLiveIn(Reg))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator mi,
|
|
SlotIndex MIIdx,
|
|
MachineOperand& MO,
|
|
LiveInterval &interval) {
|
|
DEBUG(dbgs() << "\t\tregister: " << PrintReg(interval.reg, tri_));
|
|
|
|
SlotIndex baseIndex = MIIdx;
|
|
SlotIndex start = baseIndex.getRegSlot(MO.isEarlyClobber());
|
|
SlotIndex end = start;
|
|
|
|
// If it is not used after definition, it is considered dead at
|
|
// the instruction defining it. Hence its interval is:
|
|
// [defSlot(def), defSlot(def)+1)
|
|
// For earlyclobbers, the defSlot was pushed back one; the extra
|
|
// advance below compensates.
|
|
if (MO.isDead()) {
|
|
DEBUG(dbgs() << " dead");
|
|
end = start.getDeadSlot();
|
|
goto exit;
|
|
}
|
|
|
|
// If it is not dead on definition, it must be killed by a
|
|
// subsequent instruction. Hence its interval is:
|
|
// [defSlot(def), useSlot(kill)+1)
|
|
baseIndex = baseIndex.getNextIndex();
|
|
while (++mi != MBB->end()) {
|
|
|
|
if (mi->isDebugValue())
|
|
continue;
|
|
if (getInstructionFromIndex(baseIndex) == 0)
|
|
baseIndex = indexes_->getNextNonNullIndex(baseIndex);
|
|
|
|
if (mi->killsRegister(interval.reg, tri_)) {
|
|
DEBUG(dbgs() << " killed");
|
|
end = baseIndex.getRegSlot();
|
|
goto exit;
|
|
} else {
|
|
int DefIdx = mi->findRegisterDefOperandIdx(interval.reg,false,false,tri_);
|
|
if (DefIdx != -1) {
|
|
if (mi->isRegTiedToUseOperand(DefIdx)) {
|
|
// Two-address instruction.
|
|
end = baseIndex.getRegSlot(mi->getOperand(DefIdx).isEarlyClobber());
|
|
} else {
|
|
// Another instruction redefines the register before it is ever read.
|
|
// Then the register is essentially dead at the instruction that
|
|
// defines it. Hence its interval is:
|
|
// [defSlot(def), defSlot(def)+1)
|
|
DEBUG(dbgs() << " dead");
|
|
end = start.getDeadSlot();
|
|
}
|
|
goto exit;
|
|
}
|
|
}
|
|
|
|
baseIndex = baseIndex.getNextIndex();
|
|
}
|
|
|
|
// If we get here the register *should* be live out.
|
|
assert(!isAllocatable(interval.reg) && "Physregs shouldn't be live out!");
|
|
|
|
// FIXME: We need saner rules for reserved regs.
|
|
if (isReserved(interval.reg)) {
|
|
end = start.getDeadSlot();
|
|
} else {
|
|
// Unreserved, unallocable registers like EFLAGS can be live across basic
|
|
// block boundaries.
|
|
assert(isRegLiveIntoSuccessor(MBB, interval.reg) &&
|
|
"Unreserved reg not live-out?");
|
|
end = getMBBEndIdx(MBB);
|
|
}
|
|
exit:
|
|
assert(start < end && "did not find end of interval?");
|
|
|
|
// Already exists? Extend old live interval.
|
|
VNInfo *ValNo = interval.getVNInfoAt(start);
|
|
bool Extend = ValNo != 0;
|
|
if (!Extend)
|
|
ValNo = interval.getNextValue(start, VNInfoAllocator);
|
|
LiveRange LR(start, end, ValNo);
|
|
interval.addRange(LR);
|
|
DEBUG(dbgs() << " +" << LR << '\n');
|
|
}
|
|
|
|
void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator MI,
|
|
SlotIndex MIIdx,
|
|
MachineOperand& MO,
|
|
unsigned MOIdx) {
|
|
if (TargetRegisterInfo::isVirtualRegister(MO.getReg()))
|
|
handleVirtualRegisterDef(MBB, MI, MIIdx, MO, MOIdx,
|
|
getOrCreateInterval(MO.getReg()));
|
|
else
|
|
handlePhysicalRegisterDef(MBB, MI, MIIdx, MO,
|
|
getOrCreateInterval(MO.getReg()));
|
|
}
|
|
|
|
void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
|
|
SlotIndex MIIdx,
|
|
LiveInterval &interval) {
|
|
assert(TargetRegisterInfo::isPhysicalRegister(interval.reg) &&
|
|
"Only physical registers can be live in.");
|
|
assert((!isAllocatable(interval.reg) || MBB->getParent()->begin() ||
|
|
MBB->isLandingPad()) &&
|
|
"Allocatable live-ins only valid for entry blocks and landing pads.");
|
|
|
|
DEBUG(dbgs() << "\t\tlivein register: " << PrintReg(interval.reg, tri_));
|
|
|
|
// Look for kills, if it reaches a def before it's killed, then it shouldn't
|
|
// be considered a livein.
|
|
MachineBasicBlock::iterator mi = MBB->begin();
|
|
MachineBasicBlock::iterator E = MBB->end();
|
|
// Skip over DBG_VALUE at the start of the MBB.
|
|
if (mi != E && mi->isDebugValue()) {
|
|
while (++mi != E && mi->isDebugValue())
|
|
;
|
|
if (mi == E)
|
|
// MBB is empty except for DBG_VALUE's.
|
|
return;
|
|
}
|
|
|
|
SlotIndex baseIndex = MIIdx;
|
|
SlotIndex start = baseIndex;
|
|
if (getInstructionFromIndex(baseIndex) == 0)
|
|
baseIndex = indexes_->getNextNonNullIndex(baseIndex);
|
|
|
|
SlotIndex end = baseIndex;
|
|
bool SeenDefUse = false;
|
|
|
|
while (mi != E) {
|
|
if (mi->killsRegister(interval.reg, tri_)) {
|
|
DEBUG(dbgs() << " killed");
|
|
end = baseIndex.getRegSlot();
|
|
SeenDefUse = true;
|
|
break;
|
|
} else if (mi->modifiesRegister(interval.reg, tri_)) {
|
|
// Another instruction redefines the register before it is ever read.
|
|
// Then the register is essentially dead at the instruction that defines
|
|
// it. Hence its interval is:
|
|
// [defSlot(def), defSlot(def)+1)
|
|
DEBUG(dbgs() << " dead");
|
|
end = start.getDeadSlot();
|
|
SeenDefUse = true;
|
|
break;
|
|
}
|
|
|
|
while (++mi != E && mi->isDebugValue())
|
|
// Skip over DBG_VALUE.
|
|
;
|
|
if (mi != E)
|
|
baseIndex = indexes_->getNextNonNullIndex(baseIndex);
|
|
}
|
|
|
|
// Live-in register might not be used at all.
|
|
if (!SeenDefUse) {
|
|
if (isAllocatable(interval.reg) ||
|
|
!isRegLiveIntoSuccessor(MBB, interval.reg)) {
|
|
// Allocatable registers are never live through.
|
|
// Non-allocatable registers that aren't live into any successors also
|
|
// aren't live through.
|
|
DEBUG(dbgs() << " dead");
|
|
return;
|
|
} else {
|
|
// If we get here the register is non-allocatable and live into some
|
|
// successor. We'll conservatively assume it's live-through.
|
|
DEBUG(dbgs() << " live through");
|
|
end = getMBBEndIdx(MBB);
|
|
}
|
|
}
|
|
|
|
SlotIndex defIdx = getMBBStartIdx(MBB);
|
|
assert(getInstructionFromIndex(defIdx) == 0 &&
|
|
"PHI def index points at actual instruction.");
|
|
VNInfo *vni = interval.getNextValue(defIdx, VNInfoAllocator);
|
|
vni->setIsPHIDef(true);
|
|
LiveRange LR(start, end, vni);
|
|
|
|
interval.addRange(LR);
|
|
DEBUG(dbgs() << " +" << LR << '\n');
|
|
}
|
|
|
|
/// computeIntervals - computes the live intervals for virtual
|
|
/// registers. for some ordering of the machine instructions [1,N] a
|
|
/// live interval is an interval [i, j) where 1 <= i <= j < N for
|
|
/// which a variable is live
|
|
void LiveIntervals::computeIntervals() {
|
|
DEBUG(dbgs() << "********** COMPUTING LIVE INTERVALS **********\n"
|
|
<< "********** Function: "
|
|
<< ((Value*)mf_->getFunction())->getName() << '\n');
|
|
|
|
RegMaskBlocks.resize(mf_->getNumBlockIDs());
|
|
|
|
SmallVector<unsigned, 8> UndefUses;
|
|
for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end();
|
|
MBBI != E; ++MBBI) {
|
|
MachineBasicBlock *MBB = MBBI;
|
|
RegMaskBlocks[MBB->getNumber()].first = RegMaskSlots.size();
|
|
|
|
if (MBB->empty())
|
|
continue;
|
|
|
|
// Track the index of the current machine instr.
|
|
SlotIndex MIIndex = getMBBStartIdx(MBB);
|
|
DEBUG(dbgs() << "BB#" << MBB->getNumber()
|
|
<< ":\t\t# derived from " << MBB->getName() << "\n");
|
|
|
|
// Create intervals for live-ins to this BB first.
|
|
for (MachineBasicBlock::livein_iterator LI = MBB->livein_begin(),
|
|
LE = MBB->livein_end(); LI != LE; ++LI) {
|
|
handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*LI));
|
|
}
|
|
|
|
// Skip over empty initial indices.
|
|
if (getInstructionFromIndex(MIIndex) == 0)
|
|
MIIndex = indexes_->getNextNonNullIndex(MIIndex);
|
|
|
|
for (MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
|
|
MI != miEnd; ++MI) {
|
|
DEBUG(dbgs() << MIIndex << "\t" << *MI);
|
|
if (MI->isDebugValue())
|
|
continue;
|
|
assert(indexes_->getInstructionFromIndex(MIIndex) == MI &&
|
|
"Lost SlotIndex synchronization");
|
|
|
|
// Handle defs.
|
|
for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
|
|
// Collect register masks.
|
|
if (MO.isRegMask()) {
|
|
RegMaskSlots.push_back(MIIndex.getRegSlot());
|
|
RegMaskBits.push_back(MO.getRegMask());
|
|
continue;
|
|
}
|
|
|
|
if (!MO.isReg() || !MO.getReg())
|
|
continue;
|
|
|
|
// handle register defs - build intervals
|
|
if (MO.isDef())
|
|
handleRegisterDef(MBB, MI, MIIndex, MO, i);
|
|
else if (MO.isUndef())
|
|
UndefUses.push_back(MO.getReg());
|
|
}
|
|
|
|
// Move to the next instr slot.
|
|
MIIndex = indexes_->getNextNonNullIndex(MIIndex);
|
|
}
|
|
|
|
// Compute the number of register mask instructions in this block.
|
|
std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB->getNumber()];
|
|
RMB.second = RegMaskSlots.size() - RMB.first;;
|
|
}
|
|
|
|
// Create empty intervals for registers defined by implicit_def's (except
|
|
// for those implicit_def that define values which are liveout of their
|
|
// blocks.
|
|
for (unsigned i = 0, e = UndefUses.size(); i != e; ++i) {
|
|
unsigned UndefReg = UndefUses[i];
|
|
(void)getOrCreateInterval(UndefReg);
|
|
}
|
|
}
|
|
|
|
LiveInterval* LiveIntervals::createInterval(unsigned reg) {
|
|
float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? HUGE_VALF : 0.0F;
|
|
return new LiveInterval(reg, Weight);
|
|
}
|
|
|
|
/// dupInterval - Duplicate a live interval. The caller is responsible for
|
|
/// managing the allocated memory.
|
|
LiveInterval* LiveIntervals::dupInterval(LiveInterval *li) {
|
|
LiveInterval *NewLI = createInterval(li->reg);
|
|
NewLI->Copy(*li, mri_, getVNInfoAllocator());
|
|
return NewLI;
|
|
}
|
|
|
|
/// shrinkToUses - After removing some uses of a register, shrink its live
|
|
/// range to just the remaining uses. This method does not compute reaching
|
|
/// defs for new uses, and it doesn't remove dead defs.
|
|
bool LiveIntervals::shrinkToUses(LiveInterval *li,
|
|
SmallVectorImpl<MachineInstr*> *dead) {
|
|
DEBUG(dbgs() << "Shrink: " << *li << '\n');
|
|
assert(TargetRegisterInfo::isVirtualRegister(li->reg)
|
|
&& "Can only shrink virtual registers");
|
|
// Find all the values used, including PHI kills.
|
|
SmallVector<std::pair<SlotIndex, VNInfo*>, 16> WorkList;
|
|
|
|
// Blocks that have already been added to WorkList as live-out.
|
|
SmallPtrSet<MachineBasicBlock*, 16> LiveOut;
|
|
|
|
// Visit all instructions reading li->reg.
|
|
for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(li->reg);
|
|
MachineInstr *UseMI = I.skipInstruction();) {
|
|
if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg))
|
|
continue;
|
|
SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
|
|
// Note: This intentionally picks up the wrong VNI in case of an EC redef.
|
|
// See below.
|
|
VNInfo *VNI = li->getVNInfoBefore(Idx);
|
|
if (!VNI) {
|
|
// This shouldn't happen: readsVirtualRegister returns true, but there is
|
|
// no live value. It is likely caused by a target getting <undef> flags
|
|
// wrong.
|
|
DEBUG(dbgs() << Idx << '\t' << *UseMI
|
|
<< "Warning: Instr claims to read non-existent value in "
|
|
<< *li << '\n');
|
|
continue;
|
|
}
|
|
// Special case: An early-clobber tied operand reads and writes the
|
|
// register one slot early. The getVNInfoBefore call above would have
|
|
// picked up the value defined by UseMI. Adjust the kill slot and value.
|
|
if (SlotIndex::isSameInstr(VNI->def, Idx)) {
|
|
Idx = VNI->def;
|
|
VNI = li->getVNInfoBefore(Idx);
|
|
assert(VNI && "Early-clobber tied value not available");
|
|
}
|
|
WorkList.push_back(std::make_pair(Idx, VNI));
|
|
}
|
|
|
|
// Create a new live interval with only minimal live segments per def.
|
|
LiveInterval NewLI(li->reg, 0);
|
|
for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
|
|
I != E; ++I) {
|
|
VNInfo *VNI = *I;
|
|
if (VNI->isUnused())
|
|
continue;
|
|
NewLI.addRange(LiveRange(VNI->def, VNI->def.getDeadSlot(), VNI));
|
|
}
|
|
|
|
// Keep track of the PHIs that are in use.
|
|
SmallPtrSet<VNInfo*, 8> UsedPHIs;
|
|
|
|
// Extend intervals to reach all uses in WorkList.
|
|
while (!WorkList.empty()) {
|
|
SlotIndex Idx = WorkList.back().first;
|
|
VNInfo *VNI = WorkList.back().second;
|
|
WorkList.pop_back();
|
|
const MachineBasicBlock *MBB = getMBBFromIndex(Idx.getPrevSlot());
|
|
SlotIndex BlockStart = getMBBStartIdx(MBB);
|
|
|
|
// Extend the live range for VNI to be live at Idx.
|
|
if (VNInfo *ExtVNI = NewLI.extendInBlock(BlockStart, Idx)) {
|
|
(void)ExtVNI;
|
|
assert(ExtVNI == VNI && "Unexpected existing value number");
|
|
// Is this a PHIDef we haven't seen before?
|
|
if (!VNI->isPHIDef() || VNI->def != BlockStart || !UsedPHIs.insert(VNI))
|
|
continue;
|
|
// The PHI is live, make sure the predecessors are live-out.
|
|
for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
|
|
PE = MBB->pred_end(); PI != PE; ++PI) {
|
|
if (!LiveOut.insert(*PI))
|
|
continue;
|
|
SlotIndex Stop = getMBBEndIdx(*PI);
|
|
// A predecessor is not required to have a live-out value for a PHI.
|
|
if (VNInfo *PVNI = li->getVNInfoBefore(Stop))
|
|
WorkList.push_back(std::make_pair(Stop, PVNI));
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// VNI is live-in to MBB.
|
|
DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
|
|
NewLI.addRange(LiveRange(BlockStart, Idx, VNI));
|
|
|
|
// Make sure VNI is live-out from the predecessors.
|
|
for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
|
|
PE = MBB->pred_end(); PI != PE; ++PI) {
|
|
if (!LiveOut.insert(*PI))
|
|
continue;
|
|
SlotIndex Stop = getMBBEndIdx(*PI);
|
|
assert(li->getVNInfoBefore(Stop) == VNI &&
|
|
"Wrong value out of predecessor");
|
|
WorkList.push_back(std::make_pair(Stop, VNI));
|
|
}
|
|
}
|
|
|
|
// Handle dead values.
|
|
bool CanSeparate = false;
|
|
for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
|
|
I != E; ++I) {
|
|
VNInfo *VNI = *I;
|
|
if (VNI->isUnused())
|
|
continue;
|
|
LiveInterval::iterator LII = NewLI.FindLiveRangeContaining(VNI->def);
|
|
assert(LII != NewLI.end() && "Missing live range for PHI");
|
|
if (LII->end != VNI->def.getDeadSlot())
|
|
continue;
|
|
if (VNI->isPHIDef()) {
|
|
// This is a dead PHI. Remove it.
|
|
VNI->setIsUnused(true);
|
|
NewLI.removeRange(*LII);
|
|
DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
|
|
CanSeparate = true;
|
|
} else {
|
|
// This is a dead def. Make sure the instruction knows.
|
|
MachineInstr *MI = getInstructionFromIndex(VNI->def);
|
|
assert(MI && "No instruction defining live value");
|
|
MI->addRegisterDead(li->reg, tri_);
|
|
if (dead && MI->allDefsAreDead()) {
|
|
DEBUG(dbgs() << "All defs dead: " << VNI->def << '\t' << *MI);
|
|
dead->push_back(MI);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Move the trimmed ranges back.
|
|
li->ranges.swap(NewLI.ranges);
|
|
DEBUG(dbgs() << "Shrunk: " << *li << '\n');
|
|
return CanSeparate;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Register allocator hooks.
|
|
//
|
|
|
|
void LiveIntervals::addKillFlags() {
|
|
for (iterator I = begin(), E = end(); I != E; ++I) {
|
|
unsigned Reg = I->first;
|
|
if (TargetRegisterInfo::isPhysicalRegister(Reg))
|
|
continue;
|
|
if (mri_->reg_nodbg_empty(Reg))
|
|
continue;
|
|
LiveInterval *LI = I->second;
|
|
|
|
// Every instruction that kills Reg corresponds to a live range end point.
|
|
for (LiveInterval::iterator RI = LI->begin(), RE = LI->end(); RI != RE;
|
|
++RI) {
|
|
// A block index indicates an MBB edge.
|
|
if (RI->end.isBlock())
|
|
continue;
|
|
MachineInstr *MI = getInstructionFromIndex(RI->end);
|
|
if (!MI)
|
|
continue;
|
|
MI->addRegisterKilled(Reg, NULL);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// getReMatImplicitUse - If the remat definition MI has one (for now, we only
|
|
/// allow one) virtual register operand, then its uses are implicitly using
|
|
/// the register. Returns the virtual register.
|
|
unsigned LiveIntervals::getReMatImplicitUse(const LiveInterval &li,
|
|
MachineInstr *MI) const {
|
|
unsigned RegOp = 0;
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg() || !MO.isUse())
|
|
continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (Reg == 0 || Reg == li.reg)
|
|
continue;
|
|
|
|
if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isAllocatable(Reg))
|
|
continue;
|
|
RegOp = MO.getReg();
|
|
break; // Found vreg operand - leave the loop.
|
|
}
|
|
return RegOp;
|
|
}
|
|
|
|
/// isValNoAvailableAt - Return true if the val# of the specified interval
|
|
/// which reaches the given instruction also reaches the specified use index.
|
|
bool LiveIntervals::isValNoAvailableAt(const LiveInterval &li, MachineInstr *MI,
|
|
SlotIndex UseIdx) const {
|
|
VNInfo *UValNo = li.getVNInfoAt(UseIdx);
|
|
return UValNo && UValNo == li.getVNInfoAt(getInstructionIndex(MI));
|
|
}
|
|
|
|
/// isReMaterializable - Returns true if the definition MI of the specified
|
|
/// val# of the specified interval is re-materializable.
|
|
bool
|
|
LiveIntervals::isReMaterializable(const LiveInterval &li,
|
|
const VNInfo *ValNo, MachineInstr *MI,
|
|
const SmallVectorImpl<LiveInterval*> *SpillIs,
|
|
bool &isLoad) {
|
|
if (DisableReMat)
|
|
return false;
|
|
|
|
if (!tii_->isTriviallyReMaterializable(MI, aa_))
|
|
return false;
|
|
|
|
// Target-specific code can mark an instruction as being rematerializable
|
|
// if it has one virtual reg use, though it had better be something like
|
|
// a PIC base register which is likely to be live everywhere.
|
|
unsigned ImpUse = getReMatImplicitUse(li, MI);
|
|
if (ImpUse) {
|
|
const LiveInterval &ImpLi = getInterval(ImpUse);
|
|
for (MachineRegisterInfo::use_nodbg_iterator
|
|
ri = mri_->use_nodbg_begin(li.reg), re = mri_->use_nodbg_end();
|
|
ri != re; ++ri) {
|
|
MachineInstr *UseMI = &*ri;
|
|
SlotIndex UseIdx = getInstructionIndex(UseMI);
|
|
if (li.getVNInfoAt(UseIdx) != ValNo)
|
|
continue;
|
|
if (!isValNoAvailableAt(ImpLi, MI, UseIdx))
|
|
return false;
|
|
}
|
|
|
|
// If a register operand of the re-materialized instruction is going to
|
|
// be spilled next, then it's not legal to re-materialize this instruction.
|
|
if (SpillIs)
|
|
for (unsigned i = 0, e = SpillIs->size(); i != e; ++i)
|
|
if (ImpUse == (*SpillIs)[i]->reg)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// isReMaterializable - Returns true if every definition of MI of every
|
|
/// val# of the specified interval is re-materializable.
|
|
bool
|
|
LiveIntervals::isReMaterializable(const LiveInterval &li,
|
|
const SmallVectorImpl<LiveInterval*> *SpillIs,
|
|
bool &isLoad) {
|
|
isLoad = false;
|
|
for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end();
|
|
i != e; ++i) {
|
|
const VNInfo *VNI = *i;
|
|
if (VNI->isUnused())
|
|
continue; // Dead val#.
|
|
// Is the def for the val# rematerializable?
|
|
MachineInstr *ReMatDefMI = getInstructionFromIndex(VNI->def);
|
|
if (!ReMatDefMI)
|
|
return false;
|
|
bool DefIsLoad = false;
|
|
if (!ReMatDefMI ||
|
|
!isReMaterializable(li, VNI, ReMatDefMI, SpillIs, DefIsLoad))
|
|
return false;
|
|
isLoad |= DefIsLoad;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
MachineBasicBlock*
|
|
LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
|
|
// A local live range must be fully contained inside the block, meaning it is
|
|
// defined and killed at instructions, not at block boundaries. It is not
|
|
// live in or or out of any block.
|
|
//
|
|
// It is technically possible to have a PHI-defined live range identical to a
|
|
// single block, but we are going to return false in that case.
|
|
|
|
SlotIndex Start = LI.beginIndex();
|
|
if (Start.isBlock())
|
|
return NULL;
|
|
|
|
SlotIndex Stop = LI.endIndex();
|
|
if (Stop.isBlock())
|
|
return NULL;
|
|
|
|
// getMBBFromIndex doesn't need to search the MBB table when both indexes
|
|
// belong to proper instructions.
|
|
MachineBasicBlock *MBB1 = indexes_->getMBBFromIndex(Start);
|
|
MachineBasicBlock *MBB2 = indexes_->getMBBFromIndex(Stop);
|
|
return MBB1 == MBB2 ? MBB1 : NULL;
|
|
}
|
|
|
|
float
|
|
LiveIntervals::getSpillWeight(bool isDef, bool isUse, unsigned loopDepth) {
|
|
// Limit the loop depth ridiculousness.
|
|
if (loopDepth > 200)
|
|
loopDepth = 200;
|
|
|
|
// The loop depth is used to roughly estimate the number of times the
|
|
// instruction is executed. Something like 10^d is simple, but will quickly
|
|
// overflow a float. This expression behaves like 10^d for small d, but is
|
|
// more tempered for large d. At d=200 we get 6.7e33 which leaves a bit of
|
|
// headroom before overflow.
|
|
// By the way, powf() might be unavailable here. For consistency,
|
|
// We may take pow(double,double).
|
|
float lc = std::pow(1 + (100.0 / (loopDepth + 10)), (double)loopDepth);
|
|
|
|
return (isDef + isUse) * lc;
|
|
}
|
|
|
|
LiveRange LiveIntervals::addLiveRangeToEndOfBlock(unsigned reg,
|
|
MachineInstr* startInst) {
|
|
LiveInterval& Interval = getOrCreateInterval(reg);
|
|
VNInfo* VN = Interval.getNextValue(
|
|
SlotIndex(getInstructionIndex(startInst).getRegSlot()),
|
|
getVNInfoAllocator());
|
|
VN->setHasPHIKill(true);
|
|
LiveRange LR(
|
|
SlotIndex(getInstructionIndex(startInst).getRegSlot()),
|
|
getMBBEndIdx(startInst->getParent()), VN);
|
|
Interval.addRange(LR);
|
|
|
|
return LR;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Register mask functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
|
|
BitVector &UsableRegs) {
|
|
if (LI.empty())
|
|
return false;
|
|
LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
|
|
|
|
// Use a smaller arrays for local live ranges.
|
|
ArrayRef<SlotIndex> Slots;
|
|
ArrayRef<const uint32_t*> Bits;
|
|
if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
|
|
Slots = getRegMaskSlotsInBlock(MBB->getNumber());
|
|
Bits = getRegMaskBitsInBlock(MBB->getNumber());
|
|
} else {
|
|
Slots = getRegMaskSlots();
|
|
Bits = getRegMaskBits();
|
|
}
|
|
|
|
// We are going to enumerate all the register mask slots contained in LI.
|
|
// Start with a binary search of RegMaskSlots to find a starting point.
|
|
ArrayRef<SlotIndex>::iterator SlotI =
|
|
std::lower_bound(Slots.begin(), Slots.end(), LiveI->start);
|
|
ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
|
|
|
|
// No slots in range, LI begins after the last call.
|
|
if (SlotI == SlotE)
|
|
return false;
|
|
|
|
bool Found = false;
|
|
for (;;) {
|
|
assert(*SlotI >= LiveI->start);
|
|
// Loop over all slots overlapping this segment.
|
|
while (*SlotI < LiveI->end) {
|
|
// *SlotI overlaps LI. Collect mask bits.
|
|
if (!Found) {
|
|
// This is the first overlap. Initialize UsableRegs to all ones.
|
|
UsableRegs.clear();
|
|
UsableRegs.resize(tri_->getNumRegs(), true);
|
|
Found = true;
|
|
}
|
|
// Remove usable registers clobbered by this mask.
|
|
UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
|
|
if (++SlotI == SlotE)
|
|
return Found;
|
|
}
|
|
// *SlotI is beyond the current LI segment.
|
|
LiveI = LI.advanceTo(LiveI, *SlotI);
|
|
if (LiveI == LiveE)
|
|
return Found;
|
|
// Advance SlotI until it overlaps.
|
|
while (*SlotI < LiveI->start)
|
|
if (++SlotI == SlotE)
|
|
return Found;
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// IntervalUpdate class.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// HMEditor is a toolkit used by handleMove to trim or extend live intervals.
|
|
class LiveIntervals::HMEditor {
|
|
private:
|
|
LiveIntervals& LIS;
|
|
const MachineRegisterInfo& MRI;
|
|
const TargetRegisterInfo& TRI;
|
|
SlotIndex NewIdx;
|
|
|
|
typedef std::pair<LiveInterval*, LiveRange*> IntRangePair;
|
|
typedef DenseSet<IntRangePair> RangeSet;
|
|
|
|
struct RegRanges {
|
|
LiveRange* Use;
|
|
LiveRange* EC;
|
|
LiveRange* Dead;
|
|
LiveRange* Def;
|
|
RegRanges() : Use(0), EC(0), Dead(0), Def(0) {}
|
|
};
|
|
typedef DenseMap<unsigned, RegRanges> BundleRanges;
|
|
|
|
public:
|
|
HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
|
|
const TargetRegisterInfo& TRI, SlotIndex NewIdx)
|
|
: LIS(LIS), MRI(MRI), TRI(TRI), NewIdx(NewIdx) {}
|
|
|
|
// Update intervals for all operands of MI from OldIdx to NewIdx.
|
|
// This assumes that MI used to be at OldIdx, and now resides at
|
|
// NewIdx.
|
|
void moveAllRangesFrom(MachineInstr* MI, SlotIndex OldIdx) {
|
|
assert(NewIdx != OldIdx && "No-op move? That's a bit strange.");
|
|
|
|
// Collect the operands.
|
|
RangeSet Entering, Internal, Exiting;
|
|
bool hasRegMaskOp = false;
|
|
collectRanges(MI, Entering, Internal, Exiting, hasRegMaskOp, OldIdx);
|
|
|
|
moveAllEnteringFrom(OldIdx, Entering);
|
|
moveAllInternalFrom(OldIdx, Internal);
|
|
moveAllExitingFrom(OldIdx, Exiting);
|
|
|
|
if (hasRegMaskOp)
|
|
updateRegMaskSlots(OldIdx);
|
|
|
|
#ifndef NDEBUG
|
|
LIValidator validator;
|
|
std::for_each(Entering.begin(), Entering.end(), validator);
|
|
std::for_each(Internal.begin(), Internal.end(), validator);
|
|
std::for_each(Exiting.begin(), Exiting.end(), validator);
|
|
assert(validator.rangesOk() && "moveAllOperandsFrom broke liveness.");
|
|
#endif
|
|
|
|
}
|
|
|
|
// Update intervals for all operands of MI to refer to BundleStart's
|
|
// SlotIndex.
|
|
void moveAllRangesInto(MachineInstr* MI, MachineInstr* BundleStart) {
|
|
if (MI == BundleStart)
|
|
return; // Bundling instr with itself - nothing to do.
|
|
|
|
SlotIndex OldIdx = LIS.getSlotIndexes()->getInstructionIndex(MI);
|
|
assert(LIS.getSlotIndexes()->getInstructionFromIndex(OldIdx) == MI &&
|
|
"SlotIndex <-> Instruction mapping broken for MI");
|
|
|
|
// Collect all ranges already in the bundle.
|
|
MachineBasicBlock::instr_iterator BII(BundleStart);
|
|
RangeSet Entering, Internal, Exiting;
|
|
bool hasRegMaskOp = false;
|
|
collectRanges(BII, Entering, Internal, Exiting, hasRegMaskOp, NewIdx);
|
|
assert(!hasRegMaskOp && "Can't have RegMask operand in bundle.");
|
|
for (++BII; &*BII == MI || BII->isInsideBundle(); ++BII) {
|
|
if (&*BII == MI)
|
|
continue;
|
|
collectRanges(BII, Entering, Internal, Exiting, hasRegMaskOp, NewIdx);
|
|
assert(!hasRegMaskOp && "Can't have RegMask operand in bundle.");
|
|
}
|
|
|
|
BundleRanges BR = createBundleRanges(Entering, Internal, Exiting);
|
|
|
|
collectRanges(MI, Entering, Internal, Exiting, hasRegMaskOp, OldIdx);
|
|
assert(!hasRegMaskOp && "Can't have RegMask operand in bundle.");
|
|
|
|
DEBUG(dbgs() << "Entering: " << Entering.size() << "\n");
|
|
DEBUG(dbgs() << "Internal: " << Internal.size() << "\n");
|
|
DEBUG(dbgs() << "Exiting: " << Exiting.size() << "\n");
|
|
|
|
moveAllEnteringFromInto(OldIdx, Entering, BR);
|
|
moveAllInternalFromInto(OldIdx, Internal, BR);
|
|
moveAllExitingFromInto(OldIdx, Exiting, BR);
|
|
|
|
|
|
#ifndef NDEBUG
|
|
LIValidator validator;
|
|
std::for_each(Entering.begin(), Entering.end(), validator);
|
|
std::for_each(Internal.begin(), Internal.end(), validator);
|
|
std::for_each(Exiting.begin(), Exiting.end(), validator);
|
|
assert(validator.rangesOk() && "moveAllOperandsInto broke liveness.");
|
|
#endif
|
|
}
|
|
|
|
private:
|
|
|
|
#ifndef NDEBUG
|
|
class LIValidator {
|
|
private:
|
|
DenseSet<const LiveInterval*> Checked, Bogus;
|
|
public:
|
|
void operator()(const IntRangePair& P) {
|
|
const LiveInterval* LI = P.first;
|
|
if (Checked.count(LI))
|
|
return;
|
|
Checked.insert(LI);
|
|
if (LI->empty())
|
|
return;
|
|
SlotIndex LastEnd = LI->begin()->start;
|
|
for (LiveInterval::const_iterator LRI = LI->begin(), LRE = LI->end();
|
|
LRI != LRE; ++LRI) {
|
|
const LiveRange& LR = *LRI;
|
|
if (LastEnd > LR.start || LR.start >= LR.end)
|
|
Bogus.insert(LI);
|
|
LastEnd = LR.end;
|
|
}
|
|
}
|
|
|
|
bool rangesOk() const {
|
|
return Bogus.empty();
|
|
}
|
|
};
|
|
#endif
|
|
|
|
// Collect IntRangePairs for all operands of MI that may need fixing.
|
|
// Treat's MI's index as OldIdx (regardless of what it is in SlotIndexes'
|
|
// maps).
|
|
void collectRanges(MachineInstr* MI, RangeSet& Entering, RangeSet& Internal,
|
|
RangeSet& Exiting, bool& hasRegMaskOp, SlotIndex OldIdx) {
|
|
hasRegMaskOp = false;
|
|
for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
|
|
MOE = MI->operands_end();
|
|
MOI != MOE; ++MOI) {
|
|
const MachineOperand& MO = *MOI;
|
|
|
|
if (MO.isRegMask()) {
|
|
hasRegMaskOp = true;
|
|
continue;
|
|
}
|
|
|
|
if (!MO.isReg() || MO.getReg() == 0)
|
|
continue;
|
|
|
|
unsigned Reg = MO.getReg();
|
|
|
|
// TODO: Currently we're skipping uses that are reserved or have no
|
|
// interval, but we're not updating their kills. This should be
|
|
// fixed.
|
|
if (!LIS.hasInterval(Reg) ||
|
|
(TargetRegisterInfo::isPhysicalRegister(Reg) && LIS.isReserved(Reg)))
|
|
continue;
|
|
|
|
LiveInterval* LI = &LIS.getInterval(Reg);
|
|
|
|
if (MO.readsReg()) {
|
|
LiveRange* LR = LI->getLiveRangeContaining(OldIdx);
|
|
if (LR != 0)
|
|
Entering.insert(std::make_pair(LI, LR));
|
|
}
|
|
if (MO.isDef()) {
|
|
if (MO.isEarlyClobber()) {
|
|
LiveRange* LR = LI->getLiveRangeContaining(OldIdx.getRegSlot(true));
|
|
assert(LR != 0 && "No EC range?");
|
|
if (LR->end > OldIdx.getDeadSlot())
|
|
Exiting.insert(std::make_pair(LI, LR));
|
|
else
|
|
Internal.insert(std::make_pair(LI, LR));
|
|
} else if (MO.isDead()) {
|
|
LiveRange* LR = LI->getLiveRangeContaining(OldIdx.getRegSlot());
|
|
assert(LR != 0 && "No dead-def range?");
|
|
Internal.insert(std::make_pair(LI, LR));
|
|
} else {
|
|
LiveRange* LR = LI->getLiveRangeContaining(OldIdx.getDeadSlot());
|
|
assert(LR && LR->end > OldIdx.getDeadSlot() &&
|
|
"Non-dead-def should have live range exiting.");
|
|
Exiting.insert(std::make_pair(LI, LR));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Collect IntRangePairs for all operands of MI that may need fixing.
|
|
void collectRangesInBundle(MachineInstr* MI, RangeSet& Entering,
|
|
RangeSet& Exiting, SlotIndex MIStartIdx,
|
|
SlotIndex MIEndIdx) {
|
|
for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
|
|
MOE = MI->operands_end();
|
|
MOI != MOE; ++MOI) {
|
|
const MachineOperand& MO = *MOI;
|
|
assert(!MO.isRegMask() && "Can't have RegMasks in bundles.");
|
|
if (!MO.isReg() || MO.getReg() == 0)
|
|
continue;
|
|
|
|
unsigned Reg = MO.getReg();
|
|
|
|
// TODO: Currently we're skipping uses that are reserved or have no
|
|
// interval, but we're not updating their kills. This should be
|
|
// fixed.
|
|
if (!LIS.hasInterval(Reg) ||
|
|
(TargetRegisterInfo::isPhysicalRegister(Reg) && LIS.isReserved(Reg)))
|
|
continue;
|
|
|
|
LiveInterval* LI = &LIS.getInterval(Reg);
|
|
|
|
if (MO.readsReg()) {
|
|
LiveRange* LR = LI->getLiveRangeContaining(MIStartIdx);
|
|
if (LR != 0)
|
|
Entering.insert(std::make_pair(LI, LR));
|
|
}
|
|
if (MO.isDef()) {
|
|
assert(!MO.isEarlyClobber() && "Early clobbers not allowed in bundles.");
|
|
assert(!MO.isDead() && "Dead-defs not allowed in bundles.");
|
|
LiveRange* LR = LI->getLiveRangeContaining(MIEndIdx.getDeadSlot());
|
|
assert(LR != 0 && "Internal ranges not allowed in bundles.");
|
|
Exiting.insert(std::make_pair(LI, LR));
|
|
}
|
|
}
|
|
}
|
|
|
|
BundleRanges createBundleRanges(RangeSet& Entering, RangeSet& Internal, RangeSet& Exiting) {
|
|
BundleRanges BR;
|
|
|
|
for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
|
|
EI != EE; ++EI) {
|
|
LiveInterval* LI = EI->first;
|
|
LiveRange* LR = EI->second;
|
|
BR[LI->reg].Use = LR;
|
|
}
|
|
|
|
for (RangeSet::iterator II = Internal.begin(), IE = Internal.end();
|
|
II != IE; ++II) {
|
|
LiveInterval* LI = II->first;
|
|
LiveRange* LR = II->second;
|
|
if (LR->end.isDead()) {
|
|
BR[LI->reg].Dead = LR;
|
|
} else {
|
|
BR[LI->reg].EC = LR;
|
|
}
|
|
}
|
|
|
|
for (RangeSet::iterator EI = Exiting.begin(), EE = Exiting.end();
|
|
EI != EE; ++EI) {
|
|
LiveInterval* LI = EI->first;
|
|
LiveRange* LR = EI->second;
|
|
BR[LI->reg].Def = LR;
|
|
}
|
|
|
|
return BR;
|
|
}
|
|
|
|
void moveKillFlags(unsigned reg, SlotIndex OldIdx, SlotIndex newKillIdx) {
|
|
MachineInstr* OldKillMI = LIS.getInstructionFromIndex(OldIdx);
|
|
if (!OldKillMI->killsRegister(reg))
|
|
return; // Bail out if we don't have kill flags on the old register.
|
|
MachineInstr* NewKillMI = LIS.getInstructionFromIndex(newKillIdx);
|
|
assert(OldKillMI->killsRegister(reg) && "Old 'kill' instr isn't a kill.");
|
|
assert(!NewKillMI->killsRegister(reg) && "New kill instr is already a kill.");
|
|
OldKillMI->clearRegisterKills(reg, &TRI);
|
|
NewKillMI->addRegisterKilled(reg, &TRI);
|
|
}
|
|
|
|
void updateRegMaskSlots(SlotIndex OldIdx) {
|
|
SmallVectorImpl<SlotIndex>::iterator RI =
|
|
std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(),
|
|
OldIdx);
|
|
assert(*RI == OldIdx && "No RegMask at OldIdx.");
|
|
*RI = NewIdx;
|
|
assert(*prior(RI) < *RI && *RI < *next(RI) &&
|
|
"RegSlots out of order. Did you move one call across another?");
|
|
}
|
|
|
|
// Return the last use of reg between NewIdx and OldIdx.
|
|
SlotIndex findLastUseBefore(unsigned Reg, SlotIndex OldIdx) {
|
|
SlotIndex LastUse = NewIdx;
|
|
for (MachineRegisterInfo::use_nodbg_iterator
|
|
UI = MRI.use_nodbg_begin(Reg),
|
|
UE = MRI.use_nodbg_end();
|
|
UI != UE; UI.skipInstruction()) {
|
|
const MachineInstr* MI = &*UI;
|
|
SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
|
|
if (InstSlot > LastUse && InstSlot < OldIdx)
|
|
LastUse = InstSlot;
|
|
}
|
|
return LastUse;
|
|
}
|
|
|
|
void moveEnteringUpFrom(SlotIndex OldIdx, IntRangePair& P) {
|
|
LiveInterval* LI = P.first;
|
|
LiveRange* LR = P.second;
|
|
bool LiveThrough = LR->end > OldIdx.getRegSlot();
|
|
if (LiveThrough)
|
|
return;
|
|
SlotIndex LastUse = findLastUseBefore(LI->reg, OldIdx);
|
|
if (LastUse != NewIdx)
|
|
moveKillFlags(LI->reg, NewIdx, LastUse);
|
|
LR->end = LastUse.getRegSlot();
|
|
}
|
|
|
|
void moveEnteringDownFrom(SlotIndex OldIdx, IntRangePair& P) {
|
|
LiveInterval* LI = P.first;
|
|
LiveRange* LR = P.second;
|
|
if (NewIdx > LR->end) {
|
|
moveKillFlags(LI->reg, LR->end, NewIdx);
|
|
LR->end = NewIdx.getRegSlot();
|
|
}
|
|
}
|
|
|
|
void moveAllEnteringFrom(SlotIndex OldIdx, RangeSet& Entering) {
|
|
bool GoingUp = NewIdx < OldIdx;
|
|
|
|
if (GoingUp) {
|
|
for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
|
|
EI != EE; ++EI)
|
|
moveEnteringUpFrom(OldIdx, *EI);
|
|
} else {
|
|
for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
|
|
EI != EE; ++EI)
|
|
moveEnteringDownFrom(OldIdx, *EI);
|
|
}
|
|
}
|
|
|
|
void moveInternalFrom(SlotIndex OldIdx, IntRangePair& P) {
|
|
LiveInterval* LI = P.first;
|
|
LiveRange* LR = P.second;
|
|
assert(OldIdx < LR->start && LR->start < OldIdx.getDeadSlot() &&
|
|
LR->end <= OldIdx.getDeadSlot() &&
|
|
"Range should be internal to OldIdx.");
|
|
LiveRange Tmp(*LR);
|
|
Tmp.start = NewIdx.getRegSlot(LR->start.isEarlyClobber());
|
|
Tmp.valno->def = Tmp.start;
|
|
Tmp.end = LR->end.isDead() ? NewIdx.getDeadSlot() : NewIdx.getRegSlot();
|
|
LI->removeRange(*LR);
|
|
LI->addRange(Tmp);
|
|
}
|
|
|
|
void moveAllInternalFrom(SlotIndex OldIdx, RangeSet& Internal) {
|
|
for (RangeSet::iterator II = Internal.begin(), IE = Internal.end();
|
|
II != IE; ++II)
|
|
moveInternalFrom(OldIdx, *II);
|
|
}
|
|
|
|
void moveExitingFrom(SlotIndex OldIdx, IntRangePair& P) {
|
|
LiveRange* LR = P.second;
|
|
assert(OldIdx < LR->start && LR->start < OldIdx.getDeadSlot() &&
|
|
"Range should start in OldIdx.");
|
|
assert(LR->end > OldIdx.getDeadSlot() && "Range should exit OldIdx.");
|
|
SlotIndex NewStart = NewIdx.getRegSlot(LR->start.isEarlyClobber());
|
|
LR->start = NewStart;
|
|
LR->valno->def = NewStart;
|
|
}
|
|
|
|
void moveAllExitingFrom(SlotIndex OldIdx, RangeSet& Exiting) {
|
|
for (RangeSet::iterator EI = Exiting.begin(), EE = Exiting.end();
|
|
EI != EE; ++EI)
|
|
moveExitingFrom(OldIdx, *EI);
|
|
}
|
|
|
|
void moveEnteringUpFromInto(SlotIndex OldIdx, IntRangePair& P,
|
|
BundleRanges& BR) {
|
|
LiveInterval* LI = P.first;
|
|
LiveRange* LR = P.second;
|
|
bool LiveThrough = LR->end > OldIdx.getRegSlot();
|
|
if (LiveThrough) {
|
|
assert((LR->start < NewIdx || BR[LI->reg].Def == LR) &&
|
|
"Def in bundle should be def range.");
|
|
assert((BR[LI->reg].Use == 0 || BR[LI->reg].Use == LR) &&
|
|
"If bundle has use for this reg it should be LR.");
|
|
BR[LI->reg].Use = LR;
|
|
return;
|
|
}
|
|
|
|
SlotIndex LastUse = findLastUseBefore(LI->reg, OldIdx);
|
|
moveKillFlags(LI->reg, OldIdx, LastUse);
|
|
|
|
if (LR->start < NewIdx) {
|
|
// Becoming a new entering range.
|
|
assert(BR[LI->reg].Dead == 0 && BR[LI->reg].Def == 0 &&
|
|
"Bundle shouldn't be re-defining reg mid-range.");
|
|
assert((BR[LI->reg].Use == 0 || BR[LI->reg].Use == LR) &&
|
|
"Bundle shouldn't have different use range for same reg.");
|
|
LR->end = LastUse.getRegSlot();
|
|
BR[LI->reg].Use = LR;
|
|
} else {
|
|
// Becoming a new Dead-def.
|
|
assert(LR->start == NewIdx.getRegSlot(LR->start.isEarlyClobber()) &&
|
|
"Live range starting at unexpected slot.");
|
|
assert(BR[LI->reg].Def == LR && "Reg should have def range.");
|
|
assert(BR[LI->reg].Dead == 0 &&
|
|
"Can't have def and dead def of same reg in a bundle.");
|
|
LR->end = LastUse.getDeadSlot();
|
|
BR[LI->reg].Dead = BR[LI->reg].Def;
|
|
BR[LI->reg].Def = 0;
|
|
}
|
|
}
|
|
|
|
void moveEnteringDownFromInto(SlotIndex OldIdx, IntRangePair& P,
|
|
BundleRanges& BR) {
|
|
LiveInterval* LI = P.first;
|
|
LiveRange* LR = P.second;
|
|
if (NewIdx > LR->end) {
|
|
// Range extended to bundle. Add to bundle uses.
|
|
// Note: Currently adds kill flags to bundle start.
|
|
assert(BR[LI->reg].Use == 0 &&
|
|
"Bundle already has use range for reg.");
|
|
moveKillFlags(LI->reg, LR->end, NewIdx);
|
|
LR->end = NewIdx.getRegSlot();
|
|
BR[LI->reg].Use = LR;
|
|
} else {
|
|
assert(BR[LI->reg].Use != 0 &&
|
|
"Bundle should already have a use range for reg.");
|
|
}
|
|
}
|
|
|
|
void moveAllEnteringFromInto(SlotIndex OldIdx, RangeSet& Entering,
|
|
BundleRanges& BR) {
|
|
bool GoingUp = NewIdx < OldIdx;
|
|
|
|
if (GoingUp) {
|
|
for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
|
|
EI != EE; ++EI)
|
|
moveEnteringUpFromInto(OldIdx, *EI, BR);
|
|
} else {
|
|
for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
|
|
EI != EE; ++EI)
|
|
moveEnteringDownFromInto(OldIdx, *EI, BR);
|
|
}
|
|
}
|
|
|
|
void moveInternalFromInto(SlotIndex OldIdx, IntRangePair& P,
|
|
BundleRanges& BR) {
|
|
// TODO: Sane rules for moving ranges into bundles.
|
|
}
|
|
|
|
void moveAllInternalFromInto(SlotIndex OldIdx, RangeSet& Internal,
|
|
BundleRanges& BR) {
|
|
for (RangeSet::iterator II = Internal.begin(), IE = Internal.end();
|
|
II != IE; ++II)
|
|
moveInternalFromInto(OldIdx, *II, BR);
|
|
}
|
|
|
|
void moveExitingFromInto(SlotIndex OldIdx, IntRangePair& P,
|
|
BundleRanges& BR) {
|
|
LiveInterval* LI = P.first;
|
|
LiveRange* LR = P.second;
|
|
|
|
assert(LR->start.isRegister() &&
|
|
"Don't know how to merge exiting ECs into bundles yet.");
|
|
|
|
if (LR->end > NewIdx.getDeadSlot()) {
|
|
// This range is becoming an exiting range on the bundle.
|
|
// If there was an old dead-def of this reg, delete it.
|
|
if (BR[LI->reg].Dead != 0) {
|
|
LI->removeRange(*BR[LI->reg].Dead);
|
|
BR[LI->reg].Dead = 0;
|
|
}
|
|
assert(BR[LI->reg].Def == 0 &&
|
|
"Can't have two defs for the same variable exiting a bundle.");
|
|
LR->start = NewIdx.getRegSlot();
|
|
LR->valno->def = LR->start;
|
|
BR[LI->reg].Def = LR;
|
|
} else {
|
|
// This range is becoming internal to the bundle.
|
|
assert(LR->end == NewIdx.getRegSlot() &&
|
|
"Can't bundle def whose kill is before the bundle");
|
|
if (BR[LI->reg].Dead || BR[LI->reg].Def) {
|
|
// Already have a def for this. Just delete range.
|
|
LI->removeRange(*LR);
|
|
} else {
|
|
// Make range dead, record.
|
|
LR->end = NewIdx.getDeadSlot();
|
|
BR[LI->reg].Dead = LR;
|
|
assert(BR[LI->reg].Use == LR &&
|
|
"Range becoming dead should currently be use.");
|
|
}
|
|
// In both cases the range is no longer a use on the bundle.
|
|
BR[LI->reg].Use = 0;
|
|
}
|
|
}
|
|
|
|
void moveAllExitingFromInto(SlotIndex OldIdx, RangeSet& Exiting,
|
|
BundleRanges& BR) {
|
|
for (RangeSet::iterator EI = Exiting.begin(), EE = Exiting.end();
|
|
EI != EE; ++EI)
|
|
moveExitingFromInto(OldIdx, *EI, BR);
|
|
}
|
|
|
|
};
|
|
|
|
void LiveIntervals::handleMove(MachineInstr* MI) {
|
|
SlotIndex OldIndex = indexes_->getInstructionIndex(MI);
|
|
indexes_->removeMachineInstrFromMaps(MI);
|
|
SlotIndex NewIndex = MI->isInsideBundle() ?
|
|
indexes_->getInstructionIndex(MI->getBundleStart()) :
|
|
indexes_->insertMachineInstrInMaps(MI);
|
|
assert(getMBBStartIdx(MI->getParent()) <= OldIndex &&
|
|
OldIndex < getMBBEndIdx(MI->getParent()) &&
|
|
"Cannot handle moves across basic block boundaries.");
|
|
assert(!MI->isBundled() && "Can't handle bundled instructions yet.");
|
|
|
|
HMEditor HME(*this, *mri_, *tri_, NewIndex);
|
|
HME.moveAllRangesFrom(MI, OldIndex);
|
|
}
|
|
|
|
void LiveIntervals::handleMoveIntoBundle(MachineInstr* MI, MachineInstr* BundleStart) {
|
|
SlotIndex NewIndex = indexes_->getInstructionIndex(BundleStart);
|
|
HMEditor HME(*this, *mri_, *tri_, NewIndex);
|
|
HME.moveAllRangesInto(MI, BundleStart);
|
|
}
|