mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-10 01:10:48 +00:00
f715d51769
These are used by MachO only at the moment, and (much like the existing MOVW/MOVT set) work around the fact that the labels used in the actual instructions often contain PC-dependent components, which means that repeatedly materialising the same global can't be CSEed. With small modifications, it could be adapted to how ELF finds the address of _GLOBAL_OFFSET_TABLE_, which would give similar benefits in PIC mode there. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196090 91177308-0d34-0410-b5e6-96231b3b80d8
3523 lines
133 KiB
C++
3523 lines
133 KiB
C++
//===-- ARMISelDAGToDAG.cpp - A dag to dag inst selector for ARM ----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines an instruction selector for the ARM target.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "arm-isel"
|
|
#include "ARM.h"
|
|
#include "ARMBaseInstrInfo.h"
|
|
#include "ARMTargetMachine.h"
|
|
#include "MCTargetDesc/ARMAddressingModes.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/SelectionDAGISel.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool>
|
|
DisableShifterOp("disable-shifter-op", cl::Hidden,
|
|
cl::desc("Disable isel of shifter-op"),
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool>
|
|
CheckVMLxHazard("check-vmlx-hazard", cl::Hidden,
|
|
cl::desc("Check fp vmla / vmls hazard at isel time"),
|
|
cl::init(true));
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// ARMDAGToDAGISel - ARM specific code to select ARM machine
|
|
/// instructions for SelectionDAG operations.
|
|
///
|
|
namespace {
|
|
|
|
enum AddrMode2Type {
|
|
AM2_BASE, // Simple AM2 (+-imm12)
|
|
AM2_SHOP // Shifter-op AM2
|
|
};
|
|
|
|
class ARMDAGToDAGISel : public SelectionDAGISel {
|
|
ARMBaseTargetMachine &TM;
|
|
|
|
/// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
|
|
/// make the right decision when generating code for different targets.
|
|
const ARMSubtarget *Subtarget;
|
|
|
|
public:
|
|
explicit ARMDAGToDAGISel(ARMBaseTargetMachine &tm,
|
|
CodeGenOpt::Level OptLevel)
|
|
: SelectionDAGISel(tm, OptLevel), TM(tm),
|
|
Subtarget(&TM.getSubtarget<ARMSubtarget>()) {
|
|
}
|
|
|
|
virtual const char *getPassName() const {
|
|
return "ARM Instruction Selection";
|
|
}
|
|
|
|
virtual void PreprocessISelDAG();
|
|
|
|
/// getI32Imm - Return a target constant of type i32 with the specified
|
|
/// value.
|
|
inline SDValue getI32Imm(unsigned Imm) {
|
|
return CurDAG->getTargetConstant(Imm, MVT::i32);
|
|
}
|
|
|
|
SDNode *Select(SDNode *N);
|
|
|
|
|
|
bool hasNoVMLxHazardUse(SDNode *N) const;
|
|
bool isShifterOpProfitable(const SDValue &Shift,
|
|
ARM_AM::ShiftOpc ShOpcVal, unsigned ShAmt);
|
|
bool SelectRegShifterOperand(SDValue N, SDValue &A,
|
|
SDValue &B, SDValue &C,
|
|
bool CheckProfitability = true);
|
|
bool SelectImmShifterOperand(SDValue N, SDValue &A,
|
|
SDValue &B, bool CheckProfitability = true);
|
|
bool SelectShiftRegShifterOperand(SDValue N, SDValue &A,
|
|
SDValue &B, SDValue &C) {
|
|
// Don't apply the profitability check
|
|
return SelectRegShifterOperand(N, A, B, C, false);
|
|
}
|
|
bool SelectShiftImmShifterOperand(SDValue N, SDValue &A,
|
|
SDValue &B) {
|
|
// Don't apply the profitability check
|
|
return SelectImmShifterOperand(N, A, B, false);
|
|
}
|
|
|
|
bool SelectAddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm);
|
|
bool SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset, SDValue &Opc);
|
|
|
|
AddrMode2Type SelectAddrMode2Worker(SDValue N, SDValue &Base,
|
|
SDValue &Offset, SDValue &Opc);
|
|
bool SelectAddrMode2Base(SDValue N, SDValue &Base, SDValue &Offset,
|
|
SDValue &Opc) {
|
|
return SelectAddrMode2Worker(N, Base, Offset, Opc) == AM2_BASE;
|
|
}
|
|
|
|
bool SelectAddrMode2ShOp(SDValue N, SDValue &Base, SDValue &Offset,
|
|
SDValue &Opc) {
|
|
return SelectAddrMode2Worker(N, Base, Offset, Opc) == AM2_SHOP;
|
|
}
|
|
|
|
bool SelectAddrMode2(SDValue N, SDValue &Base, SDValue &Offset,
|
|
SDValue &Opc) {
|
|
SelectAddrMode2Worker(N, Base, Offset, Opc);
|
|
// return SelectAddrMode2ShOp(N, Base, Offset, Opc);
|
|
// This always matches one way or another.
|
|
return true;
|
|
}
|
|
|
|
bool SelectCMOVPred(SDValue N, SDValue &Pred, SDValue &Reg) {
|
|
const ConstantSDNode *CN = cast<ConstantSDNode>(N);
|
|
Pred = CurDAG->getTargetConstant(CN->getZExtValue(), MVT::i32);
|
|
Reg = CurDAG->getRegister(ARM::CPSR, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
bool SelectAddrMode2OffsetReg(SDNode *Op, SDValue N,
|
|
SDValue &Offset, SDValue &Opc);
|
|
bool SelectAddrMode2OffsetImm(SDNode *Op, SDValue N,
|
|
SDValue &Offset, SDValue &Opc);
|
|
bool SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N,
|
|
SDValue &Offset, SDValue &Opc);
|
|
bool SelectAddrOffsetNone(SDValue N, SDValue &Base);
|
|
bool SelectAddrMode3(SDValue N, SDValue &Base,
|
|
SDValue &Offset, SDValue &Opc);
|
|
bool SelectAddrMode3Offset(SDNode *Op, SDValue N,
|
|
SDValue &Offset, SDValue &Opc);
|
|
bool SelectAddrMode5(SDValue N, SDValue &Base,
|
|
SDValue &Offset);
|
|
bool SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr,SDValue &Align);
|
|
bool SelectAddrMode6Offset(SDNode *Op, SDValue N, SDValue &Offset);
|
|
|
|
bool SelectAddrModePC(SDValue N, SDValue &Offset, SDValue &Label);
|
|
|
|
// Thumb Addressing Modes:
|
|
bool SelectThumbAddrModeRR(SDValue N, SDValue &Base, SDValue &Offset);
|
|
bool SelectThumbAddrModeRI(SDValue N, SDValue &Base, SDValue &Offset,
|
|
unsigned Scale);
|
|
bool SelectThumbAddrModeRI5S1(SDValue N, SDValue &Base, SDValue &Offset);
|
|
bool SelectThumbAddrModeRI5S2(SDValue N, SDValue &Base, SDValue &Offset);
|
|
bool SelectThumbAddrModeRI5S4(SDValue N, SDValue &Base, SDValue &Offset);
|
|
bool SelectThumbAddrModeImm5S(SDValue N, unsigned Scale, SDValue &Base,
|
|
SDValue &OffImm);
|
|
bool SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base,
|
|
SDValue &OffImm);
|
|
bool SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base,
|
|
SDValue &OffImm);
|
|
bool SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base,
|
|
SDValue &OffImm);
|
|
bool SelectThumbAddrModeSP(SDValue N, SDValue &Base, SDValue &OffImm);
|
|
|
|
// Thumb 2 Addressing Modes:
|
|
bool SelectT2ShifterOperandReg(SDValue N,
|
|
SDValue &BaseReg, SDValue &Opc);
|
|
bool SelectT2AddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm);
|
|
bool SelectT2AddrModeImm8(SDValue N, SDValue &Base,
|
|
SDValue &OffImm);
|
|
bool SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
|
|
SDValue &OffImm);
|
|
bool SelectT2AddrModeSoReg(SDValue N, SDValue &Base,
|
|
SDValue &OffReg, SDValue &ShImm);
|
|
bool SelectT2AddrModeExclusive(SDValue N, SDValue &Base, SDValue &OffImm);
|
|
|
|
inline bool is_so_imm(unsigned Imm) const {
|
|
return ARM_AM::getSOImmVal(Imm) != -1;
|
|
}
|
|
|
|
inline bool is_so_imm_not(unsigned Imm) const {
|
|
return ARM_AM::getSOImmVal(~Imm) != -1;
|
|
}
|
|
|
|
inline bool is_t2_so_imm(unsigned Imm) const {
|
|
return ARM_AM::getT2SOImmVal(Imm) != -1;
|
|
}
|
|
|
|
inline bool is_t2_so_imm_not(unsigned Imm) const {
|
|
return ARM_AM::getT2SOImmVal(~Imm) != -1;
|
|
}
|
|
|
|
// Include the pieces autogenerated from the target description.
|
|
#include "ARMGenDAGISel.inc"
|
|
|
|
private:
|
|
/// SelectARMIndexedLoad - Indexed (pre/post inc/dec) load matching code for
|
|
/// ARM.
|
|
SDNode *SelectARMIndexedLoad(SDNode *N);
|
|
SDNode *SelectT2IndexedLoad(SDNode *N);
|
|
|
|
/// SelectVLD - Select NEON load intrinsics. NumVecs should be
|
|
/// 1, 2, 3 or 4. The opcode arrays specify the instructions used for
|
|
/// loads of D registers and even subregs and odd subregs of Q registers.
|
|
/// For NumVecs <= 2, QOpcodes1 is not used.
|
|
SDNode *SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs,
|
|
const uint16_t *DOpcodes,
|
|
const uint16_t *QOpcodes0, const uint16_t *QOpcodes1);
|
|
|
|
/// SelectVST - Select NEON store intrinsics. NumVecs should
|
|
/// be 1, 2, 3 or 4. The opcode arrays specify the instructions used for
|
|
/// stores of D registers and even subregs and odd subregs of Q registers.
|
|
/// For NumVecs <= 2, QOpcodes1 is not used.
|
|
SDNode *SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs,
|
|
const uint16_t *DOpcodes,
|
|
const uint16_t *QOpcodes0, const uint16_t *QOpcodes1);
|
|
|
|
/// SelectVLDSTLane - Select NEON load/store lane intrinsics. NumVecs should
|
|
/// be 2, 3 or 4. The opcode arrays specify the instructions used for
|
|
/// load/store of D registers and Q registers.
|
|
SDNode *SelectVLDSTLane(SDNode *N, bool IsLoad,
|
|
bool isUpdating, unsigned NumVecs,
|
|
const uint16_t *DOpcodes, const uint16_t *QOpcodes);
|
|
|
|
/// SelectVLDDup - Select NEON load-duplicate intrinsics. NumVecs
|
|
/// should be 2, 3 or 4. The opcode array specifies the instructions used
|
|
/// for loading D registers. (Q registers are not supported.)
|
|
SDNode *SelectVLDDup(SDNode *N, bool isUpdating, unsigned NumVecs,
|
|
const uint16_t *Opcodes);
|
|
|
|
/// SelectVTBL - Select NEON VTBL and VTBX intrinsics. NumVecs should be 2,
|
|
/// 3 or 4. These are custom-selected so that a REG_SEQUENCE can be
|
|
/// generated to force the table registers to be consecutive.
|
|
SDNode *SelectVTBL(SDNode *N, bool IsExt, unsigned NumVecs, unsigned Opc);
|
|
|
|
/// SelectV6T2BitfieldExtractOp - Select SBFX/UBFX instructions for ARM.
|
|
SDNode *SelectV6T2BitfieldExtractOp(SDNode *N, bool isSigned);
|
|
|
|
// Select special operations if node forms integer ABS pattern
|
|
SDNode *SelectABSOp(SDNode *N);
|
|
|
|
SDNode *SelectInlineAsm(SDNode *N);
|
|
|
|
SDNode *SelectConcatVector(SDNode *N);
|
|
|
|
SDNode *SelectAtomic(SDNode *N, unsigned Op8, unsigned Op16, unsigned Op32, unsigned Op64);
|
|
|
|
/// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
|
|
/// inline asm expressions.
|
|
virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
|
|
char ConstraintCode,
|
|
std::vector<SDValue> &OutOps);
|
|
|
|
// Form pairs of consecutive R, S, D, or Q registers.
|
|
SDNode *createGPRPairNode(EVT VT, SDValue V0, SDValue V1);
|
|
SDNode *createSRegPairNode(EVT VT, SDValue V0, SDValue V1);
|
|
SDNode *createDRegPairNode(EVT VT, SDValue V0, SDValue V1);
|
|
SDNode *createQRegPairNode(EVT VT, SDValue V0, SDValue V1);
|
|
|
|
// Form sequences of 4 consecutive S, D, or Q registers.
|
|
SDNode *createQuadSRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
|
|
SDNode *createQuadDRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
|
|
SDNode *createQuadQRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
|
|
|
|
// Get the alignment operand for a NEON VLD or VST instruction.
|
|
SDValue GetVLDSTAlign(SDValue Align, unsigned NumVecs, bool is64BitVector);
|
|
};
|
|
}
|
|
|
|
/// isInt32Immediate - This method tests to see if the node is a 32-bit constant
|
|
/// operand. If so Imm will receive the 32-bit value.
|
|
static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
|
|
if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
|
|
Imm = cast<ConstantSDNode>(N)->getZExtValue();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// isInt32Immediate - This method tests to see if a constant operand.
|
|
// If so Imm will receive the 32 bit value.
|
|
static bool isInt32Immediate(SDValue N, unsigned &Imm) {
|
|
return isInt32Immediate(N.getNode(), Imm);
|
|
}
|
|
|
|
// isOpcWithIntImmediate - This method tests to see if the node is a specific
|
|
// opcode and that it has a immediate integer right operand.
|
|
// If so Imm will receive the 32 bit value.
|
|
static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
|
|
return N->getOpcode() == Opc &&
|
|
isInt32Immediate(N->getOperand(1).getNode(), Imm);
|
|
}
|
|
|
|
/// \brief Check whether a particular node is a constant value representable as
|
|
/// (N * Scale) where (N in [\p RangeMin, \p RangeMax).
|
|
///
|
|
/// \param ScaledConstant [out] - On success, the pre-scaled constant value.
|
|
static bool isScaledConstantInRange(SDValue Node, int Scale,
|
|
int RangeMin, int RangeMax,
|
|
int &ScaledConstant) {
|
|
assert(Scale > 0 && "Invalid scale!");
|
|
|
|
// Check that this is a constant.
|
|
const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Node);
|
|
if (!C)
|
|
return false;
|
|
|
|
ScaledConstant = (int) C->getZExtValue();
|
|
if ((ScaledConstant % Scale) != 0)
|
|
return false;
|
|
|
|
ScaledConstant /= Scale;
|
|
return ScaledConstant >= RangeMin && ScaledConstant < RangeMax;
|
|
}
|
|
|
|
void ARMDAGToDAGISel::PreprocessISelDAG() {
|
|
if (!Subtarget->hasV6T2Ops())
|
|
return;
|
|
|
|
bool isThumb2 = Subtarget->isThumb();
|
|
for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
|
|
E = CurDAG->allnodes_end(); I != E; ) {
|
|
SDNode *N = I++; // Preincrement iterator to avoid invalidation issues.
|
|
|
|
if (N->getOpcode() != ISD::ADD)
|
|
continue;
|
|
|
|
// Look for (add X1, (and (srl X2, c1), c2)) where c2 is constant with
|
|
// leading zeros, followed by consecutive set bits, followed by 1 or 2
|
|
// trailing zeros, e.g. 1020.
|
|
// Transform the expression to
|
|
// (add X1, (shl (and (srl X2, c1), (c2>>tz)), tz)) where tz is the number
|
|
// of trailing zeros of c2. The left shift would be folded as an shifter
|
|
// operand of 'add' and the 'and' and 'srl' would become a bits extraction
|
|
// node (UBFX).
|
|
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
unsigned And_imm = 0;
|
|
if (!isOpcWithIntImmediate(N1.getNode(), ISD::AND, And_imm)) {
|
|
if (isOpcWithIntImmediate(N0.getNode(), ISD::AND, And_imm))
|
|
std::swap(N0, N1);
|
|
}
|
|
if (!And_imm)
|
|
continue;
|
|
|
|
// Check if the AND mask is an immediate of the form: 000.....1111111100
|
|
unsigned TZ = countTrailingZeros(And_imm);
|
|
if (TZ != 1 && TZ != 2)
|
|
// Be conservative here. Shifter operands aren't always free. e.g. On
|
|
// Swift, left shifter operand of 1 / 2 for free but others are not.
|
|
// e.g.
|
|
// ubfx r3, r1, #16, #8
|
|
// ldr.w r3, [r0, r3, lsl #2]
|
|
// vs.
|
|
// mov.w r9, #1020
|
|
// and.w r2, r9, r1, lsr #14
|
|
// ldr r2, [r0, r2]
|
|
continue;
|
|
And_imm >>= TZ;
|
|
if (And_imm & (And_imm + 1))
|
|
continue;
|
|
|
|
// Look for (and (srl X, c1), c2).
|
|
SDValue Srl = N1.getOperand(0);
|
|
unsigned Srl_imm = 0;
|
|
if (!isOpcWithIntImmediate(Srl.getNode(), ISD::SRL, Srl_imm) ||
|
|
(Srl_imm <= 2))
|
|
continue;
|
|
|
|
// Make sure first operand is not a shifter operand which would prevent
|
|
// folding of the left shift.
|
|
SDValue CPTmp0;
|
|
SDValue CPTmp1;
|
|
SDValue CPTmp2;
|
|
if (isThumb2) {
|
|
if (SelectT2ShifterOperandReg(N0, CPTmp0, CPTmp1))
|
|
continue;
|
|
} else {
|
|
if (SelectImmShifterOperand(N0, CPTmp0, CPTmp1) ||
|
|
SelectRegShifterOperand(N0, CPTmp0, CPTmp1, CPTmp2))
|
|
continue;
|
|
}
|
|
|
|
// Now make the transformation.
|
|
Srl = CurDAG->getNode(ISD::SRL, SDLoc(Srl), MVT::i32,
|
|
Srl.getOperand(0),
|
|
CurDAG->getConstant(Srl_imm+TZ, MVT::i32));
|
|
N1 = CurDAG->getNode(ISD::AND, SDLoc(N1), MVT::i32,
|
|
Srl, CurDAG->getConstant(And_imm, MVT::i32));
|
|
N1 = CurDAG->getNode(ISD::SHL, SDLoc(N1), MVT::i32,
|
|
N1, CurDAG->getConstant(TZ, MVT::i32));
|
|
CurDAG->UpdateNodeOperands(N, N0, N1);
|
|
}
|
|
}
|
|
|
|
/// hasNoVMLxHazardUse - Return true if it's desirable to select a FP MLA / MLS
|
|
/// node. VFP / NEON fp VMLA / VMLS instructions have special RAW hazards (at
|
|
/// least on current ARM implementations) which should be avoidded.
|
|
bool ARMDAGToDAGISel::hasNoVMLxHazardUse(SDNode *N) const {
|
|
if (OptLevel == CodeGenOpt::None)
|
|
return true;
|
|
|
|
if (!CheckVMLxHazard)
|
|
return true;
|
|
|
|
if (!Subtarget->isCortexA8() && !Subtarget->isCortexA9() &&
|
|
!Subtarget->isSwift())
|
|
return true;
|
|
|
|
if (!N->hasOneUse())
|
|
return false;
|
|
|
|
SDNode *Use = *N->use_begin();
|
|
if (Use->getOpcode() == ISD::CopyToReg)
|
|
return true;
|
|
if (Use->isMachineOpcode()) {
|
|
const ARMBaseInstrInfo *TII =
|
|
static_cast<const ARMBaseInstrInfo*>(TM.getInstrInfo());
|
|
|
|
const MCInstrDesc &MCID = TII->get(Use->getMachineOpcode());
|
|
if (MCID.mayStore())
|
|
return true;
|
|
unsigned Opcode = MCID.getOpcode();
|
|
if (Opcode == ARM::VMOVRS || Opcode == ARM::VMOVRRD)
|
|
return true;
|
|
// vmlx feeding into another vmlx. We actually want to unfold
|
|
// the use later in the MLxExpansion pass. e.g.
|
|
// vmla
|
|
// vmla (stall 8 cycles)
|
|
//
|
|
// vmul (5 cycles)
|
|
// vadd (5 cycles)
|
|
// vmla
|
|
// This adds up to about 18 - 19 cycles.
|
|
//
|
|
// vmla
|
|
// vmul (stall 4 cycles)
|
|
// vadd adds up to about 14 cycles.
|
|
return TII->isFpMLxInstruction(Opcode);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ARMDAGToDAGISel::isShifterOpProfitable(const SDValue &Shift,
|
|
ARM_AM::ShiftOpc ShOpcVal,
|
|
unsigned ShAmt) {
|
|
if (!Subtarget->isLikeA9() && !Subtarget->isSwift())
|
|
return true;
|
|
if (Shift.hasOneUse())
|
|
return true;
|
|
// R << 2 is free.
|
|
return ShOpcVal == ARM_AM::lsl &&
|
|
(ShAmt == 2 || (Subtarget->isSwift() && ShAmt == 1));
|
|
}
|
|
|
|
bool ARMDAGToDAGISel::SelectImmShifterOperand(SDValue N,
|
|
SDValue &BaseReg,
|
|
SDValue &Opc,
|
|
bool CheckProfitability) {
|
|
if (DisableShifterOp)
|
|
return false;
|
|
|
|
ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
|
|
|
|
// Don't match base register only case. That is matched to a separate
|
|
// lower complexity pattern with explicit register operand.
|
|
if (ShOpcVal == ARM_AM::no_shift) return false;
|
|
|
|
BaseReg = N.getOperand(0);
|
|
unsigned ShImmVal = 0;
|
|
ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
|
|
if (!RHS) return false;
|
|
ShImmVal = RHS->getZExtValue() & 31;
|
|
Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal),
|
|
MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
bool ARMDAGToDAGISel::SelectRegShifterOperand(SDValue N,
|
|
SDValue &BaseReg,
|
|
SDValue &ShReg,
|
|
SDValue &Opc,
|
|
bool CheckProfitability) {
|
|
if (DisableShifterOp)
|
|
return false;
|
|
|
|
ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
|
|
|
|
// Don't match base register only case. That is matched to a separate
|
|
// lower complexity pattern with explicit register operand.
|
|
if (ShOpcVal == ARM_AM::no_shift) return false;
|
|
|
|
BaseReg = N.getOperand(0);
|
|
unsigned ShImmVal = 0;
|
|
ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
|
|
if (RHS) return false;
|
|
|
|
ShReg = N.getOperand(1);
|
|
if (CheckProfitability && !isShifterOpProfitable(N, ShOpcVal, ShImmVal))
|
|
return false;
|
|
Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal),
|
|
MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
|
|
bool ARMDAGToDAGISel::SelectAddrModeImm12(SDValue N,
|
|
SDValue &Base,
|
|
SDValue &OffImm) {
|
|
// Match simple R + imm12 operands.
|
|
|
|
// Base only.
|
|
if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
|
|
!CurDAG->isBaseWithConstantOffset(N)) {
|
|
if (N.getOpcode() == ISD::FrameIndex) {
|
|
// Match frame index.
|
|
int FI = cast<FrameIndexSDNode>(N)->getIndex();
|
|
Base = CurDAG->getTargetFrameIndex(FI,
|
|
getTargetLowering()->getPointerTy());
|
|
OffImm = CurDAG->getTargetConstant(0, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
if (N.getOpcode() == ARMISD::Wrapper &&
|
|
N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress) {
|
|
Base = N.getOperand(0);
|
|
} else
|
|
Base = N;
|
|
OffImm = CurDAG->getTargetConstant(0, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
|
|
int RHSC = (int)RHS->getZExtValue();
|
|
if (N.getOpcode() == ISD::SUB)
|
|
RHSC = -RHSC;
|
|
|
|
if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned)
|
|
Base = N.getOperand(0);
|
|
if (Base.getOpcode() == ISD::FrameIndex) {
|
|
int FI = cast<FrameIndexSDNode>(Base)->getIndex();
|
|
Base = CurDAG->getTargetFrameIndex(FI,
|
|
getTargetLowering()->getPointerTy());
|
|
}
|
|
OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Base only.
|
|
Base = N;
|
|
OffImm = CurDAG->getTargetConstant(0, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
bool ARMDAGToDAGISel::SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset,
|
|
SDValue &Opc) {
|
|
if (N.getOpcode() == ISD::MUL &&
|
|
((!Subtarget->isLikeA9() && !Subtarget->isSwift()) || N.hasOneUse())) {
|
|
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
|
|
// X * [3,5,9] -> X + X * [2,4,8] etc.
|
|
int RHSC = (int)RHS->getZExtValue();
|
|
if (RHSC & 1) {
|
|
RHSC = RHSC & ~1;
|
|
ARM_AM::AddrOpc AddSub = ARM_AM::add;
|
|
if (RHSC < 0) {
|
|
AddSub = ARM_AM::sub;
|
|
RHSC = - RHSC;
|
|
}
|
|
if (isPowerOf2_32(RHSC)) {
|
|
unsigned ShAmt = Log2_32(RHSC);
|
|
Base = Offset = N.getOperand(0);
|
|
Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt,
|
|
ARM_AM::lsl),
|
|
MVT::i32);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
|
|
// ISD::OR that is equivalent to an ISD::ADD.
|
|
!CurDAG->isBaseWithConstantOffset(N))
|
|
return false;
|
|
|
|
// Leave simple R +/- imm12 operands for LDRi12
|
|
if (N.getOpcode() == ISD::ADD || N.getOpcode() == ISD::OR) {
|
|
int RHSC;
|
|
if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
|
|
-0x1000+1, 0x1000, RHSC)) // 12 bits.
|
|
return false;
|
|
}
|
|
|
|
// Otherwise this is R +/- [possibly shifted] R.
|
|
ARM_AM::AddrOpc AddSub = N.getOpcode() == ISD::SUB ? ARM_AM::sub:ARM_AM::add;
|
|
ARM_AM::ShiftOpc ShOpcVal =
|
|
ARM_AM::getShiftOpcForNode(N.getOperand(1).getOpcode());
|
|
unsigned ShAmt = 0;
|
|
|
|
Base = N.getOperand(0);
|
|
Offset = N.getOperand(1);
|
|
|
|
if (ShOpcVal != ARM_AM::no_shift) {
|
|
// Check to see if the RHS of the shift is a constant, if not, we can't fold
|
|
// it.
|
|
if (ConstantSDNode *Sh =
|
|
dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) {
|
|
ShAmt = Sh->getZExtValue();
|
|
if (isShifterOpProfitable(Offset, ShOpcVal, ShAmt))
|
|
Offset = N.getOperand(1).getOperand(0);
|
|
else {
|
|
ShAmt = 0;
|
|
ShOpcVal = ARM_AM::no_shift;
|
|
}
|
|
} else {
|
|
ShOpcVal = ARM_AM::no_shift;
|
|
}
|
|
}
|
|
|
|
// Try matching (R shl C) + (R).
|
|
if (N.getOpcode() != ISD::SUB && ShOpcVal == ARM_AM::no_shift &&
|
|
!(Subtarget->isLikeA9() || Subtarget->isSwift() ||
|
|
N.getOperand(0).hasOneUse())) {
|
|
ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0).getOpcode());
|
|
if (ShOpcVal != ARM_AM::no_shift) {
|
|
// Check to see if the RHS of the shift is a constant, if not, we can't
|
|
// fold it.
|
|
if (ConstantSDNode *Sh =
|
|
dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) {
|
|
ShAmt = Sh->getZExtValue();
|
|
if (isShifterOpProfitable(N.getOperand(0), ShOpcVal, ShAmt)) {
|
|
Offset = N.getOperand(0).getOperand(0);
|
|
Base = N.getOperand(1);
|
|
} else {
|
|
ShAmt = 0;
|
|
ShOpcVal = ARM_AM::no_shift;
|
|
}
|
|
} else {
|
|
ShOpcVal = ARM_AM::no_shift;
|
|
}
|
|
}
|
|
}
|
|
|
|
Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
|
|
MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
|
|
//-----
|
|
|
|
AddrMode2Type ARMDAGToDAGISel::SelectAddrMode2Worker(SDValue N,
|
|
SDValue &Base,
|
|
SDValue &Offset,
|
|
SDValue &Opc) {
|
|
if (N.getOpcode() == ISD::MUL &&
|
|
(!(Subtarget->isLikeA9() || Subtarget->isSwift()) || N.hasOneUse())) {
|
|
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
|
|
// X * [3,5,9] -> X + X * [2,4,8] etc.
|
|
int RHSC = (int)RHS->getZExtValue();
|
|
if (RHSC & 1) {
|
|
RHSC = RHSC & ~1;
|
|
ARM_AM::AddrOpc AddSub = ARM_AM::add;
|
|
if (RHSC < 0) {
|
|
AddSub = ARM_AM::sub;
|
|
RHSC = - RHSC;
|
|
}
|
|
if (isPowerOf2_32(RHSC)) {
|
|
unsigned ShAmt = Log2_32(RHSC);
|
|
Base = Offset = N.getOperand(0);
|
|
Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt,
|
|
ARM_AM::lsl),
|
|
MVT::i32);
|
|
return AM2_SHOP;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
|
|
// ISD::OR that is equivalent to an ADD.
|
|
!CurDAG->isBaseWithConstantOffset(N)) {
|
|
Base = N;
|
|
if (N.getOpcode() == ISD::FrameIndex) {
|
|
int FI = cast<FrameIndexSDNode>(N)->getIndex();
|
|
Base = CurDAG->getTargetFrameIndex(FI,
|
|
getTargetLowering()->getPointerTy());
|
|
} else if (N.getOpcode() == ARMISD::Wrapper &&
|
|
N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress) {
|
|
Base = N.getOperand(0);
|
|
}
|
|
Offset = CurDAG->getRegister(0, MVT::i32);
|
|
Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(ARM_AM::add, 0,
|
|
ARM_AM::no_shift),
|
|
MVT::i32);
|
|
return AM2_BASE;
|
|
}
|
|
|
|
// Match simple R +/- imm12 operands.
|
|
if (N.getOpcode() != ISD::SUB) {
|
|
int RHSC;
|
|
if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
|
|
-0x1000+1, 0x1000, RHSC)) { // 12 bits.
|
|
Base = N.getOperand(0);
|
|
if (Base.getOpcode() == ISD::FrameIndex) {
|
|
int FI = cast<FrameIndexSDNode>(Base)->getIndex();
|
|
Base = CurDAG->getTargetFrameIndex(FI,
|
|
getTargetLowering()->getPointerTy());
|
|
}
|
|
Offset = CurDAG->getRegister(0, MVT::i32);
|
|
|
|
ARM_AM::AddrOpc AddSub = ARM_AM::add;
|
|
if (RHSC < 0) {
|
|
AddSub = ARM_AM::sub;
|
|
RHSC = - RHSC;
|
|
}
|
|
Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, RHSC,
|
|
ARM_AM::no_shift),
|
|
MVT::i32);
|
|
return AM2_BASE;
|
|
}
|
|
}
|
|
|
|
if ((Subtarget->isLikeA9() || Subtarget->isSwift()) && !N.hasOneUse()) {
|
|
// Compute R +/- (R << N) and reuse it.
|
|
Base = N;
|
|
Offset = CurDAG->getRegister(0, MVT::i32);
|
|
Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(ARM_AM::add, 0,
|
|
ARM_AM::no_shift),
|
|
MVT::i32);
|
|
return AM2_BASE;
|
|
}
|
|
|
|
// Otherwise this is R +/- [possibly shifted] R.
|
|
ARM_AM::AddrOpc AddSub = N.getOpcode() != ISD::SUB ? ARM_AM::add:ARM_AM::sub;
|
|
ARM_AM::ShiftOpc ShOpcVal =
|
|
ARM_AM::getShiftOpcForNode(N.getOperand(1).getOpcode());
|
|
unsigned ShAmt = 0;
|
|
|
|
Base = N.getOperand(0);
|
|
Offset = N.getOperand(1);
|
|
|
|
if (ShOpcVal != ARM_AM::no_shift) {
|
|
// Check to see if the RHS of the shift is a constant, if not, we can't fold
|
|
// it.
|
|
if (ConstantSDNode *Sh =
|
|
dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) {
|
|
ShAmt = Sh->getZExtValue();
|
|
if (isShifterOpProfitable(Offset, ShOpcVal, ShAmt))
|
|
Offset = N.getOperand(1).getOperand(0);
|
|
else {
|
|
ShAmt = 0;
|
|
ShOpcVal = ARM_AM::no_shift;
|
|
}
|
|
} else {
|
|
ShOpcVal = ARM_AM::no_shift;
|
|
}
|
|
}
|
|
|
|
// Try matching (R shl C) + (R).
|
|
if (N.getOpcode() != ISD::SUB && ShOpcVal == ARM_AM::no_shift &&
|
|
!(Subtarget->isLikeA9() || Subtarget->isSwift() ||
|
|
N.getOperand(0).hasOneUse())) {
|
|
ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0).getOpcode());
|
|
if (ShOpcVal != ARM_AM::no_shift) {
|
|
// Check to see if the RHS of the shift is a constant, if not, we can't
|
|
// fold it.
|
|
if (ConstantSDNode *Sh =
|
|
dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) {
|
|
ShAmt = Sh->getZExtValue();
|
|
if (isShifterOpProfitable(N.getOperand(0), ShOpcVal, ShAmt)) {
|
|
Offset = N.getOperand(0).getOperand(0);
|
|
Base = N.getOperand(1);
|
|
} else {
|
|
ShAmt = 0;
|
|
ShOpcVal = ARM_AM::no_shift;
|
|
}
|
|
} else {
|
|
ShOpcVal = ARM_AM::no_shift;
|
|
}
|
|
}
|
|
}
|
|
|
|
Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
|
|
MVT::i32);
|
|
return AM2_SHOP;
|
|
}
|
|
|
|
bool ARMDAGToDAGISel::SelectAddrMode2OffsetReg(SDNode *Op, SDValue N,
|
|
SDValue &Offset, SDValue &Opc) {
|
|
unsigned Opcode = Op->getOpcode();
|
|
ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
|
|
? cast<LoadSDNode>(Op)->getAddressingMode()
|
|
: cast<StoreSDNode>(Op)->getAddressingMode();
|
|
ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
|
|
? ARM_AM::add : ARM_AM::sub;
|
|
int Val;
|
|
if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val))
|
|
return false;
|
|
|
|
Offset = N;
|
|
ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
|
|
unsigned ShAmt = 0;
|
|
if (ShOpcVal != ARM_AM::no_shift) {
|
|
// Check to see if the RHS of the shift is a constant, if not, we can't fold
|
|
// it.
|
|
if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
|
|
ShAmt = Sh->getZExtValue();
|
|
if (isShifterOpProfitable(N, ShOpcVal, ShAmt))
|
|
Offset = N.getOperand(0);
|
|
else {
|
|
ShAmt = 0;
|
|
ShOpcVal = ARM_AM::no_shift;
|
|
}
|
|
} else {
|
|
ShOpcVal = ARM_AM::no_shift;
|
|
}
|
|
}
|
|
|
|
Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
|
|
MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
bool ARMDAGToDAGISel::SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N,
|
|
SDValue &Offset, SDValue &Opc) {
|
|
unsigned Opcode = Op->getOpcode();
|
|
ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
|
|
? cast<LoadSDNode>(Op)->getAddressingMode()
|
|
: cast<StoreSDNode>(Op)->getAddressingMode();
|
|
ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
|
|
? ARM_AM::add : ARM_AM::sub;
|
|
int Val;
|
|
if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) { // 12 bits.
|
|
if (AddSub == ARM_AM::sub) Val *= -1;
|
|
Offset = CurDAG->getRegister(0, MVT::i32);
|
|
Opc = CurDAG->getTargetConstant(Val, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
bool ARMDAGToDAGISel::SelectAddrMode2OffsetImm(SDNode *Op, SDValue N,
|
|
SDValue &Offset, SDValue &Opc) {
|
|
unsigned Opcode = Op->getOpcode();
|
|
ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
|
|
? cast<LoadSDNode>(Op)->getAddressingMode()
|
|
: cast<StoreSDNode>(Op)->getAddressingMode();
|
|
ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
|
|
? ARM_AM::add : ARM_AM::sub;
|
|
int Val;
|
|
if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) { // 12 bits.
|
|
Offset = CurDAG->getRegister(0, MVT::i32);
|
|
Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, Val,
|
|
ARM_AM::no_shift),
|
|
MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ARMDAGToDAGISel::SelectAddrOffsetNone(SDValue N, SDValue &Base) {
|
|
Base = N;
|
|
return true;
|
|
}
|
|
|
|
bool ARMDAGToDAGISel::SelectAddrMode3(SDValue N,
|
|
SDValue &Base, SDValue &Offset,
|
|
SDValue &Opc) {
|
|
if (N.getOpcode() == ISD::SUB) {
|
|
// X - C is canonicalize to X + -C, no need to handle it here.
|
|
Base = N.getOperand(0);
|
|
Offset = N.getOperand(1);
|
|
Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::sub, 0),MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
if (!CurDAG->isBaseWithConstantOffset(N)) {
|
|
Base = N;
|
|
if (N.getOpcode() == ISD::FrameIndex) {
|
|
int FI = cast<FrameIndexSDNode>(N)->getIndex();
|
|
Base = CurDAG->getTargetFrameIndex(FI,
|
|
getTargetLowering()->getPointerTy());
|
|
}
|
|
Offset = CurDAG->getRegister(0, MVT::i32);
|
|
Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0),MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
// If the RHS is +/- imm8, fold into addr mode.
|
|
int RHSC;
|
|
if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
|
|
-256 + 1, 256, RHSC)) { // 8 bits.
|
|
Base = N.getOperand(0);
|
|
if (Base.getOpcode() == ISD::FrameIndex) {
|
|
int FI = cast<FrameIndexSDNode>(Base)->getIndex();
|
|
Base = CurDAG->getTargetFrameIndex(FI,
|
|
getTargetLowering()->getPointerTy());
|
|
}
|
|
Offset = CurDAG->getRegister(0, MVT::i32);
|
|
|
|
ARM_AM::AddrOpc AddSub = ARM_AM::add;
|
|
if (RHSC < 0) {
|
|
AddSub = ARM_AM::sub;
|
|
RHSC = -RHSC;
|
|
}
|
|
Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, RHSC),MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
Base = N.getOperand(0);
|
|
Offset = N.getOperand(1);
|
|
Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0), MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
bool ARMDAGToDAGISel::SelectAddrMode3Offset(SDNode *Op, SDValue N,
|
|
SDValue &Offset, SDValue &Opc) {
|
|
unsigned Opcode = Op->getOpcode();
|
|
ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
|
|
? cast<LoadSDNode>(Op)->getAddressingMode()
|
|
: cast<StoreSDNode>(Op)->getAddressingMode();
|
|
ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
|
|
? ARM_AM::add : ARM_AM::sub;
|
|
int Val;
|
|
if (isScaledConstantInRange(N, /*Scale=*/1, 0, 256, Val)) { // 12 bits.
|
|
Offset = CurDAG->getRegister(0, MVT::i32);
|
|
Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, Val), MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
Offset = N;
|
|
Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, 0), MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
bool ARMDAGToDAGISel::SelectAddrMode5(SDValue N,
|
|
SDValue &Base, SDValue &Offset) {
|
|
if (!CurDAG->isBaseWithConstantOffset(N)) {
|
|
Base = N;
|
|
if (N.getOpcode() == ISD::FrameIndex) {
|
|
int FI = cast<FrameIndexSDNode>(N)->getIndex();
|
|
Base = CurDAG->getTargetFrameIndex(FI,
|
|
getTargetLowering()->getPointerTy());
|
|
} else if (N.getOpcode() == ARMISD::Wrapper &&
|
|
N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress) {
|
|
Base = N.getOperand(0);
|
|
}
|
|
Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
|
|
MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
// If the RHS is +/- imm8, fold into addr mode.
|
|
int RHSC;
|
|
if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/4,
|
|
-256 + 1, 256, RHSC)) {
|
|
Base = N.getOperand(0);
|
|
if (Base.getOpcode() == ISD::FrameIndex) {
|
|
int FI = cast<FrameIndexSDNode>(Base)->getIndex();
|
|
Base = CurDAG->getTargetFrameIndex(FI,
|
|
getTargetLowering()->getPointerTy());
|
|
}
|
|
|
|
ARM_AM::AddrOpc AddSub = ARM_AM::add;
|
|
if (RHSC < 0) {
|
|
AddSub = ARM_AM::sub;
|
|
RHSC = -RHSC;
|
|
}
|
|
Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(AddSub, RHSC),
|
|
MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
Base = N;
|
|
Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
|
|
MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
bool ARMDAGToDAGISel::SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr,
|
|
SDValue &Align) {
|
|
Addr = N;
|
|
|
|
unsigned Alignment = 0;
|
|
if (LSBaseSDNode *LSN = dyn_cast<LSBaseSDNode>(Parent)) {
|
|
// This case occurs only for VLD1-lane/dup and VST1-lane instructions.
|
|
// The maximum alignment is equal to the memory size being referenced.
|
|
unsigned LSNAlign = LSN->getAlignment();
|
|
unsigned MemSize = LSN->getMemoryVT().getSizeInBits() / 8;
|
|
if (LSNAlign >= MemSize && MemSize > 1)
|
|
Alignment = MemSize;
|
|
} else {
|
|
// All other uses of addrmode6 are for intrinsics. For now just record
|
|
// the raw alignment value; it will be refined later based on the legal
|
|
// alignment operands for the intrinsic.
|
|
Alignment = cast<MemIntrinsicSDNode>(Parent)->getAlignment();
|
|
}
|
|
|
|
Align = CurDAG->getTargetConstant(Alignment, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
bool ARMDAGToDAGISel::SelectAddrMode6Offset(SDNode *Op, SDValue N,
|
|
SDValue &Offset) {
|
|
LSBaseSDNode *LdSt = cast<LSBaseSDNode>(Op);
|
|
ISD::MemIndexedMode AM = LdSt->getAddressingMode();
|
|
if (AM != ISD::POST_INC)
|
|
return false;
|
|
Offset = N;
|
|
if (ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N)) {
|
|
if (NC->getZExtValue() * 8 == LdSt->getMemoryVT().getSizeInBits())
|
|
Offset = CurDAG->getRegister(0, MVT::i32);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool ARMDAGToDAGISel::SelectAddrModePC(SDValue N,
|
|
SDValue &Offset, SDValue &Label) {
|
|
if (N.getOpcode() == ARMISD::PIC_ADD && N.hasOneUse()) {
|
|
Offset = N.getOperand(0);
|
|
SDValue N1 = N.getOperand(1);
|
|
Label = CurDAG->getTargetConstant(cast<ConstantSDNode>(N1)->getZExtValue(),
|
|
MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Thumb Addressing Modes
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool ARMDAGToDAGISel::SelectThumbAddrModeRR(SDValue N,
|
|
SDValue &Base, SDValue &Offset){
|
|
if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(N)) {
|
|
ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N);
|
|
if (!NC || !NC->isNullValue())
|
|
return false;
|
|
|
|
Base = Offset = N;
|
|
return true;
|
|
}
|
|
|
|
Base = N.getOperand(0);
|
|
Offset = N.getOperand(1);
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
ARMDAGToDAGISel::SelectThumbAddrModeRI(SDValue N, SDValue &Base,
|
|
SDValue &Offset, unsigned Scale) {
|
|
if (Scale == 4) {
|
|
SDValue TmpBase, TmpOffImm;
|
|
if (SelectThumbAddrModeSP(N, TmpBase, TmpOffImm))
|
|
return false; // We want to select tLDRspi / tSTRspi instead.
|
|
|
|
if (N.getOpcode() == ARMISD::Wrapper &&
|
|
N.getOperand(0).getOpcode() == ISD::TargetConstantPool)
|
|
return false; // We want to select tLDRpci instead.
|
|
}
|
|
|
|
if (!CurDAG->isBaseWithConstantOffset(N))
|
|
return false;
|
|
|
|
// Thumb does not have [sp, r] address mode.
|
|
RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
|
|
RegisterSDNode *RHSR = dyn_cast<RegisterSDNode>(N.getOperand(1));
|
|
if ((LHSR && LHSR->getReg() == ARM::SP) ||
|
|
(RHSR && RHSR->getReg() == ARM::SP))
|
|
return false;
|
|
|
|
// FIXME: Why do we explicitly check for a match here and then return false?
|
|
// Presumably to allow something else to match, but shouldn't this be
|
|
// documented?
|
|
int RHSC;
|
|
if (isScaledConstantInRange(N.getOperand(1), Scale, 0, 32, RHSC))
|
|
return false;
|
|
|
|
Base = N.getOperand(0);
|
|
Offset = N.getOperand(1);
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
ARMDAGToDAGISel::SelectThumbAddrModeRI5S1(SDValue N,
|
|
SDValue &Base,
|
|
SDValue &Offset) {
|
|
return SelectThumbAddrModeRI(N, Base, Offset, 1);
|
|
}
|
|
|
|
bool
|
|
ARMDAGToDAGISel::SelectThumbAddrModeRI5S2(SDValue N,
|
|
SDValue &Base,
|
|
SDValue &Offset) {
|
|
return SelectThumbAddrModeRI(N, Base, Offset, 2);
|
|
}
|
|
|
|
bool
|
|
ARMDAGToDAGISel::SelectThumbAddrModeRI5S4(SDValue N,
|
|
SDValue &Base,
|
|
SDValue &Offset) {
|
|
return SelectThumbAddrModeRI(N, Base, Offset, 4);
|
|
}
|
|
|
|
bool
|
|
ARMDAGToDAGISel::SelectThumbAddrModeImm5S(SDValue N, unsigned Scale,
|
|
SDValue &Base, SDValue &OffImm) {
|
|
if (Scale == 4) {
|
|
SDValue TmpBase, TmpOffImm;
|
|
if (SelectThumbAddrModeSP(N, TmpBase, TmpOffImm))
|
|
return false; // We want to select tLDRspi / tSTRspi instead.
|
|
|
|
if (N.getOpcode() == ARMISD::Wrapper &&
|
|
N.getOperand(0).getOpcode() == ISD::TargetConstantPool)
|
|
return false; // We want to select tLDRpci instead.
|
|
}
|
|
|
|
if (!CurDAG->isBaseWithConstantOffset(N)) {
|
|
if (N.getOpcode() == ARMISD::Wrapper &&
|
|
N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress) {
|
|
Base = N.getOperand(0);
|
|
} else {
|
|
Base = N;
|
|
}
|
|
|
|
OffImm = CurDAG->getTargetConstant(0, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
|
|
RegisterSDNode *RHSR = dyn_cast<RegisterSDNode>(N.getOperand(1));
|
|
if ((LHSR && LHSR->getReg() == ARM::SP) ||
|
|
(RHSR && RHSR->getReg() == ARM::SP)) {
|
|
ConstantSDNode *LHS = dyn_cast<ConstantSDNode>(N.getOperand(0));
|
|
ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
|
|
unsigned LHSC = LHS ? LHS->getZExtValue() : 0;
|
|
unsigned RHSC = RHS ? RHS->getZExtValue() : 0;
|
|
|
|
// Thumb does not have [sp, #imm5] address mode for non-zero imm5.
|
|
if (LHSC != 0 || RHSC != 0) return false;
|
|
|
|
Base = N;
|
|
OffImm = CurDAG->getTargetConstant(0, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
// If the RHS is + imm5 * scale, fold into addr mode.
|
|
int RHSC;
|
|
if (isScaledConstantInRange(N.getOperand(1), Scale, 0, 32, RHSC)) {
|
|
Base = N.getOperand(0);
|
|
OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
Base = N.getOperand(0);
|
|
OffImm = CurDAG->getTargetConstant(0, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
ARMDAGToDAGISel::SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base,
|
|
SDValue &OffImm) {
|
|
return SelectThumbAddrModeImm5S(N, 4, Base, OffImm);
|
|
}
|
|
|
|
bool
|
|
ARMDAGToDAGISel::SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base,
|
|
SDValue &OffImm) {
|
|
return SelectThumbAddrModeImm5S(N, 2, Base, OffImm);
|
|
}
|
|
|
|
bool
|
|
ARMDAGToDAGISel::SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base,
|
|
SDValue &OffImm) {
|
|
return SelectThumbAddrModeImm5S(N, 1, Base, OffImm);
|
|
}
|
|
|
|
bool ARMDAGToDAGISel::SelectThumbAddrModeSP(SDValue N,
|
|
SDValue &Base, SDValue &OffImm) {
|
|
if (N.getOpcode() == ISD::FrameIndex) {
|
|
int FI = cast<FrameIndexSDNode>(N)->getIndex();
|
|
Base = CurDAG->getTargetFrameIndex(FI,
|
|
getTargetLowering()->getPointerTy());
|
|
OffImm = CurDAG->getTargetConstant(0, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
if (!CurDAG->isBaseWithConstantOffset(N))
|
|
return false;
|
|
|
|
RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
|
|
if (N.getOperand(0).getOpcode() == ISD::FrameIndex ||
|
|
(LHSR && LHSR->getReg() == ARM::SP)) {
|
|
// If the RHS is + imm8 * scale, fold into addr mode.
|
|
int RHSC;
|
|
if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/4, 0, 256, RHSC)) {
|
|
Base = N.getOperand(0);
|
|
if (Base.getOpcode() == ISD::FrameIndex) {
|
|
int FI = cast<FrameIndexSDNode>(Base)->getIndex();
|
|
Base = CurDAG->getTargetFrameIndex(FI,
|
|
getTargetLowering()->getPointerTy());
|
|
}
|
|
OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Thumb 2 Addressing Modes
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
bool ARMDAGToDAGISel::SelectT2ShifterOperandReg(SDValue N, SDValue &BaseReg,
|
|
SDValue &Opc) {
|
|
if (DisableShifterOp)
|
|
return false;
|
|
|
|
ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
|
|
|
|
// Don't match base register only case. That is matched to a separate
|
|
// lower complexity pattern with explicit register operand.
|
|
if (ShOpcVal == ARM_AM::no_shift) return false;
|
|
|
|
BaseReg = N.getOperand(0);
|
|
unsigned ShImmVal = 0;
|
|
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
|
|
ShImmVal = RHS->getZExtValue() & 31;
|
|
Opc = getI32Imm(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal));
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ARMDAGToDAGISel::SelectT2AddrModeImm12(SDValue N,
|
|
SDValue &Base, SDValue &OffImm) {
|
|
// Match simple R + imm12 operands.
|
|
|
|
// Base only.
|
|
if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
|
|
!CurDAG->isBaseWithConstantOffset(N)) {
|
|
if (N.getOpcode() == ISD::FrameIndex) {
|
|
// Match frame index.
|
|
int FI = cast<FrameIndexSDNode>(N)->getIndex();
|
|
Base = CurDAG->getTargetFrameIndex(FI,
|
|
getTargetLowering()->getPointerTy());
|
|
OffImm = CurDAG->getTargetConstant(0, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
if (N.getOpcode() == ARMISD::Wrapper &&
|
|
N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress) {
|
|
Base = N.getOperand(0);
|
|
if (Base.getOpcode() == ISD::TargetConstantPool)
|
|
return false; // We want to select t2LDRpci instead.
|
|
} else
|
|
Base = N;
|
|
OffImm = CurDAG->getTargetConstant(0, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
|
|
if (SelectT2AddrModeImm8(N, Base, OffImm))
|
|
// Let t2LDRi8 handle (R - imm8).
|
|
return false;
|
|
|
|
int RHSC = (int)RHS->getZExtValue();
|
|
if (N.getOpcode() == ISD::SUB)
|
|
RHSC = -RHSC;
|
|
|
|
if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned)
|
|
Base = N.getOperand(0);
|
|
if (Base.getOpcode() == ISD::FrameIndex) {
|
|
int FI = cast<FrameIndexSDNode>(Base)->getIndex();
|
|
Base = CurDAG->getTargetFrameIndex(FI,
|
|
getTargetLowering()->getPointerTy());
|
|
}
|
|
OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Base only.
|
|
Base = N;
|
|
OffImm = CurDAG->getTargetConstant(0, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDValue N,
|
|
SDValue &Base, SDValue &OffImm) {
|
|
// Match simple R - imm8 operands.
|
|
if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
|
|
!CurDAG->isBaseWithConstantOffset(N))
|
|
return false;
|
|
|
|
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
|
|
int RHSC = (int)RHS->getSExtValue();
|
|
if (N.getOpcode() == ISD::SUB)
|
|
RHSC = -RHSC;
|
|
|
|
if ((RHSC >= -255) && (RHSC < 0)) { // 8 bits (always negative)
|
|
Base = N.getOperand(0);
|
|
if (Base.getOpcode() == ISD::FrameIndex) {
|
|
int FI = cast<FrameIndexSDNode>(Base)->getIndex();
|
|
Base = CurDAG->getTargetFrameIndex(FI,
|
|
getTargetLowering()->getPointerTy());
|
|
}
|
|
OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ARMDAGToDAGISel::SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
|
|
SDValue &OffImm){
|
|
unsigned Opcode = Op->getOpcode();
|
|
ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
|
|
? cast<LoadSDNode>(Op)->getAddressingMode()
|
|
: cast<StoreSDNode>(Op)->getAddressingMode();
|
|
int RHSC;
|
|
if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x100, RHSC)) { // 8 bits.
|
|
OffImm = ((AM == ISD::PRE_INC) || (AM == ISD::POST_INC))
|
|
? CurDAG->getTargetConstant(RHSC, MVT::i32)
|
|
: CurDAG->getTargetConstant(-RHSC, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ARMDAGToDAGISel::SelectT2AddrModeSoReg(SDValue N,
|
|
SDValue &Base,
|
|
SDValue &OffReg, SDValue &ShImm) {
|
|
// (R - imm8) should be handled by t2LDRi8. The rest are handled by t2LDRi12.
|
|
if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(N))
|
|
return false;
|
|
|
|
// Leave (R + imm12) for t2LDRi12, (R - imm8) for t2LDRi8.
|
|
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
|
|
int RHSC = (int)RHS->getZExtValue();
|
|
if (RHSC >= 0 && RHSC < 0x1000) // 12 bits (unsigned)
|
|
return false;
|
|
else if (RHSC < 0 && RHSC >= -255) // 8 bits
|
|
return false;
|
|
}
|
|
|
|
// Look for (R + R) or (R + (R << [1,2,3])).
|
|
unsigned ShAmt = 0;
|
|
Base = N.getOperand(0);
|
|
OffReg = N.getOperand(1);
|
|
|
|
// Swap if it is ((R << c) + R).
|
|
ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(OffReg.getOpcode());
|
|
if (ShOpcVal != ARM_AM::lsl) {
|
|
ShOpcVal = ARM_AM::getShiftOpcForNode(Base.getOpcode());
|
|
if (ShOpcVal == ARM_AM::lsl)
|
|
std::swap(Base, OffReg);
|
|
}
|
|
|
|
if (ShOpcVal == ARM_AM::lsl) {
|
|
// Check to see if the RHS of the shift is a constant, if not, we can't fold
|
|
// it.
|
|
if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(OffReg.getOperand(1))) {
|
|
ShAmt = Sh->getZExtValue();
|
|
if (ShAmt < 4 && isShifterOpProfitable(OffReg, ShOpcVal, ShAmt))
|
|
OffReg = OffReg.getOperand(0);
|
|
else {
|
|
ShAmt = 0;
|
|
ShOpcVal = ARM_AM::no_shift;
|
|
}
|
|
} else {
|
|
ShOpcVal = ARM_AM::no_shift;
|
|
}
|
|
}
|
|
|
|
ShImm = CurDAG->getTargetConstant(ShAmt, MVT::i32);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ARMDAGToDAGISel::SelectT2AddrModeExclusive(SDValue N, SDValue &Base,
|
|
SDValue &OffImm) {
|
|
// This *must* succeed since it's used for the irreplacable ldrex and strex
|
|
// instructions.
|
|
Base = N;
|
|
OffImm = CurDAG->getTargetConstant(0, MVT::i32);
|
|
|
|
if (N.getOpcode() != ISD::ADD || !CurDAG->isBaseWithConstantOffset(N))
|
|
return true;
|
|
|
|
ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
|
|
if (!RHS)
|
|
return true;
|
|
|
|
uint32_t RHSC = (int)RHS->getZExtValue();
|
|
if (RHSC > 1020 || RHSC % 4 != 0)
|
|
return true;
|
|
|
|
Base = N.getOperand(0);
|
|
if (Base.getOpcode() == ISD::FrameIndex) {
|
|
int FI = cast<FrameIndexSDNode>(Base)->getIndex();
|
|
Base = CurDAG->getTargetFrameIndex(FI, getTargetLowering()->getPointerTy());
|
|
}
|
|
|
|
OffImm = CurDAG->getTargetConstant(RHSC / 4, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// getAL - Returns a ARMCC::AL immediate node.
|
|
static inline SDValue getAL(SelectionDAG *CurDAG) {
|
|
return CurDAG->getTargetConstant((uint64_t)ARMCC::AL, MVT::i32);
|
|
}
|
|
|
|
SDNode *ARMDAGToDAGISel::SelectARMIndexedLoad(SDNode *N) {
|
|
LoadSDNode *LD = cast<LoadSDNode>(N);
|
|
ISD::MemIndexedMode AM = LD->getAddressingMode();
|
|
if (AM == ISD::UNINDEXED)
|
|
return NULL;
|
|
|
|
EVT LoadedVT = LD->getMemoryVT();
|
|
SDValue Offset, AMOpc;
|
|
bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
|
|
unsigned Opcode = 0;
|
|
bool Match = false;
|
|
if (LoadedVT == MVT::i32 && isPre &&
|
|
SelectAddrMode2OffsetImmPre(N, LD->getOffset(), Offset, AMOpc)) {
|
|
Opcode = ARM::LDR_PRE_IMM;
|
|
Match = true;
|
|
} else if (LoadedVT == MVT::i32 && !isPre &&
|
|
SelectAddrMode2OffsetImm(N, LD->getOffset(), Offset, AMOpc)) {
|
|
Opcode = ARM::LDR_POST_IMM;
|
|
Match = true;
|
|
} else if (LoadedVT == MVT::i32 &&
|
|
SelectAddrMode2OffsetReg(N, LD->getOffset(), Offset, AMOpc)) {
|
|
Opcode = isPre ? ARM::LDR_PRE_REG : ARM::LDR_POST_REG;
|
|
Match = true;
|
|
|
|
} else if (LoadedVT == MVT::i16 &&
|
|
SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
|
|
Match = true;
|
|
Opcode = (LD->getExtensionType() == ISD::SEXTLOAD)
|
|
? (isPre ? ARM::LDRSH_PRE : ARM::LDRSH_POST)
|
|
: (isPre ? ARM::LDRH_PRE : ARM::LDRH_POST);
|
|
} else if (LoadedVT == MVT::i8 || LoadedVT == MVT::i1) {
|
|
if (LD->getExtensionType() == ISD::SEXTLOAD) {
|
|
if (SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
|
|
Match = true;
|
|
Opcode = isPre ? ARM::LDRSB_PRE : ARM::LDRSB_POST;
|
|
}
|
|
} else {
|
|
if (isPre &&
|
|
SelectAddrMode2OffsetImmPre(N, LD->getOffset(), Offset, AMOpc)) {
|
|
Match = true;
|
|
Opcode = ARM::LDRB_PRE_IMM;
|
|
} else if (!isPre &&
|
|
SelectAddrMode2OffsetImm(N, LD->getOffset(), Offset, AMOpc)) {
|
|
Match = true;
|
|
Opcode = ARM::LDRB_POST_IMM;
|
|
} else if (SelectAddrMode2OffsetReg(N, LD->getOffset(), Offset, AMOpc)) {
|
|
Match = true;
|
|
Opcode = isPre ? ARM::LDRB_PRE_REG : ARM::LDRB_POST_REG;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Match) {
|
|
if (Opcode == ARM::LDR_PRE_IMM || Opcode == ARM::LDRB_PRE_IMM) {
|
|
SDValue Chain = LD->getChain();
|
|
SDValue Base = LD->getBasePtr();
|
|
SDValue Ops[]= { Base, AMOpc, getAL(CurDAG),
|
|
CurDAG->getRegister(0, MVT::i32), Chain };
|
|
return CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32,
|
|
MVT::i32, MVT::Other, Ops);
|
|
} else {
|
|
SDValue Chain = LD->getChain();
|
|
SDValue Base = LD->getBasePtr();
|
|
SDValue Ops[]= { Base, Offset, AMOpc, getAL(CurDAG),
|
|
CurDAG->getRegister(0, MVT::i32), Chain };
|
|
return CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32,
|
|
MVT::i32, MVT::Other, Ops);
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
SDNode *ARMDAGToDAGISel::SelectT2IndexedLoad(SDNode *N) {
|
|
LoadSDNode *LD = cast<LoadSDNode>(N);
|
|
ISD::MemIndexedMode AM = LD->getAddressingMode();
|
|
if (AM == ISD::UNINDEXED)
|
|
return NULL;
|
|
|
|
EVT LoadedVT = LD->getMemoryVT();
|
|
bool isSExtLd = LD->getExtensionType() == ISD::SEXTLOAD;
|
|
SDValue Offset;
|
|
bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
|
|
unsigned Opcode = 0;
|
|
bool Match = false;
|
|
if (SelectT2AddrModeImm8Offset(N, LD->getOffset(), Offset)) {
|
|
switch (LoadedVT.getSimpleVT().SimpleTy) {
|
|
case MVT::i32:
|
|
Opcode = isPre ? ARM::t2LDR_PRE : ARM::t2LDR_POST;
|
|
break;
|
|
case MVT::i16:
|
|
if (isSExtLd)
|
|
Opcode = isPre ? ARM::t2LDRSH_PRE : ARM::t2LDRSH_POST;
|
|
else
|
|
Opcode = isPre ? ARM::t2LDRH_PRE : ARM::t2LDRH_POST;
|
|
break;
|
|
case MVT::i8:
|
|
case MVT::i1:
|
|
if (isSExtLd)
|
|
Opcode = isPre ? ARM::t2LDRSB_PRE : ARM::t2LDRSB_POST;
|
|
else
|
|
Opcode = isPre ? ARM::t2LDRB_PRE : ARM::t2LDRB_POST;
|
|
break;
|
|
default:
|
|
return NULL;
|
|
}
|
|
Match = true;
|
|
}
|
|
|
|
if (Match) {
|
|
SDValue Chain = LD->getChain();
|
|
SDValue Base = LD->getBasePtr();
|
|
SDValue Ops[]= { Base, Offset, getAL(CurDAG),
|
|
CurDAG->getRegister(0, MVT::i32), Chain };
|
|
return CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32, MVT::i32,
|
|
MVT::Other, Ops);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/// \brief Form a GPRPair pseudo register from a pair of GPR regs.
|
|
SDNode *ARMDAGToDAGISel::createGPRPairNode(EVT VT, SDValue V0, SDValue V1) {
|
|
SDLoc dl(V0.getNode());
|
|
SDValue RegClass =
|
|
CurDAG->getTargetConstant(ARM::GPRPairRegClassID, MVT::i32);
|
|
SDValue SubReg0 = CurDAG->getTargetConstant(ARM::gsub_0, MVT::i32);
|
|
SDValue SubReg1 = CurDAG->getTargetConstant(ARM::gsub_1, MVT::i32);
|
|
const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
|
|
return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
|
|
}
|
|
|
|
/// \brief Form a D register from a pair of S registers.
|
|
SDNode *ARMDAGToDAGISel::createSRegPairNode(EVT VT, SDValue V0, SDValue V1) {
|
|
SDLoc dl(V0.getNode());
|
|
SDValue RegClass =
|
|
CurDAG->getTargetConstant(ARM::DPR_VFP2RegClassID, MVT::i32);
|
|
SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, MVT::i32);
|
|
SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, MVT::i32);
|
|
const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
|
|
return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
|
|
}
|
|
|
|
/// \brief Form a quad register from a pair of D registers.
|
|
SDNode *ARMDAGToDAGISel::createDRegPairNode(EVT VT, SDValue V0, SDValue V1) {
|
|
SDLoc dl(V0.getNode());
|
|
SDValue RegClass = CurDAG->getTargetConstant(ARM::QPRRegClassID, MVT::i32);
|
|
SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32);
|
|
SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32);
|
|
const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
|
|
return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
|
|
}
|
|
|
|
/// \brief Form 4 consecutive D registers from a pair of Q registers.
|
|
SDNode *ARMDAGToDAGISel::createQRegPairNode(EVT VT, SDValue V0, SDValue V1) {
|
|
SDLoc dl(V0.getNode());
|
|
SDValue RegClass = CurDAG->getTargetConstant(ARM::QQPRRegClassID, MVT::i32);
|
|
SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, MVT::i32);
|
|
SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, MVT::i32);
|
|
const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
|
|
return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
|
|
}
|
|
|
|
/// \brief Form 4 consecutive S registers.
|
|
SDNode *ARMDAGToDAGISel::createQuadSRegsNode(EVT VT, SDValue V0, SDValue V1,
|
|
SDValue V2, SDValue V3) {
|
|
SDLoc dl(V0.getNode());
|
|
SDValue RegClass =
|
|
CurDAG->getTargetConstant(ARM::QPR_VFP2RegClassID, MVT::i32);
|
|
SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, MVT::i32);
|
|
SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, MVT::i32);
|
|
SDValue SubReg2 = CurDAG->getTargetConstant(ARM::ssub_2, MVT::i32);
|
|
SDValue SubReg3 = CurDAG->getTargetConstant(ARM::ssub_3, MVT::i32);
|
|
const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
|
|
V2, SubReg2, V3, SubReg3 };
|
|
return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
|
|
}
|
|
|
|
/// \brief Form 4 consecutive D registers.
|
|
SDNode *ARMDAGToDAGISel::createQuadDRegsNode(EVT VT, SDValue V0, SDValue V1,
|
|
SDValue V2, SDValue V3) {
|
|
SDLoc dl(V0.getNode());
|
|
SDValue RegClass = CurDAG->getTargetConstant(ARM::QQPRRegClassID, MVT::i32);
|
|
SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32);
|
|
SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32);
|
|
SDValue SubReg2 = CurDAG->getTargetConstant(ARM::dsub_2, MVT::i32);
|
|
SDValue SubReg3 = CurDAG->getTargetConstant(ARM::dsub_3, MVT::i32);
|
|
const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
|
|
V2, SubReg2, V3, SubReg3 };
|
|
return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
|
|
}
|
|
|
|
/// \brief Form 4 consecutive Q registers.
|
|
SDNode *ARMDAGToDAGISel::createQuadQRegsNode(EVT VT, SDValue V0, SDValue V1,
|
|
SDValue V2, SDValue V3) {
|
|
SDLoc dl(V0.getNode());
|
|
SDValue RegClass = CurDAG->getTargetConstant(ARM::QQQQPRRegClassID, MVT::i32);
|
|
SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, MVT::i32);
|
|
SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, MVT::i32);
|
|
SDValue SubReg2 = CurDAG->getTargetConstant(ARM::qsub_2, MVT::i32);
|
|
SDValue SubReg3 = CurDAG->getTargetConstant(ARM::qsub_3, MVT::i32);
|
|
const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
|
|
V2, SubReg2, V3, SubReg3 };
|
|
return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
|
|
}
|
|
|
|
/// GetVLDSTAlign - Get the alignment (in bytes) for the alignment operand
|
|
/// of a NEON VLD or VST instruction. The supported values depend on the
|
|
/// number of registers being loaded.
|
|
SDValue ARMDAGToDAGISel::GetVLDSTAlign(SDValue Align, unsigned NumVecs,
|
|
bool is64BitVector) {
|
|
unsigned NumRegs = NumVecs;
|
|
if (!is64BitVector && NumVecs < 3)
|
|
NumRegs *= 2;
|
|
|
|
unsigned Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
|
|
if (Alignment >= 32 && NumRegs == 4)
|
|
Alignment = 32;
|
|
else if (Alignment >= 16 && (NumRegs == 2 || NumRegs == 4))
|
|
Alignment = 16;
|
|
else if (Alignment >= 8)
|
|
Alignment = 8;
|
|
else
|
|
Alignment = 0;
|
|
|
|
return CurDAG->getTargetConstant(Alignment, MVT::i32);
|
|
}
|
|
|
|
// Get the register stride update opcode of a VLD/VST instruction that
|
|
// is otherwise equivalent to the given fixed stride updating instruction.
|
|
static unsigned getVLDSTRegisterUpdateOpcode(unsigned Opc) {
|
|
switch (Opc) {
|
|
default: break;
|
|
case ARM::VLD1d8wb_fixed: return ARM::VLD1d8wb_register;
|
|
case ARM::VLD1d16wb_fixed: return ARM::VLD1d16wb_register;
|
|
case ARM::VLD1d32wb_fixed: return ARM::VLD1d32wb_register;
|
|
case ARM::VLD1d64wb_fixed: return ARM::VLD1d64wb_register;
|
|
case ARM::VLD1q8wb_fixed: return ARM::VLD1q8wb_register;
|
|
case ARM::VLD1q16wb_fixed: return ARM::VLD1q16wb_register;
|
|
case ARM::VLD1q32wb_fixed: return ARM::VLD1q32wb_register;
|
|
case ARM::VLD1q64wb_fixed: return ARM::VLD1q64wb_register;
|
|
|
|
case ARM::VST1d8wb_fixed: return ARM::VST1d8wb_register;
|
|
case ARM::VST1d16wb_fixed: return ARM::VST1d16wb_register;
|
|
case ARM::VST1d32wb_fixed: return ARM::VST1d32wb_register;
|
|
case ARM::VST1d64wb_fixed: return ARM::VST1d64wb_register;
|
|
case ARM::VST1q8wb_fixed: return ARM::VST1q8wb_register;
|
|
case ARM::VST1q16wb_fixed: return ARM::VST1q16wb_register;
|
|
case ARM::VST1q32wb_fixed: return ARM::VST1q32wb_register;
|
|
case ARM::VST1q64wb_fixed: return ARM::VST1q64wb_register;
|
|
case ARM::VST1d64TPseudoWB_fixed: return ARM::VST1d64TPseudoWB_register;
|
|
case ARM::VST1d64QPseudoWB_fixed: return ARM::VST1d64QPseudoWB_register;
|
|
|
|
case ARM::VLD2d8wb_fixed: return ARM::VLD2d8wb_register;
|
|
case ARM::VLD2d16wb_fixed: return ARM::VLD2d16wb_register;
|
|
case ARM::VLD2d32wb_fixed: return ARM::VLD2d32wb_register;
|
|
case ARM::VLD2q8PseudoWB_fixed: return ARM::VLD2q8PseudoWB_register;
|
|
case ARM::VLD2q16PseudoWB_fixed: return ARM::VLD2q16PseudoWB_register;
|
|
case ARM::VLD2q32PseudoWB_fixed: return ARM::VLD2q32PseudoWB_register;
|
|
|
|
case ARM::VST2d8wb_fixed: return ARM::VST2d8wb_register;
|
|
case ARM::VST2d16wb_fixed: return ARM::VST2d16wb_register;
|
|
case ARM::VST2d32wb_fixed: return ARM::VST2d32wb_register;
|
|
case ARM::VST2q8PseudoWB_fixed: return ARM::VST2q8PseudoWB_register;
|
|
case ARM::VST2q16PseudoWB_fixed: return ARM::VST2q16PseudoWB_register;
|
|
case ARM::VST2q32PseudoWB_fixed: return ARM::VST2q32PseudoWB_register;
|
|
|
|
case ARM::VLD2DUPd8wb_fixed: return ARM::VLD2DUPd8wb_register;
|
|
case ARM::VLD2DUPd16wb_fixed: return ARM::VLD2DUPd16wb_register;
|
|
case ARM::VLD2DUPd32wb_fixed: return ARM::VLD2DUPd32wb_register;
|
|
}
|
|
return Opc; // If not one we handle, return it unchanged.
|
|
}
|
|
|
|
SDNode *ARMDAGToDAGISel::SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs,
|
|
const uint16_t *DOpcodes,
|
|
const uint16_t *QOpcodes0,
|
|
const uint16_t *QOpcodes1) {
|
|
assert(NumVecs >= 1 && NumVecs <= 4 && "VLD NumVecs out-of-range");
|
|
SDLoc dl(N);
|
|
|
|
SDValue MemAddr, Align;
|
|
unsigned AddrOpIdx = isUpdating ? 1 : 2;
|
|
if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
|
|
return NULL;
|
|
|
|
SDValue Chain = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
bool is64BitVector = VT.is64BitVector();
|
|
Align = GetVLDSTAlign(Align, NumVecs, is64BitVector);
|
|
|
|
unsigned OpcodeIndex;
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: llvm_unreachable("unhandled vld type");
|
|
// Double-register operations:
|
|
case MVT::v8i8: OpcodeIndex = 0; break;
|
|
case MVT::v4i16: OpcodeIndex = 1; break;
|
|
case MVT::v2f32:
|
|
case MVT::v2i32: OpcodeIndex = 2; break;
|
|
case MVT::v1i64: OpcodeIndex = 3; break;
|
|
// Quad-register operations:
|
|
case MVT::v16i8: OpcodeIndex = 0; break;
|
|
case MVT::v8i16: OpcodeIndex = 1; break;
|
|
case MVT::v4f32:
|
|
case MVT::v4i32: OpcodeIndex = 2; break;
|
|
case MVT::v2i64: OpcodeIndex = 3;
|
|
assert(NumVecs == 1 && "v2i64 type only supported for VLD1");
|
|
break;
|
|
}
|
|
|
|
EVT ResTy;
|
|
if (NumVecs == 1)
|
|
ResTy = VT;
|
|
else {
|
|
unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
|
|
if (!is64BitVector)
|
|
ResTyElts *= 2;
|
|
ResTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64, ResTyElts);
|
|
}
|
|
std::vector<EVT> ResTys;
|
|
ResTys.push_back(ResTy);
|
|
if (isUpdating)
|
|
ResTys.push_back(MVT::i32);
|
|
ResTys.push_back(MVT::Other);
|
|
|
|
SDValue Pred = getAL(CurDAG);
|
|
SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
|
|
SDNode *VLd;
|
|
SmallVector<SDValue, 7> Ops;
|
|
|
|
// Double registers and VLD1/VLD2 quad registers are directly supported.
|
|
if (is64BitVector || NumVecs <= 2) {
|
|
unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
|
|
QOpcodes0[OpcodeIndex]);
|
|
Ops.push_back(MemAddr);
|
|
Ops.push_back(Align);
|
|
if (isUpdating) {
|
|
SDValue Inc = N->getOperand(AddrOpIdx + 1);
|
|
// FIXME: VLD1/VLD2 fixed increment doesn't need Reg0. Remove the reg0
|
|
// case entirely when the rest are updated to that form, too.
|
|
if ((NumVecs == 1 || NumVecs == 2) && !isa<ConstantSDNode>(Inc.getNode()))
|
|
Opc = getVLDSTRegisterUpdateOpcode(Opc);
|
|
// We use a VLD1 for v1i64 even if the pseudo says vld2/3/4, so
|
|
// check for that explicitly too. Horribly hacky, but temporary.
|
|
if ((NumVecs != 1 && NumVecs != 2 && Opc != ARM::VLD1q64wb_fixed) ||
|
|
!isa<ConstantSDNode>(Inc.getNode()))
|
|
Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc);
|
|
}
|
|
Ops.push_back(Pred);
|
|
Ops.push_back(Reg0);
|
|
Ops.push_back(Chain);
|
|
VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
|
|
|
|
} else {
|
|
// Otherwise, quad registers are loaded with two separate instructions,
|
|
// where one loads the even registers and the other loads the odd registers.
|
|
EVT AddrTy = MemAddr.getValueType();
|
|
|
|
// Load the even subregs. This is always an updating load, so that it
|
|
// provides the address to the second load for the odd subregs.
|
|
SDValue ImplDef =
|
|
SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, ResTy), 0);
|
|
const SDValue OpsA[] = { MemAddr, Align, Reg0, ImplDef, Pred, Reg0, Chain };
|
|
SDNode *VLdA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl,
|
|
ResTy, AddrTy, MVT::Other, OpsA);
|
|
Chain = SDValue(VLdA, 2);
|
|
|
|
// Load the odd subregs.
|
|
Ops.push_back(SDValue(VLdA, 1));
|
|
Ops.push_back(Align);
|
|
if (isUpdating) {
|
|
SDValue Inc = N->getOperand(AddrOpIdx + 1);
|
|
assert(isa<ConstantSDNode>(Inc.getNode()) &&
|
|
"only constant post-increment update allowed for VLD3/4");
|
|
(void)Inc;
|
|
Ops.push_back(Reg0);
|
|
}
|
|
Ops.push_back(SDValue(VLdA, 0));
|
|
Ops.push_back(Pred);
|
|
Ops.push_back(Reg0);
|
|
Ops.push_back(Chain);
|
|
VLd = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys, Ops);
|
|
}
|
|
|
|
// Transfer memoperands.
|
|
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
|
|
MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
|
|
cast<MachineSDNode>(VLd)->setMemRefs(MemOp, MemOp + 1);
|
|
|
|
if (NumVecs == 1)
|
|
return VLd;
|
|
|
|
// Extract out the subregisters.
|
|
SDValue SuperReg = SDValue(VLd, 0);
|
|
assert(ARM::dsub_7 == ARM::dsub_0+7 &&
|
|
ARM::qsub_3 == ARM::qsub_0+3 && "Unexpected subreg numbering");
|
|
unsigned Sub0 = (is64BitVector ? ARM::dsub_0 : ARM::qsub_0);
|
|
for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
|
|
ReplaceUses(SDValue(N, Vec),
|
|
CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
|
|
ReplaceUses(SDValue(N, NumVecs), SDValue(VLd, 1));
|
|
if (isUpdating)
|
|
ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLd, 2));
|
|
return NULL;
|
|
}
|
|
|
|
SDNode *ARMDAGToDAGISel::SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs,
|
|
const uint16_t *DOpcodes,
|
|
const uint16_t *QOpcodes0,
|
|
const uint16_t *QOpcodes1) {
|
|
assert(NumVecs >= 1 && NumVecs <= 4 && "VST NumVecs out-of-range");
|
|
SDLoc dl(N);
|
|
|
|
SDValue MemAddr, Align;
|
|
unsigned AddrOpIdx = isUpdating ? 1 : 2;
|
|
unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1)
|
|
if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
|
|
return NULL;
|
|
|
|
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
|
|
MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
|
|
|
|
SDValue Chain = N->getOperand(0);
|
|
EVT VT = N->getOperand(Vec0Idx).getValueType();
|
|
bool is64BitVector = VT.is64BitVector();
|
|
Align = GetVLDSTAlign(Align, NumVecs, is64BitVector);
|
|
|
|
unsigned OpcodeIndex;
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: llvm_unreachable("unhandled vst type");
|
|
// Double-register operations:
|
|
case MVT::v8i8: OpcodeIndex = 0; break;
|
|
case MVT::v4i16: OpcodeIndex = 1; break;
|
|
case MVT::v2f32:
|
|
case MVT::v2i32: OpcodeIndex = 2; break;
|
|
case MVT::v1i64: OpcodeIndex = 3; break;
|
|
// Quad-register operations:
|
|
case MVT::v16i8: OpcodeIndex = 0; break;
|
|
case MVT::v8i16: OpcodeIndex = 1; break;
|
|
case MVT::v4f32:
|
|
case MVT::v4i32: OpcodeIndex = 2; break;
|
|
case MVT::v2i64: OpcodeIndex = 3;
|
|
assert(NumVecs == 1 && "v2i64 type only supported for VST1");
|
|
break;
|
|
}
|
|
|
|
std::vector<EVT> ResTys;
|
|
if (isUpdating)
|
|
ResTys.push_back(MVT::i32);
|
|
ResTys.push_back(MVT::Other);
|
|
|
|
SDValue Pred = getAL(CurDAG);
|
|
SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
|
|
SmallVector<SDValue, 7> Ops;
|
|
|
|
// Double registers and VST1/VST2 quad registers are directly supported.
|
|
if (is64BitVector || NumVecs <= 2) {
|
|
SDValue SrcReg;
|
|
if (NumVecs == 1) {
|
|
SrcReg = N->getOperand(Vec0Idx);
|
|
} else if (is64BitVector) {
|
|
// Form a REG_SEQUENCE to force register allocation.
|
|
SDValue V0 = N->getOperand(Vec0Idx + 0);
|
|
SDValue V1 = N->getOperand(Vec0Idx + 1);
|
|
if (NumVecs == 2)
|
|
SrcReg = SDValue(createDRegPairNode(MVT::v2i64, V0, V1), 0);
|
|
else {
|
|
SDValue V2 = N->getOperand(Vec0Idx + 2);
|
|
// If it's a vst3, form a quad D-register and leave the last part as
|
|
// an undef.
|
|
SDValue V3 = (NumVecs == 3)
|
|
? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0)
|
|
: N->getOperand(Vec0Idx + 3);
|
|
SrcReg = SDValue(createQuadDRegsNode(MVT::v4i64, V0, V1, V2, V3), 0);
|
|
}
|
|
} else {
|
|
// Form a QQ register.
|
|
SDValue Q0 = N->getOperand(Vec0Idx);
|
|
SDValue Q1 = N->getOperand(Vec0Idx + 1);
|
|
SrcReg = SDValue(createQRegPairNode(MVT::v4i64, Q0, Q1), 0);
|
|
}
|
|
|
|
unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
|
|
QOpcodes0[OpcodeIndex]);
|
|
Ops.push_back(MemAddr);
|
|
Ops.push_back(Align);
|
|
if (isUpdating) {
|
|
SDValue Inc = N->getOperand(AddrOpIdx + 1);
|
|
// FIXME: VST1/VST2 fixed increment doesn't need Reg0. Remove the reg0
|
|
// case entirely when the rest are updated to that form, too.
|
|
if (NumVecs <= 2 && !isa<ConstantSDNode>(Inc.getNode()))
|
|
Opc = getVLDSTRegisterUpdateOpcode(Opc);
|
|
// We use a VST1 for v1i64 even if the pseudo says vld2/3/4, so
|
|
// check for that explicitly too. Horribly hacky, but temporary.
|
|
if ((NumVecs > 2 && Opc != ARM::VST1q64wb_fixed) ||
|
|
!isa<ConstantSDNode>(Inc.getNode()))
|
|
Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc);
|
|
}
|
|
Ops.push_back(SrcReg);
|
|
Ops.push_back(Pred);
|
|
Ops.push_back(Reg0);
|
|
Ops.push_back(Chain);
|
|
SDNode *VSt = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
|
|
|
|
// Transfer memoperands.
|
|
cast<MachineSDNode>(VSt)->setMemRefs(MemOp, MemOp + 1);
|
|
|
|
return VSt;
|
|
}
|
|
|
|
// Otherwise, quad registers are stored with two separate instructions,
|
|
// where one stores the even registers and the other stores the odd registers.
|
|
|
|
// Form the QQQQ REG_SEQUENCE.
|
|
SDValue V0 = N->getOperand(Vec0Idx + 0);
|
|
SDValue V1 = N->getOperand(Vec0Idx + 1);
|
|
SDValue V2 = N->getOperand(Vec0Idx + 2);
|
|
SDValue V3 = (NumVecs == 3)
|
|
? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
|
|
: N->getOperand(Vec0Idx + 3);
|
|
SDValue RegSeq = SDValue(createQuadQRegsNode(MVT::v8i64, V0, V1, V2, V3), 0);
|
|
|
|
// Store the even D registers. This is always an updating store, so that it
|
|
// provides the address to the second store for the odd subregs.
|
|
const SDValue OpsA[] = { MemAddr, Align, Reg0, RegSeq, Pred, Reg0, Chain };
|
|
SDNode *VStA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl,
|
|
MemAddr.getValueType(),
|
|
MVT::Other, OpsA);
|
|
cast<MachineSDNode>(VStA)->setMemRefs(MemOp, MemOp + 1);
|
|
Chain = SDValue(VStA, 1);
|
|
|
|
// Store the odd D registers.
|
|
Ops.push_back(SDValue(VStA, 0));
|
|
Ops.push_back(Align);
|
|
if (isUpdating) {
|
|
SDValue Inc = N->getOperand(AddrOpIdx + 1);
|
|
assert(isa<ConstantSDNode>(Inc.getNode()) &&
|
|
"only constant post-increment update allowed for VST3/4");
|
|
(void)Inc;
|
|
Ops.push_back(Reg0);
|
|
}
|
|
Ops.push_back(RegSeq);
|
|
Ops.push_back(Pred);
|
|
Ops.push_back(Reg0);
|
|
Ops.push_back(Chain);
|
|
SDNode *VStB = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys,
|
|
Ops);
|
|
cast<MachineSDNode>(VStB)->setMemRefs(MemOp, MemOp + 1);
|
|
return VStB;
|
|
}
|
|
|
|
SDNode *ARMDAGToDAGISel::SelectVLDSTLane(SDNode *N, bool IsLoad,
|
|
bool isUpdating, unsigned NumVecs,
|
|
const uint16_t *DOpcodes,
|
|
const uint16_t *QOpcodes) {
|
|
assert(NumVecs >=2 && NumVecs <= 4 && "VLDSTLane NumVecs out-of-range");
|
|
SDLoc dl(N);
|
|
|
|
SDValue MemAddr, Align;
|
|
unsigned AddrOpIdx = isUpdating ? 1 : 2;
|
|
unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1)
|
|
if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
|
|
return NULL;
|
|
|
|
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
|
|
MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
|
|
|
|
SDValue Chain = N->getOperand(0);
|
|
unsigned Lane =
|
|
cast<ConstantSDNode>(N->getOperand(Vec0Idx + NumVecs))->getZExtValue();
|
|
EVT VT = N->getOperand(Vec0Idx).getValueType();
|
|
bool is64BitVector = VT.is64BitVector();
|
|
|
|
unsigned Alignment = 0;
|
|
if (NumVecs != 3) {
|
|
Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
|
|
unsigned NumBytes = NumVecs * VT.getVectorElementType().getSizeInBits()/8;
|
|
if (Alignment > NumBytes)
|
|
Alignment = NumBytes;
|
|
if (Alignment < 8 && Alignment < NumBytes)
|
|
Alignment = 0;
|
|
// Alignment must be a power of two; make sure of that.
|
|
Alignment = (Alignment & -Alignment);
|
|
if (Alignment == 1)
|
|
Alignment = 0;
|
|
}
|
|
Align = CurDAG->getTargetConstant(Alignment, MVT::i32);
|
|
|
|
unsigned OpcodeIndex;
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: llvm_unreachable("unhandled vld/vst lane type");
|
|
// Double-register operations:
|
|
case MVT::v8i8: OpcodeIndex = 0; break;
|
|
case MVT::v4i16: OpcodeIndex = 1; break;
|
|
case MVT::v2f32:
|
|
case MVT::v2i32: OpcodeIndex = 2; break;
|
|
// Quad-register operations:
|
|
case MVT::v8i16: OpcodeIndex = 0; break;
|
|
case MVT::v4f32:
|
|
case MVT::v4i32: OpcodeIndex = 1; break;
|
|
}
|
|
|
|
std::vector<EVT> ResTys;
|
|
if (IsLoad) {
|
|
unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
|
|
if (!is64BitVector)
|
|
ResTyElts *= 2;
|
|
ResTys.push_back(EVT::getVectorVT(*CurDAG->getContext(),
|
|
MVT::i64, ResTyElts));
|
|
}
|
|
if (isUpdating)
|
|
ResTys.push_back(MVT::i32);
|
|
ResTys.push_back(MVT::Other);
|
|
|
|
SDValue Pred = getAL(CurDAG);
|
|
SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
|
|
|
|
SmallVector<SDValue, 8> Ops;
|
|
Ops.push_back(MemAddr);
|
|
Ops.push_back(Align);
|
|
if (isUpdating) {
|
|
SDValue Inc = N->getOperand(AddrOpIdx + 1);
|
|
Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc);
|
|
}
|
|
|
|
SDValue SuperReg;
|
|
SDValue V0 = N->getOperand(Vec0Idx + 0);
|
|
SDValue V1 = N->getOperand(Vec0Idx + 1);
|
|
if (NumVecs == 2) {
|
|
if (is64BitVector)
|
|
SuperReg = SDValue(createDRegPairNode(MVT::v2i64, V0, V1), 0);
|
|
else
|
|
SuperReg = SDValue(createQRegPairNode(MVT::v4i64, V0, V1), 0);
|
|
} else {
|
|
SDValue V2 = N->getOperand(Vec0Idx + 2);
|
|
SDValue V3 = (NumVecs == 3)
|
|
? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
|
|
: N->getOperand(Vec0Idx + 3);
|
|
if (is64BitVector)
|
|
SuperReg = SDValue(createQuadDRegsNode(MVT::v4i64, V0, V1, V2, V3), 0);
|
|
else
|
|
SuperReg = SDValue(createQuadQRegsNode(MVT::v8i64, V0, V1, V2, V3), 0);
|
|
}
|
|
Ops.push_back(SuperReg);
|
|
Ops.push_back(getI32Imm(Lane));
|
|
Ops.push_back(Pred);
|
|
Ops.push_back(Reg0);
|
|
Ops.push_back(Chain);
|
|
|
|
unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
|
|
QOpcodes[OpcodeIndex]);
|
|
SDNode *VLdLn = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
|
|
cast<MachineSDNode>(VLdLn)->setMemRefs(MemOp, MemOp + 1);
|
|
if (!IsLoad)
|
|
return VLdLn;
|
|
|
|
// Extract the subregisters.
|
|
SuperReg = SDValue(VLdLn, 0);
|
|
assert(ARM::dsub_7 == ARM::dsub_0+7 &&
|
|
ARM::qsub_3 == ARM::qsub_0+3 && "Unexpected subreg numbering");
|
|
unsigned Sub0 = is64BitVector ? ARM::dsub_0 : ARM::qsub_0;
|
|
for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
|
|
ReplaceUses(SDValue(N, Vec),
|
|
CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
|
|
ReplaceUses(SDValue(N, NumVecs), SDValue(VLdLn, 1));
|
|
if (isUpdating)
|
|
ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdLn, 2));
|
|
return NULL;
|
|
}
|
|
|
|
SDNode *ARMDAGToDAGISel::SelectVLDDup(SDNode *N, bool isUpdating,
|
|
unsigned NumVecs,
|
|
const uint16_t *Opcodes) {
|
|
assert(NumVecs >=2 && NumVecs <= 4 && "VLDDup NumVecs out-of-range");
|
|
SDLoc dl(N);
|
|
|
|
SDValue MemAddr, Align;
|
|
if (!SelectAddrMode6(N, N->getOperand(1), MemAddr, Align))
|
|
return NULL;
|
|
|
|
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
|
|
MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
|
|
|
|
SDValue Chain = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
unsigned Alignment = 0;
|
|
if (NumVecs != 3) {
|
|
Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
|
|
unsigned NumBytes = NumVecs * VT.getVectorElementType().getSizeInBits()/8;
|
|
if (Alignment > NumBytes)
|
|
Alignment = NumBytes;
|
|
if (Alignment < 8 && Alignment < NumBytes)
|
|
Alignment = 0;
|
|
// Alignment must be a power of two; make sure of that.
|
|
Alignment = (Alignment & -Alignment);
|
|
if (Alignment == 1)
|
|
Alignment = 0;
|
|
}
|
|
Align = CurDAG->getTargetConstant(Alignment, MVT::i32);
|
|
|
|
unsigned OpcodeIndex;
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: llvm_unreachable("unhandled vld-dup type");
|
|
case MVT::v8i8: OpcodeIndex = 0; break;
|
|
case MVT::v4i16: OpcodeIndex = 1; break;
|
|
case MVT::v2f32:
|
|
case MVT::v2i32: OpcodeIndex = 2; break;
|
|
}
|
|
|
|
SDValue Pred = getAL(CurDAG);
|
|
SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
|
|
SDValue SuperReg;
|
|
unsigned Opc = Opcodes[OpcodeIndex];
|
|
SmallVector<SDValue, 6> Ops;
|
|
Ops.push_back(MemAddr);
|
|
Ops.push_back(Align);
|
|
if (isUpdating) {
|
|
// fixed-stride update instructions don't have an explicit writeback
|
|
// operand. It's implicit in the opcode itself.
|
|
SDValue Inc = N->getOperand(2);
|
|
if (!isa<ConstantSDNode>(Inc.getNode()))
|
|
Ops.push_back(Inc);
|
|
// FIXME: VLD3 and VLD4 haven't been updated to that form yet.
|
|
else if (NumVecs > 2)
|
|
Ops.push_back(Reg0);
|
|
}
|
|
Ops.push_back(Pred);
|
|
Ops.push_back(Reg0);
|
|
Ops.push_back(Chain);
|
|
|
|
unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
|
|
std::vector<EVT> ResTys;
|
|
ResTys.push_back(EVT::getVectorVT(*CurDAG->getContext(), MVT::i64,ResTyElts));
|
|
if (isUpdating)
|
|
ResTys.push_back(MVT::i32);
|
|
ResTys.push_back(MVT::Other);
|
|
SDNode *VLdDup = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
|
|
cast<MachineSDNode>(VLdDup)->setMemRefs(MemOp, MemOp + 1);
|
|
SuperReg = SDValue(VLdDup, 0);
|
|
|
|
// Extract the subregisters.
|
|
assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
|
|
unsigned SubIdx = ARM::dsub_0;
|
|
for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
|
|
ReplaceUses(SDValue(N, Vec),
|
|
CurDAG->getTargetExtractSubreg(SubIdx+Vec, dl, VT, SuperReg));
|
|
ReplaceUses(SDValue(N, NumVecs), SDValue(VLdDup, 1));
|
|
if (isUpdating)
|
|
ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdDup, 2));
|
|
return NULL;
|
|
}
|
|
|
|
SDNode *ARMDAGToDAGISel::SelectVTBL(SDNode *N, bool IsExt, unsigned NumVecs,
|
|
unsigned Opc) {
|
|
assert(NumVecs >= 2 && NumVecs <= 4 && "VTBL NumVecs out-of-range");
|
|
SDLoc dl(N);
|
|
EVT VT = N->getValueType(0);
|
|
unsigned FirstTblReg = IsExt ? 2 : 1;
|
|
|
|
// Form a REG_SEQUENCE to force register allocation.
|
|
SDValue RegSeq;
|
|
SDValue V0 = N->getOperand(FirstTblReg + 0);
|
|
SDValue V1 = N->getOperand(FirstTblReg + 1);
|
|
if (NumVecs == 2)
|
|
RegSeq = SDValue(createDRegPairNode(MVT::v16i8, V0, V1), 0);
|
|
else {
|
|
SDValue V2 = N->getOperand(FirstTblReg + 2);
|
|
// If it's a vtbl3, form a quad D-register and leave the last part as
|
|
// an undef.
|
|
SDValue V3 = (NumVecs == 3)
|
|
? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
|
|
: N->getOperand(FirstTblReg + 3);
|
|
RegSeq = SDValue(createQuadDRegsNode(MVT::v4i64, V0, V1, V2, V3), 0);
|
|
}
|
|
|
|
SmallVector<SDValue, 6> Ops;
|
|
if (IsExt)
|
|
Ops.push_back(N->getOperand(1));
|
|
Ops.push_back(RegSeq);
|
|
Ops.push_back(N->getOperand(FirstTblReg + NumVecs));
|
|
Ops.push_back(getAL(CurDAG)); // predicate
|
|
Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // predicate register
|
|
return CurDAG->getMachineNode(Opc, dl, VT, Ops);
|
|
}
|
|
|
|
SDNode *ARMDAGToDAGISel::SelectV6T2BitfieldExtractOp(SDNode *N,
|
|
bool isSigned) {
|
|
if (!Subtarget->hasV6T2Ops())
|
|
return NULL;
|
|
|
|
unsigned Opc = isSigned
|
|
? (Subtarget->isThumb() ? ARM::t2SBFX : ARM::SBFX)
|
|
: (Subtarget->isThumb() ? ARM::t2UBFX : ARM::UBFX);
|
|
|
|
// For unsigned extracts, check for a shift right and mask
|
|
unsigned And_imm = 0;
|
|
if (N->getOpcode() == ISD::AND) {
|
|
if (isOpcWithIntImmediate(N, ISD::AND, And_imm)) {
|
|
|
|
// The immediate is a mask of the low bits iff imm & (imm+1) == 0
|
|
if (And_imm & (And_imm + 1))
|
|
return NULL;
|
|
|
|
unsigned Srl_imm = 0;
|
|
if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRL,
|
|
Srl_imm)) {
|
|
assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
|
|
|
|
// Note: The width operand is encoded as width-1.
|
|
unsigned Width = CountTrailingOnes_32(And_imm) - 1;
|
|
unsigned LSB = Srl_imm;
|
|
|
|
SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
|
|
|
|
if ((LSB + Width + 1) == N->getValueType(0).getSizeInBits()) {
|
|
// It's cheaper to use a right shift to extract the top bits.
|
|
if (Subtarget->isThumb()) {
|
|
Opc = isSigned ? ARM::t2ASRri : ARM::t2LSRri;
|
|
SDValue Ops[] = { N->getOperand(0).getOperand(0),
|
|
CurDAG->getTargetConstant(LSB, MVT::i32),
|
|
getAL(CurDAG), Reg0, Reg0 };
|
|
return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
|
|
}
|
|
|
|
// ARM models shift instructions as MOVsi with shifter operand.
|
|
ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(ISD::SRL);
|
|
SDValue ShOpc =
|
|
CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, LSB),
|
|
MVT::i32);
|
|
SDValue Ops[] = { N->getOperand(0).getOperand(0), ShOpc,
|
|
getAL(CurDAG), Reg0, Reg0 };
|
|
return CurDAG->SelectNodeTo(N, ARM::MOVsi, MVT::i32, Ops, 5);
|
|
}
|
|
|
|
SDValue Ops[] = { N->getOperand(0).getOperand(0),
|
|
CurDAG->getTargetConstant(LSB, MVT::i32),
|
|
CurDAG->getTargetConstant(Width, MVT::i32),
|
|
getAL(CurDAG), Reg0 };
|
|
return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
// Otherwise, we're looking for a shift of a shift
|
|
unsigned Shl_imm = 0;
|
|
if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, Shl_imm)) {
|
|
assert(Shl_imm > 0 && Shl_imm < 32 && "bad amount in shift node!");
|
|
unsigned Srl_imm = 0;
|
|
if (isInt32Immediate(N->getOperand(1), Srl_imm)) {
|
|
assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
|
|
// Note: The width operand is encoded as width-1.
|
|
unsigned Width = 32 - Srl_imm - 1;
|
|
int LSB = Srl_imm - Shl_imm;
|
|
if (LSB < 0)
|
|
return NULL;
|
|
SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
|
|
SDValue Ops[] = { N->getOperand(0).getOperand(0),
|
|
CurDAG->getTargetConstant(LSB, MVT::i32),
|
|
CurDAG->getTargetConstant(Width, MVT::i32),
|
|
getAL(CurDAG), Reg0 };
|
|
return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/// Target-specific DAG combining for ISD::XOR.
|
|
/// Target-independent combining lowers SELECT_CC nodes of the form
|
|
/// select_cc setg[ge] X, 0, X, -X
|
|
/// select_cc setgt X, -1, X, -X
|
|
/// select_cc setl[te] X, 0, -X, X
|
|
/// select_cc setlt X, 1, -X, X
|
|
/// which represent Integer ABS into:
|
|
/// Y = sra (X, size(X)-1); xor (add (X, Y), Y)
|
|
/// ARM instruction selection detects the latter and matches it to
|
|
/// ARM::ABS or ARM::t2ABS machine node.
|
|
SDNode *ARMDAGToDAGISel::SelectABSOp(SDNode *N){
|
|
SDValue XORSrc0 = N->getOperand(0);
|
|
SDValue XORSrc1 = N->getOperand(1);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
if (Subtarget->isThumb1Only())
|
|
return NULL;
|
|
|
|
if (XORSrc0.getOpcode() != ISD::ADD || XORSrc1.getOpcode() != ISD::SRA)
|
|
return NULL;
|
|
|
|
SDValue ADDSrc0 = XORSrc0.getOperand(0);
|
|
SDValue ADDSrc1 = XORSrc0.getOperand(1);
|
|
SDValue SRASrc0 = XORSrc1.getOperand(0);
|
|
SDValue SRASrc1 = XORSrc1.getOperand(1);
|
|
ConstantSDNode *SRAConstant = dyn_cast<ConstantSDNode>(SRASrc1);
|
|
EVT XType = SRASrc0.getValueType();
|
|
unsigned Size = XType.getSizeInBits() - 1;
|
|
|
|
if (ADDSrc1 == XORSrc1 && ADDSrc0 == SRASrc0 &&
|
|
XType.isInteger() && SRAConstant != NULL &&
|
|
Size == SRAConstant->getZExtValue()) {
|
|
unsigned Opcode = Subtarget->isThumb2() ? ARM::t2ABS : ARM::ABS;
|
|
return CurDAG->SelectNodeTo(N, Opcode, VT, ADDSrc0);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
SDNode *ARMDAGToDAGISel::SelectConcatVector(SDNode *N) {
|
|
// The only time a CONCAT_VECTORS operation can have legal types is when
|
|
// two 64-bit vectors are concatenated to a 128-bit vector.
|
|
EVT VT = N->getValueType(0);
|
|
if (!VT.is128BitVector() || N->getNumOperands() != 2)
|
|
llvm_unreachable("unexpected CONCAT_VECTORS");
|
|
return createDRegPairNode(VT, N->getOperand(0), N->getOperand(1));
|
|
}
|
|
|
|
SDNode *ARMDAGToDAGISel::SelectAtomic(SDNode *Node, unsigned Op8,
|
|
unsigned Op16,unsigned Op32,
|
|
unsigned Op64) {
|
|
// Mostly direct translation to the given operations, except that we preserve
|
|
// the AtomicOrdering for use later on.
|
|
AtomicSDNode *AN = cast<AtomicSDNode>(Node);
|
|
EVT VT = AN->getMemoryVT();
|
|
|
|
unsigned Op;
|
|
SDVTList VTs = CurDAG->getVTList(AN->getValueType(0), MVT::Other);
|
|
if (VT == MVT::i8)
|
|
Op = Op8;
|
|
else if (VT == MVT::i16)
|
|
Op = Op16;
|
|
else if (VT == MVT::i32)
|
|
Op = Op32;
|
|
else if (VT == MVT::i64) {
|
|
Op = Op64;
|
|
VTs = CurDAG->getVTList(MVT::i32, MVT::i32, MVT::Other);
|
|
} else
|
|
llvm_unreachable("Unexpected atomic operation");
|
|
|
|
SmallVector<SDValue, 6> Ops;
|
|
for (unsigned i = 1; i < AN->getNumOperands(); ++i)
|
|
Ops.push_back(AN->getOperand(i));
|
|
|
|
Ops.push_back(CurDAG->getTargetConstant(AN->getOrdering(), MVT::i32));
|
|
Ops.push_back(AN->getOperand(0)); // Chain moves to the end
|
|
|
|
return CurDAG->SelectNodeTo(Node, Op, VTs, &Ops[0], Ops.size());
|
|
}
|
|
|
|
SDNode *ARMDAGToDAGISel::Select(SDNode *N) {
|
|
SDLoc dl(N);
|
|
|
|
if (N->isMachineOpcode()) {
|
|
N->setNodeId(-1);
|
|
return NULL; // Already selected.
|
|
}
|
|
|
|
switch (N->getOpcode()) {
|
|
default: break;
|
|
case ISD::INLINEASM: {
|
|
SDNode *ResNode = SelectInlineAsm(N);
|
|
if (ResNode)
|
|
return ResNode;
|
|
break;
|
|
}
|
|
case ISD::XOR: {
|
|
// Select special operations if XOR node forms integer ABS pattern
|
|
SDNode *ResNode = SelectABSOp(N);
|
|
if (ResNode)
|
|
return ResNode;
|
|
// Other cases are autogenerated.
|
|
break;
|
|
}
|
|
case ISD::Constant: {
|
|
unsigned Val = cast<ConstantSDNode>(N)->getZExtValue();
|
|
bool UseCP = true;
|
|
if (Subtarget->hasThumb2())
|
|
// Thumb2-aware targets have the MOVT instruction, so all immediates can
|
|
// be done with MOV + MOVT, at worst.
|
|
UseCP = 0;
|
|
else {
|
|
if (Subtarget->isThumb()) {
|
|
UseCP = (Val > 255 && // MOV
|
|
~Val > 255 && // MOV + MVN
|
|
!ARM_AM::isThumbImmShiftedVal(Val)); // MOV + LSL
|
|
} else
|
|
UseCP = (ARM_AM::getSOImmVal(Val) == -1 && // MOV
|
|
ARM_AM::getSOImmVal(~Val) == -1 && // MVN
|
|
!ARM_AM::isSOImmTwoPartVal(Val)); // two instrs.
|
|
}
|
|
|
|
if (UseCP) {
|
|
SDValue CPIdx =
|
|
CurDAG->getTargetConstantPool(ConstantInt::get(
|
|
Type::getInt32Ty(*CurDAG->getContext()), Val),
|
|
getTargetLowering()->getPointerTy());
|
|
|
|
SDNode *ResNode;
|
|
if (Subtarget->isThumb1Only()) {
|
|
SDValue Pred = getAL(CurDAG);
|
|
SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
|
|
SDValue Ops[] = { CPIdx, Pred, PredReg, CurDAG->getEntryNode() };
|
|
ResNode = CurDAG->getMachineNode(ARM::tLDRpci, dl, MVT::i32, MVT::Other,
|
|
Ops);
|
|
} else {
|
|
SDValue Ops[] = {
|
|
CPIdx,
|
|
CurDAG->getTargetConstant(0, MVT::i32),
|
|
getAL(CurDAG),
|
|
CurDAG->getRegister(0, MVT::i32),
|
|
CurDAG->getEntryNode()
|
|
};
|
|
ResNode=CurDAG->getMachineNode(ARM::LDRcp, dl, MVT::i32, MVT::Other,
|
|
Ops);
|
|
}
|
|
ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0));
|
|
return NULL;
|
|
}
|
|
|
|
// Other cases are autogenerated.
|
|
break;
|
|
}
|
|
case ISD::FrameIndex: {
|
|
// Selects to ADDri FI, 0 which in turn will become ADDri SP, imm.
|
|
int FI = cast<FrameIndexSDNode>(N)->getIndex();
|
|
SDValue TFI = CurDAG->getTargetFrameIndex(FI,
|
|
getTargetLowering()->getPointerTy());
|
|
if (Subtarget->isThumb1Only()) {
|
|
SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32),
|
|
getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
|
|
return CurDAG->SelectNodeTo(N, ARM::tADDrSPi, MVT::i32, Ops, 4);
|
|
} else {
|
|
unsigned Opc = ((Subtarget->isThumb() && Subtarget->hasThumb2()) ?
|
|
ARM::t2ADDri : ARM::ADDri);
|
|
SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32),
|
|
getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
|
|
CurDAG->getRegister(0, MVT::i32) };
|
|
return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
|
|
}
|
|
}
|
|
case ISD::SRL:
|
|
if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false))
|
|
return I;
|
|
break;
|
|
case ISD::SRA:
|
|
if (SDNode *I = SelectV6T2BitfieldExtractOp(N, true))
|
|
return I;
|
|
break;
|
|
case ISD::MUL:
|
|
if (Subtarget->isThumb1Only())
|
|
break;
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
|
|
unsigned RHSV = C->getZExtValue();
|
|
if (!RHSV) break;
|
|
if (isPowerOf2_32(RHSV-1)) { // 2^n+1?
|
|
unsigned ShImm = Log2_32(RHSV-1);
|
|
if (ShImm >= 32)
|
|
break;
|
|
SDValue V = N->getOperand(0);
|
|
ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
|
|
SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32);
|
|
SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
|
|
if (Subtarget->isThumb()) {
|
|
SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
|
|
return CurDAG->SelectNodeTo(N, ARM::t2ADDrs, MVT::i32, Ops, 6);
|
|
} else {
|
|
SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
|
|
return CurDAG->SelectNodeTo(N, ARM::ADDrsi, MVT::i32, Ops, 7);
|
|
}
|
|
}
|
|
if (isPowerOf2_32(RHSV+1)) { // 2^n-1?
|
|
unsigned ShImm = Log2_32(RHSV+1);
|
|
if (ShImm >= 32)
|
|
break;
|
|
SDValue V = N->getOperand(0);
|
|
ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
|
|
SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32);
|
|
SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
|
|
if (Subtarget->isThumb()) {
|
|
SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
|
|
return CurDAG->SelectNodeTo(N, ARM::t2RSBrs, MVT::i32, Ops, 6);
|
|
} else {
|
|
SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
|
|
return CurDAG->SelectNodeTo(N, ARM::RSBrsi, MVT::i32, Ops, 7);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case ISD::AND: {
|
|
// Check for unsigned bitfield extract
|
|
if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false))
|
|
return I;
|
|
|
|
// (and (or x, c2), c1) and top 16-bits of c1 and c2 match, lower 16-bits
|
|
// of c1 are 0xffff, and lower 16-bit of c2 are 0. That is, the top 16-bits
|
|
// are entirely contributed by c2 and lower 16-bits are entirely contributed
|
|
// by x. That's equal to (or (and x, 0xffff), (and c1, 0xffff0000)).
|
|
// Select it to: "movt x, ((c1 & 0xffff) >> 16)
|
|
EVT VT = N->getValueType(0);
|
|
if (VT != MVT::i32)
|
|
break;
|
|
unsigned Opc = (Subtarget->isThumb() && Subtarget->hasThumb2())
|
|
? ARM::t2MOVTi16
|
|
: (Subtarget->hasV6T2Ops() ? ARM::MOVTi16 : 0);
|
|
if (!Opc)
|
|
break;
|
|
SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
|
|
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
|
|
if (!N1C)
|
|
break;
|
|
if (N0.getOpcode() == ISD::OR && N0.getNode()->hasOneUse()) {
|
|
SDValue N2 = N0.getOperand(1);
|
|
ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
|
|
if (!N2C)
|
|
break;
|
|
unsigned N1CVal = N1C->getZExtValue();
|
|
unsigned N2CVal = N2C->getZExtValue();
|
|
if ((N1CVal & 0xffff0000U) == (N2CVal & 0xffff0000U) &&
|
|
(N1CVal & 0xffffU) == 0xffffU &&
|
|
(N2CVal & 0xffffU) == 0x0U) {
|
|
SDValue Imm16 = CurDAG->getTargetConstant((N2CVal & 0xFFFF0000U) >> 16,
|
|
MVT::i32);
|
|
SDValue Ops[] = { N0.getOperand(0), Imm16,
|
|
getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
|
|
return CurDAG->getMachineNode(Opc, dl, VT, Ops);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case ARMISD::VMOVRRD:
|
|
return CurDAG->getMachineNode(ARM::VMOVRRD, dl, MVT::i32, MVT::i32,
|
|
N->getOperand(0), getAL(CurDAG),
|
|
CurDAG->getRegister(0, MVT::i32));
|
|
case ISD::UMUL_LOHI: {
|
|
if (Subtarget->isThumb1Only())
|
|
break;
|
|
if (Subtarget->isThumb()) {
|
|
SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
|
|
getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
|
|
return CurDAG->getMachineNode(ARM::t2UMULL, dl, MVT::i32, MVT::i32, Ops);
|
|
} else {
|
|
SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
|
|
getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
|
|
CurDAG->getRegister(0, MVT::i32) };
|
|
return CurDAG->getMachineNode(Subtarget->hasV6Ops() ?
|
|
ARM::UMULL : ARM::UMULLv5,
|
|
dl, MVT::i32, MVT::i32, Ops);
|
|
}
|
|
}
|
|
case ISD::SMUL_LOHI: {
|
|
if (Subtarget->isThumb1Only())
|
|
break;
|
|
if (Subtarget->isThumb()) {
|
|
SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
|
|
getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
|
|
return CurDAG->getMachineNode(ARM::t2SMULL, dl, MVT::i32, MVT::i32, Ops);
|
|
} else {
|
|
SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
|
|
getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
|
|
CurDAG->getRegister(0, MVT::i32) };
|
|
return CurDAG->getMachineNode(Subtarget->hasV6Ops() ?
|
|
ARM::SMULL : ARM::SMULLv5,
|
|
dl, MVT::i32, MVT::i32, Ops);
|
|
}
|
|
}
|
|
case ARMISD::UMLAL:{
|
|
if (Subtarget->isThumb()) {
|
|
SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
|
|
N->getOperand(3), getAL(CurDAG),
|
|
CurDAG->getRegister(0, MVT::i32)};
|
|
return CurDAG->getMachineNode(ARM::t2UMLAL, dl, MVT::i32, MVT::i32, Ops);
|
|
}else{
|
|
SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
|
|
N->getOperand(3), getAL(CurDAG),
|
|
CurDAG->getRegister(0, MVT::i32),
|
|
CurDAG->getRegister(0, MVT::i32) };
|
|
return CurDAG->getMachineNode(Subtarget->hasV6Ops() ?
|
|
ARM::UMLAL : ARM::UMLALv5,
|
|
dl, MVT::i32, MVT::i32, Ops);
|
|
}
|
|
}
|
|
case ARMISD::SMLAL:{
|
|
if (Subtarget->isThumb()) {
|
|
SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
|
|
N->getOperand(3), getAL(CurDAG),
|
|
CurDAG->getRegister(0, MVT::i32)};
|
|
return CurDAG->getMachineNode(ARM::t2SMLAL, dl, MVT::i32, MVT::i32, Ops);
|
|
}else{
|
|
SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
|
|
N->getOperand(3), getAL(CurDAG),
|
|
CurDAG->getRegister(0, MVT::i32),
|
|
CurDAG->getRegister(0, MVT::i32) };
|
|
return CurDAG->getMachineNode(Subtarget->hasV6Ops() ?
|
|
ARM::SMLAL : ARM::SMLALv5,
|
|
dl, MVT::i32, MVT::i32, Ops);
|
|
}
|
|
}
|
|
case ISD::LOAD: {
|
|
SDNode *ResNode = 0;
|
|
if (Subtarget->isThumb() && Subtarget->hasThumb2())
|
|
ResNode = SelectT2IndexedLoad(N);
|
|
else
|
|
ResNode = SelectARMIndexedLoad(N);
|
|
if (ResNode)
|
|
return ResNode;
|
|
// Other cases are autogenerated.
|
|
break;
|
|
}
|
|
case ARMISD::BRCOND: {
|
|
// Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
|
|
// Emits: (Bcc:void (bb:Other):$dst, (imm:i32):$cc)
|
|
// Pattern complexity = 6 cost = 1 size = 0
|
|
|
|
// Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
|
|
// Emits: (tBcc:void (bb:Other):$dst, (imm:i32):$cc)
|
|
// Pattern complexity = 6 cost = 1 size = 0
|
|
|
|
// Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
|
|
// Emits: (t2Bcc:void (bb:Other):$dst, (imm:i32):$cc)
|
|
// Pattern complexity = 6 cost = 1 size = 0
|
|
|
|
unsigned Opc = Subtarget->isThumb() ?
|
|
((Subtarget->hasThumb2()) ? ARM::t2Bcc : ARM::tBcc) : ARM::Bcc;
|
|
SDValue Chain = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDValue N2 = N->getOperand(2);
|
|
SDValue N3 = N->getOperand(3);
|
|
SDValue InFlag = N->getOperand(4);
|
|
assert(N1.getOpcode() == ISD::BasicBlock);
|
|
assert(N2.getOpcode() == ISD::Constant);
|
|
assert(N3.getOpcode() == ISD::Register);
|
|
|
|
SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned)
|
|
cast<ConstantSDNode>(N2)->getZExtValue()),
|
|
MVT::i32);
|
|
SDValue Ops[] = { N1, Tmp2, N3, Chain, InFlag };
|
|
SDNode *ResNode = CurDAG->getMachineNode(Opc, dl, MVT::Other,
|
|
MVT::Glue, Ops);
|
|
Chain = SDValue(ResNode, 0);
|
|
if (N->getNumValues() == 2) {
|
|
InFlag = SDValue(ResNode, 1);
|
|
ReplaceUses(SDValue(N, 1), InFlag);
|
|
}
|
|
ReplaceUses(SDValue(N, 0),
|
|
SDValue(Chain.getNode(), Chain.getResNo()));
|
|
return NULL;
|
|
}
|
|
case ARMISD::VZIP: {
|
|
unsigned Opc = 0;
|
|
EVT VT = N->getValueType(0);
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: return NULL;
|
|
case MVT::v8i8: Opc = ARM::VZIPd8; break;
|
|
case MVT::v4i16: Opc = ARM::VZIPd16; break;
|
|
case MVT::v2f32:
|
|
// vzip.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm.
|
|
case MVT::v2i32: Opc = ARM::VTRNd32; break;
|
|
case MVT::v16i8: Opc = ARM::VZIPq8; break;
|
|
case MVT::v8i16: Opc = ARM::VZIPq16; break;
|
|
case MVT::v4f32:
|
|
case MVT::v4i32: Opc = ARM::VZIPq32; break;
|
|
}
|
|
SDValue Pred = getAL(CurDAG);
|
|
SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
|
|
SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
|
|
return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops);
|
|
}
|
|
case ARMISD::VUZP: {
|
|
unsigned Opc = 0;
|
|
EVT VT = N->getValueType(0);
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: return NULL;
|
|
case MVT::v8i8: Opc = ARM::VUZPd8; break;
|
|
case MVT::v4i16: Opc = ARM::VUZPd16; break;
|
|
case MVT::v2f32:
|
|
// vuzp.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm.
|
|
case MVT::v2i32: Opc = ARM::VTRNd32; break;
|
|
case MVT::v16i8: Opc = ARM::VUZPq8; break;
|
|
case MVT::v8i16: Opc = ARM::VUZPq16; break;
|
|
case MVT::v4f32:
|
|
case MVT::v4i32: Opc = ARM::VUZPq32; break;
|
|
}
|
|
SDValue Pred = getAL(CurDAG);
|
|
SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
|
|
SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
|
|
return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops);
|
|
}
|
|
case ARMISD::VTRN: {
|
|
unsigned Opc = 0;
|
|
EVT VT = N->getValueType(0);
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: return NULL;
|
|
case MVT::v8i8: Opc = ARM::VTRNd8; break;
|
|
case MVT::v4i16: Opc = ARM::VTRNd16; break;
|
|
case MVT::v2f32:
|
|
case MVT::v2i32: Opc = ARM::VTRNd32; break;
|
|
case MVT::v16i8: Opc = ARM::VTRNq8; break;
|
|
case MVT::v8i16: Opc = ARM::VTRNq16; break;
|
|
case MVT::v4f32:
|
|
case MVT::v4i32: Opc = ARM::VTRNq32; break;
|
|
}
|
|
SDValue Pred = getAL(CurDAG);
|
|
SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
|
|
SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
|
|
return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops);
|
|
}
|
|
case ARMISD::BUILD_VECTOR: {
|
|
EVT VecVT = N->getValueType(0);
|
|
EVT EltVT = VecVT.getVectorElementType();
|
|
unsigned NumElts = VecVT.getVectorNumElements();
|
|
if (EltVT == MVT::f64) {
|
|
assert(NumElts == 2 && "unexpected type for BUILD_VECTOR");
|
|
return createDRegPairNode(VecVT, N->getOperand(0), N->getOperand(1));
|
|
}
|
|
assert(EltVT == MVT::f32 && "unexpected type for BUILD_VECTOR");
|
|
if (NumElts == 2)
|
|
return createSRegPairNode(VecVT, N->getOperand(0), N->getOperand(1));
|
|
assert(NumElts == 4 && "unexpected type for BUILD_VECTOR");
|
|
return createQuadSRegsNode(VecVT, N->getOperand(0), N->getOperand(1),
|
|
N->getOperand(2), N->getOperand(3));
|
|
}
|
|
|
|
case ARMISD::VLD2DUP: {
|
|
static const uint16_t Opcodes[] = { ARM::VLD2DUPd8, ARM::VLD2DUPd16,
|
|
ARM::VLD2DUPd32 };
|
|
return SelectVLDDup(N, false, 2, Opcodes);
|
|
}
|
|
|
|
case ARMISD::VLD3DUP: {
|
|
static const uint16_t Opcodes[] = { ARM::VLD3DUPd8Pseudo,
|
|
ARM::VLD3DUPd16Pseudo,
|
|
ARM::VLD3DUPd32Pseudo };
|
|
return SelectVLDDup(N, false, 3, Opcodes);
|
|
}
|
|
|
|
case ARMISD::VLD4DUP: {
|
|
static const uint16_t Opcodes[] = { ARM::VLD4DUPd8Pseudo,
|
|
ARM::VLD4DUPd16Pseudo,
|
|
ARM::VLD4DUPd32Pseudo };
|
|
return SelectVLDDup(N, false, 4, Opcodes);
|
|
}
|
|
|
|
case ARMISD::VLD2DUP_UPD: {
|
|
static const uint16_t Opcodes[] = { ARM::VLD2DUPd8wb_fixed,
|
|
ARM::VLD2DUPd16wb_fixed,
|
|
ARM::VLD2DUPd32wb_fixed };
|
|
return SelectVLDDup(N, true, 2, Opcodes);
|
|
}
|
|
|
|
case ARMISD::VLD3DUP_UPD: {
|
|
static const uint16_t Opcodes[] = { ARM::VLD3DUPd8Pseudo_UPD,
|
|
ARM::VLD3DUPd16Pseudo_UPD,
|
|
ARM::VLD3DUPd32Pseudo_UPD };
|
|
return SelectVLDDup(N, true, 3, Opcodes);
|
|
}
|
|
|
|
case ARMISD::VLD4DUP_UPD: {
|
|
static const uint16_t Opcodes[] = { ARM::VLD4DUPd8Pseudo_UPD,
|
|
ARM::VLD4DUPd16Pseudo_UPD,
|
|
ARM::VLD4DUPd32Pseudo_UPD };
|
|
return SelectVLDDup(N, true, 4, Opcodes);
|
|
}
|
|
|
|
case ARMISD::VLD1_UPD: {
|
|
static const uint16_t DOpcodes[] = { ARM::VLD1d8wb_fixed,
|
|
ARM::VLD1d16wb_fixed,
|
|
ARM::VLD1d32wb_fixed,
|
|
ARM::VLD1d64wb_fixed };
|
|
static const uint16_t QOpcodes[] = { ARM::VLD1q8wb_fixed,
|
|
ARM::VLD1q16wb_fixed,
|
|
ARM::VLD1q32wb_fixed,
|
|
ARM::VLD1q64wb_fixed };
|
|
return SelectVLD(N, true, 1, DOpcodes, QOpcodes, 0);
|
|
}
|
|
|
|
case ARMISD::VLD2_UPD: {
|
|
static const uint16_t DOpcodes[] = { ARM::VLD2d8wb_fixed,
|
|
ARM::VLD2d16wb_fixed,
|
|
ARM::VLD2d32wb_fixed,
|
|
ARM::VLD1q64wb_fixed};
|
|
static const uint16_t QOpcodes[] = { ARM::VLD2q8PseudoWB_fixed,
|
|
ARM::VLD2q16PseudoWB_fixed,
|
|
ARM::VLD2q32PseudoWB_fixed };
|
|
return SelectVLD(N, true, 2, DOpcodes, QOpcodes, 0);
|
|
}
|
|
|
|
case ARMISD::VLD3_UPD: {
|
|
static const uint16_t DOpcodes[] = { ARM::VLD3d8Pseudo_UPD,
|
|
ARM::VLD3d16Pseudo_UPD,
|
|
ARM::VLD3d32Pseudo_UPD,
|
|
ARM::VLD1q64wb_fixed};
|
|
static const uint16_t QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD,
|
|
ARM::VLD3q16Pseudo_UPD,
|
|
ARM::VLD3q32Pseudo_UPD };
|
|
static const uint16_t QOpcodes1[] = { ARM::VLD3q8oddPseudo_UPD,
|
|
ARM::VLD3q16oddPseudo_UPD,
|
|
ARM::VLD3q32oddPseudo_UPD };
|
|
return SelectVLD(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
|
|
}
|
|
|
|
case ARMISD::VLD4_UPD: {
|
|
static const uint16_t DOpcodes[] = { ARM::VLD4d8Pseudo_UPD,
|
|
ARM::VLD4d16Pseudo_UPD,
|
|
ARM::VLD4d32Pseudo_UPD,
|
|
ARM::VLD1q64wb_fixed};
|
|
static const uint16_t QOpcodes0[] = { ARM::VLD4q8Pseudo_UPD,
|
|
ARM::VLD4q16Pseudo_UPD,
|
|
ARM::VLD4q32Pseudo_UPD };
|
|
static const uint16_t QOpcodes1[] = { ARM::VLD4q8oddPseudo_UPD,
|
|
ARM::VLD4q16oddPseudo_UPD,
|
|
ARM::VLD4q32oddPseudo_UPD };
|
|
return SelectVLD(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
|
|
}
|
|
|
|
case ARMISD::VLD2LN_UPD: {
|
|
static const uint16_t DOpcodes[] = { ARM::VLD2LNd8Pseudo_UPD,
|
|
ARM::VLD2LNd16Pseudo_UPD,
|
|
ARM::VLD2LNd32Pseudo_UPD };
|
|
static const uint16_t QOpcodes[] = { ARM::VLD2LNq16Pseudo_UPD,
|
|
ARM::VLD2LNq32Pseudo_UPD };
|
|
return SelectVLDSTLane(N, true, true, 2, DOpcodes, QOpcodes);
|
|
}
|
|
|
|
case ARMISD::VLD3LN_UPD: {
|
|
static const uint16_t DOpcodes[] = { ARM::VLD3LNd8Pseudo_UPD,
|
|
ARM::VLD3LNd16Pseudo_UPD,
|
|
ARM::VLD3LNd32Pseudo_UPD };
|
|
static const uint16_t QOpcodes[] = { ARM::VLD3LNq16Pseudo_UPD,
|
|
ARM::VLD3LNq32Pseudo_UPD };
|
|
return SelectVLDSTLane(N, true, true, 3, DOpcodes, QOpcodes);
|
|
}
|
|
|
|
case ARMISD::VLD4LN_UPD: {
|
|
static const uint16_t DOpcodes[] = { ARM::VLD4LNd8Pseudo_UPD,
|
|
ARM::VLD4LNd16Pseudo_UPD,
|
|
ARM::VLD4LNd32Pseudo_UPD };
|
|
static const uint16_t QOpcodes[] = { ARM::VLD4LNq16Pseudo_UPD,
|
|
ARM::VLD4LNq32Pseudo_UPD };
|
|
return SelectVLDSTLane(N, true, true, 4, DOpcodes, QOpcodes);
|
|
}
|
|
|
|
case ARMISD::VST1_UPD: {
|
|
static const uint16_t DOpcodes[] = { ARM::VST1d8wb_fixed,
|
|
ARM::VST1d16wb_fixed,
|
|
ARM::VST1d32wb_fixed,
|
|
ARM::VST1d64wb_fixed };
|
|
static const uint16_t QOpcodes[] = { ARM::VST1q8wb_fixed,
|
|
ARM::VST1q16wb_fixed,
|
|
ARM::VST1q32wb_fixed,
|
|
ARM::VST1q64wb_fixed };
|
|
return SelectVST(N, true, 1, DOpcodes, QOpcodes, 0);
|
|
}
|
|
|
|
case ARMISD::VST2_UPD: {
|
|
static const uint16_t DOpcodes[] = { ARM::VST2d8wb_fixed,
|
|
ARM::VST2d16wb_fixed,
|
|
ARM::VST2d32wb_fixed,
|
|
ARM::VST1q64wb_fixed};
|
|
static const uint16_t QOpcodes[] = { ARM::VST2q8PseudoWB_fixed,
|
|
ARM::VST2q16PseudoWB_fixed,
|
|
ARM::VST2q32PseudoWB_fixed };
|
|
return SelectVST(N, true, 2, DOpcodes, QOpcodes, 0);
|
|
}
|
|
|
|
case ARMISD::VST3_UPD: {
|
|
static const uint16_t DOpcodes[] = { ARM::VST3d8Pseudo_UPD,
|
|
ARM::VST3d16Pseudo_UPD,
|
|
ARM::VST3d32Pseudo_UPD,
|
|
ARM::VST1d64TPseudoWB_fixed};
|
|
static const uint16_t QOpcodes0[] = { ARM::VST3q8Pseudo_UPD,
|
|
ARM::VST3q16Pseudo_UPD,
|
|
ARM::VST3q32Pseudo_UPD };
|
|
static const uint16_t QOpcodes1[] = { ARM::VST3q8oddPseudo_UPD,
|
|
ARM::VST3q16oddPseudo_UPD,
|
|
ARM::VST3q32oddPseudo_UPD };
|
|
return SelectVST(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
|
|
}
|
|
|
|
case ARMISD::VST4_UPD: {
|
|
static const uint16_t DOpcodes[] = { ARM::VST4d8Pseudo_UPD,
|
|
ARM::VST4d16Pseudo_UPD,
|
|
ARM::VST4d32Pseudo_UPD,
|
|
ARM::VST1d64QPseudoWB_fixed};
|
|
static const uint16_t QOpcodes0[] = { ARM::VST4q8Pseudo_UPD,
|
|
ARM::VST4q16Pseudo_UPD,
|
|
ARM::VST4q32Pseudo_UPD };
|
|
static const uint16_t QOpcodes1[] = { ARM::VST4q8oddPseudo_UPD,
|
|
ARM::VST4q16oddPseudo_UPD,
|
|
ARM::VST4q32oddPseudo_UPD };
|
|
return SelectVST(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
|
|
}
|
|
|
|
case ARMISD::VST2LN_UPD: {
|
|
static const uint16_t DOpcodes[] = { ARM::VST2LNd8Pseudo_UPD,
|
|
ARM::VST2LNd16Pseudo_UPD,
|
|
ARM::VST2LNd32Pseudo_UPD };
|
|
static const uint16_t QOpcodes[] = { ARM::VST2LNq16Pseudo_UPD,
|
|
ARM::VST2LNq32Pseudo_UPD };
|
|
return SelectVLDSTLane(N, false, true, 2, DOpcodes, QOpcodes);
|
|
}
|
|
|
|
case ARMISD::VST3LN_UPD: {
|
|
static const uint16_t DOpcodes[] = { ARM::VST3LNd8Pseudo_UPD,
|
|
ARM::VST3LNd16Pseudo_UPD,
|
|
ARM::VST3LNd32Pseudo_UPD };
|
|
static const uint16_t QOpcodes[] = { ARM::VST3LNq16Pseudo_UPD,
|
|
ARM::VST3LNq32Pseudo_UPD };
|
|
return SelectVLDSTLane(N, false, true, 3, DOpcodes, QOpcodes);
|
|
}
|
|
|
|
case ARMISD::VST4LN_UPD: {
|
|
static const uint16_t DOpcodes[] = { ARM::VST4LNd8Pseudo_UPD,
|
|
ARM::VST4LNd16Pseudo_UPD,
|
|
ARM::VST4LNd32Pseudo_UPD };
|
|
static const uint16_t QOpcodes[] = { ARM::VST4LNq16Pseudo_UPD,
|
|
ARM::VST4LNq32Pseudo_UPD };
|
|
return SelectVLDSTLane(N, false, true, 4, DOpcodes, QOpcodes);
|
|
}
|
|
|
|
case ISD::INTRINSIC_VOID:
|
|
case ISD::INTRINSIC_W_CHAIN: {
|
|
unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
|
|
switch (IntNo) {
|
|
default:
|
|
break;
|
|
|
|
case Intrinsic::arm_ldrexd: {
|
|
SDValue MemAddr = N->getOperand(2);
|
|
SDLoc dl(N);
|
|
SDValue Chain = N->getOperand(0);
|
|
|
|
bool isThumb = Subtarget->isThumb() && Subtarget->hasThumb2();
|
|
unsigned NewOpc = isThumb ? ARM::t2LDREXD :ARM::LDREXD;
|
|
|
|
// arm_ldrexd returns a i64 value in {i32, i32}
|
|
std::vector<EVT> ResTys;
|
|
if (isThumb) {
|
|
ResTys.push_back(MVT::i32);
|
|
ResTys.push_back(MVT::i32);
|
|
} else
|
|
ResTys.push_back(MVT::Untyped);
|
|
ResTys.push_back(MVT::Other);
|
|
|
|
// Place arguments in the right order.
|
|
SmallVector<SDValue, 7> Ops;
|
|
Ops.push_back(MemAddr);
|
|
Ops.push_back(getAL(CurDAG));
|
|
Ops.push_back(CurDAG->getRegister(0, MVT::i32));
|
|
Ops.push_back(Chain);
|
|
SDNode *Ld = CurDAG->getMachineNode(NewOpc, dl, ResTys, Ops);
|
|
// Transfer memoperands.
|
|
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
|
|
MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
|
|
cast<MachineSDNode>(Ld)->setMemRefs(MemOp, MemOp + 1);
|
|
|
|
// Remap uses.
|
|
SDValue OutChain = isThumb ? SDValue(Ld, 2) : SDValue(Ld, 1);
|
|
if (!SDValue(N, 0).use_empty()) {
|
|
SDValue Result;
|
|
if (isThumb)
|
|
Result = SDValue(Ld, 0);
|
|
else {
|
|
SDValue SubRegIdx = CurDAG->getTargetConstant(ARM::gsub_0, MVT::i32);
|
|
SDNode *ResNode = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
|
|
dl, MVT::i32, SDValue(Ld, 0), SubRegIdx);
|
|
Result = SDValue(ResNode,0);
|
|
}
|
|
ReplaceUses(SDValue(N, 0), Result);
|
|
}
|
|
if (!SDValue(N, 1).use_empty()) {
|
|
SDValue Result;
|
|
if (isThumb)
|
|
Result = SDValue(Ld, 1);
|
|
else {
|
|
SDValue SubRegIdx = CurDAG->getTargetConstant(ARM::gsub_1, MVT::i32);
|
|
SDNode *ResNode = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
|
|
dl, MVT::i32, SDValue(Ld, 0), SubRegIdx);
|
|
Result = SDValue(ResNode,0);
|
|
}
|
|
ReplaceUses(SDValue(N, 1), Result);
|
|
}
|
|
ReplaceUses(SDValue(N, 2), OutChain);
|
|
return NULL;
|
|
}
|
|
|
|
case Intrinsic::arm_strexd: {
|
|
SDLoc dl(N);
|
|
SDValue Chain = N->getOperand(0);
|
|
SDValue Val0 = N->getOperand(2);
|
|
SDValue Val1 = N->getOperand(3);
|
|
SDValue MemAddr = N->getOperand(4);
|
|
|
|
// Store exclusive double return a i32 value which is the return status
|
|
// of the issued store.
|
|
EVT ResTys[] = { MVT::i32, MVT::Other };
|
|
|
|
bool isThumb = Subtarget->isThumb() && Subtarget->hasThumb2();
|
|
// Place arguments in the right order.
|
|
SmallVector<SDValue, 7> Ops;
|
|
if (isThumb) {
|
|
Ops.push_back(Val0);
|
|
Ops.push_back(Val1);
|
|
} else
|
|
// arm_strexd uses GPRPair.
|
|
Ops.push_back(SDValue(createGPRPairNode(MVT::Untyped, Val0, Val1), 0));
|
|
Ops.push_back(MemAddr);
|
|
Ops.push_back(getAL(CurDAG));
|
|
Ops.push_back(CurDAG->getRegister(0, MVT::i32));
|
|
Ops.push_back(Chain);
|
|
|
|
unsigned NewOpc = isThumb ? ARM::t2STREXD : ARM::STREXD;
|
|
|
|
SDNode *St = CurDAG->getMachineNode(NewOpc, dl, ResTys, Ops);
|
|
// Transfer memoperands.
|
|
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
|
|
MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
|
|
cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
|
|
|
|
return St;
|
|
}
|
|
|
|
case Intrinsic::arm_neon_vld1: {
|
|
static const uint16_t DOpcodes[] = { ARM::VLD1d8, ARM::VLD1d16,
|
|
ARM::VLD1d32, ARM::VLD1d64 };
|
|
static const uint16_t QOpcodes[] = { ARM::VLD1q8, ARM::VLD1q16,
|
|
ARM::VLD1q32, ARM::VLD1q64};
|
|
return SelectVLD(N, false, 1, DOpcodes, QOpcodes, 0);
|
|
}
|
|
|
|
case Intrinsic::arm_neon_vld2: {
|
|
static const uint16_t DOpcodes[] = { ARM::VLD2d8, ARM::VLD2d16,
|
|
ARM::VLD2d32, ARM::VLD1q64 };
|
|
static const uint16_t QOpcodes[] = { ARM::VLD2q8Pseudo, ARM::VLD2q16Pseudo,
|
|
ARM::VLD2q32Pseudo };
|
|
return SelectVLD(N, false, 2, DOpcodes, QOpcodes, 0);
|
|
}
|
|
|
|
case Intrinsic::arm_neon_vld3: {
|
|
static const uint16_t DOpcodes[] = { ARM::VLD3d8Pseudo,
|
|
ARM::VLD3d16Pseudo,
|
|
ARM::VLD3d32Pseudo,
|
|
ARM::VLD1d64TPseudo };
|
|
static const uint16_t QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD,
|
|
ARM::VLD3q16Pseudo_UPD,
|
|
ARM::VLD3q32Pseudo_UPD };
|
|
static const uint16_t QOpcodes1[] = { ARM::VLD3q8oddPseudo,
|
|
ARM::VLD3q16oddPseudo,
|
|
ARM::VLD3q32oddPseudo };
|
|
return SelectVLD(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
|
|
}
|
|
|
|
case Intrinsic::arm_neon_vld4: {
|
|
static const uint16_t DOpcodes[] = { ARM::VLD4d8Pseudo,
|
|
ARM::VLD4d16Pseudo,
|
|
ARM::VLD4d32Pseudo,
|
|
ARM::VLD1d64QPseudo };
|
|
static const uint16_t QOpcodes0[] = { ARM::VLD4q8Pseudo_UPD,
|
|
ARM::VLD4q16Pseudo_UPD,
|
|
ARM::VLD4q32Pseudo_UPD };
|
|
static const uint16_t QOpcodes1[] = { ARM::VLD4q8oddPseudo,
|
|
ARM::VLD4q16oddPseudo,
|
|
ARM::VLD4q32oddPseudo };
|
|
return SelectVLD(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
|
|
}
|
|
|
|
case Intrinsic::arm_neon_vld2lane: {
|
|
static const uint16_t DOpcodes[] = { ARM::VLD2LNd8Pseudo,
|
|
ARM::VLD2LNd16Pseudo,
|
|
ARM::VLD2LNd32Pseudo };
|
|
static const uint16_t QOpcodes[] = { ARM::VLD2LNq16Pseudo,
|
|
ARM::VLD2LNq32Pseudo };
|
|
return SelectVLDSTLane(N, true, false, 2, DOpcodes, QOpcodes);
|
|
}
|
|
|
|
case Intrinsic::arm_neon_vld3lane: {
|
|
static const uint16_t DOpcodes[] = { ARM::VLD3LNd8Pseudo,
|
|
ARM::VLD3LNd16Pseudo,
|
|
ARM::VLD3LNd32Pseudo };
|
|
static const uint16_t QOpcodes[] = { ARM::VLD3LNq16Pseudo,
|
|
ARM::VLD3LNq32Pseudo };
|
|
return SelectVLDSTLane(N, true, false, 3, DOpcodes, QOpcodes);
|
|
}
|
|
|
|
case Intrinsic::arm_neon_vld4lane: {
|
|
static const uint16_t DOpcodes[] = { ARM::VLD4LNd8Pseudo,
|
|
ARM::VLD4LNd16Pseudo,
|
|
ARM::VLD4LNd32Pseudo };
|
|
static const uint16_t QOpcodes[] = { ARM::VLD4LNq16Pseudo,
|
|
ARM::VLD4LNq32Pseudo };
|
|
return SelectVLDSTLane(N, true, false, 4, DOpcodes, QOpcodes);
|
|
}
|
|
|
|
case Intrinsic::arm_neon_vst1: {
|
|
static const uint16_t DOpcodes[] = { ARM::VST1d8, ARM::VST1d16,
|
|
ARM::VST1d32, ARM::VST1d64 };
|
|
static const uint16_t QOpcodes[] = { ARM::VST1q8, ARM::VST1q16,
|
|
ARM::VST1q32, ARM::VST1q64 };
|
|
return SelectVST(N, false, 1, DOpcodes, QOpcodes, 0);
|
|
}
|
|
|
|
case Intrinsic::arm_neon_vst2: {
|
|
static const uint16_t DOpcodes[] = { ARM::VST2d8, ARM::VST2d16,
|
|
ARM::VST2d32, ARM::VST1q64 };
|
|
static uint16_t QOpcodes[] = { ARM::VST2q8Pseudo, ARM::VST2q16Pseudo,
|
|
ARM::VST2q32Pseudo };
|
|
return SelectVST(N, false, 2, DOpcodes, QOpcodes, 0);
|
|
}
|
|
|
|
case Intrinsic::arm_neon_vst3: {
|
|
static const uint16_t DOpcodes[] = { ARM::VST3d8Pseudo,
|
|
ARM::VST3d16Pseudo,
|
|
ARM::VST3d32Pseudo,
|
|
ARM::VST1d64TPseudo };
|
|
static const uint16_t QOpcodes0[] = { ARM::VST3q8Pseudo_UPD,
|
|
ARM::VST3q16Pseudo_UPD,
|
|
ARM::VST3q32Pseudo_UPD };
|
|
static const uint16_t QOpcodes1[] = { ARM::VST3q8oddPseudo,
|
|
ARM::VST3q16oddPseudo,
|
|
ARM::VST3q32oddPseudo };
|
|
return SelectVST(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
|
|
}
|
|
|
|
case Intrinsic::arm_neon_vst4: {
|
|
static const uint16_t DOpcodes[] = { ARM::VST4d8Pseudo,
|
|
ARM::VST4d16Pseudo,
|
|
ARM::VST4d32Pseudo,
|
|
ARM::VST1d64QPseudo };
|
|
static const uint16_t QOpcodes0[] = { ARM::VST4q8Pseudo_UPD,
|
|
ARM::VST4q16Pseudo_UPD,
|
|
ARM::VST4q32Pseudo_UPD };
|
|
static const uint16_t QOpcodes1[] = { ARM::VST4q8oddPseudo,
|
|
ARM::VST4q16oddPseudo,
|
|
ARM::VST4q32oddPseudo };
|
|
return SelectVST(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
|
|
}
|
|
|
|
case Intrinsic::arm_neon_vst2lane: {
|
|
static const uint16_t DOpcodes[] = { ARM::VST2LNd8Pseudo,
|
|
ARM::VST2LNd16Pseudo,
|
|
ARM::VST2LNd32Pseudo };
|
|
static const uint16_t QOpcodes[] = { ARM::VST2LNq16Pseudo,
|
|
ARM::VST2LNq32Pseudo };
|
|
return SelectVLDSTLane(N, false, false, 2, DOpcodes, QOpcodes);
|
|
}
|
|
|
|
case Intrinsic::arm_neon_vst3lane: {
|
|
static const uint16_t DOpcodes[] = { ARM::VST3LNd8Pseudo,
|
|
ARM::VST3LNd16Pseudo,
|
|
ARM::VST3LNd32Pseudo };
|
|
static const uint16_t QOpcodes[] = { ARM::VST3LNq16Pseudo,
|
|
ARM::VST3LNq32Pseudo };
|
|
return SelectVLDSTLane(N, false, false, 3, DOpcodes, QOpcodes);
|
|
}
|
|
|
|
case Intrinsic::arm_neon_vst4lane: {
|
|
static const uint16_t DOpcodes[] = { ARM::VST4LNd8Pseudo,
|
|
ARM::VST4LNd16Pseudo,
|
|
ARM::VST4LNd32Pseudo };
|
|
static const uint16_t QOpcodes[] = { ARM::VST4LNq16Pseudo,
|
|
ARM::VST4LNq32Pseudo };
|
|
return SelectVLDSTLane(N, false, false, 4, DOpcodes, QOpcodes);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ISD::INTRINSIC_WO_CHAIN: {
|
|
unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
|
|
switch (IntNo) {
|
|
default:
|
|
break;
|
|
|
|
case Intrinsic::arm_neon_vtbl2:
|
|
return SelectVTBL(N, false, 2, ARM::VTBL2);
|
|
case Intrinsic::arm_neon_vtbl3:
|
|
return SelectVTBL(N, false, 3, ARM::VTBL3Pseudo);
|
|
case Intrinsic::arm_neon_vtbl4:
|
|
return SelectVTBL(N, false, 4, ARM::VTBL4Pseudo);
|
|
|
|
case Intrinsic::arm_neon_vtbx2:
|
|
return SelectVTBL(N, true, 2, ARM::VTBX2);
|
|
case Intrinsic::arm_neon_vtbx3:
|
|
return SelectVTBL(N, true, 3, ARM::VTBX3Pseudo);
|
|
case Intrinsic::arm_neon_vtbx4:
|
|
return SelectVTBL(N, true, 4, ARM::VTBX4Pseudo);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ARMISD::VTBL1: {
|
|
SDLoc dl(N);
|
|
EVT VT = N->getValueType(0);
|
|
SmallVector<SDValue, 6> Ops;
|
|
|
|
Ops.push_back(N->getOperand(0));
|
|
Ops.push_back(N->getOperand(1));
|
|
Ops.push_back(getAL(CurDAG)); // Predicate
|
|
Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // Predicate Register
|
|
return CurDAG->getMachineNode(ARM::VTBL1, dl, VT, Ops);
|
|
}
|
|
case ARMISD::VTBL2: {
|
|
SDLoc dl(N);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// Form a REG_SEQUENCE to force register allocation.
|
|
SDValue V0 = N->getOperand(0);
|
|
SDValue V1 = N->getOperand(1);
|
|
SDValue RegSeq = SDValue(createDRegPairNode(MVT::v16i8, V0, V1), 0);
|
|
|
|
SmallVector<SDValue, 6> Ops;
|
|
Ops.push_back(RegSeq);
|
|
Ops.push_back(N->getOperand(2));
|
|
Ops.push_back(getAL(CurDAG)); // Predicate
|
|
Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // Predicate Register
|
|
return CurDAG->getMachineNode(ARM::VTBL2, dl, VT, Ops);
|
|
}
|
|
|
|
case ISD::CONCAT_VECTORS:
|
|
return SelectConcatVector(N);
|
|
|
|
case ISD::ATOMIC_LOAD:
|
|
if (cast<AtomicSDNode>(N)->getMemoryVT() == MVT::i64)
|
|
return SelectAtomic(N, 0, 0, 0, ARM::ATOMIC_LOAD_I64);
|
|
else
|
|
break;
|
|
|
|
case ISD::ATOMIC_STORE:
|
|
if (cast<AtomicSDNode>(N)->getMemoryVT() == MVT::i64)
|
|
return SelectAtomic(N, 0, 0, 0, ARM::ATOMIC_STORE_I64);
|
|
else
|
|
break;
|
|
|
|
case ISD::ATOMIC_LOAD_ADD:
|
|
return SelectAtomic(N,
|
|
ARM::ATOMIC_LOAD_ADD_I8,
|
|
ARM::ATOMIC_LOAD_ADD_I16,
|
|
ARM::ATOMIC_LOAD_ADD_I32,
|
|
ARM::ATOMIC_LOAD_ADD_I64);
|
|
case ISD::ATOMIC_LOAD_SUB:
|
|
return SelectAtomic(N,
|
|
ARM::ATOMIC_LOAD_SUB_I8,
|
|
ARM::ATOMIC_LOAD_SUB_I16,
|
|
ARM::ATOMIC_LOAD_SUB_I32,
|
|
ARM::ATOMIC_LOAD_SUB_I64);
|
|
case ISD::ATOMIC_LOAD_AND:
|
|
return SelectAtomic(N,
|
|
ARM::ATOMIC_LOAD_AND_I8,
|
|
ARM::ATOMIC_LOAD_AND_I16,
|
|
ARM::ATOMIC_LOAD_AND_I32,
|
|
ARM::ATOMIC_LOAD_AND_I64);
|
|
case ISD::ATOMIC_LOAD_OR:
|
|
return SelectAtomic(N,
|
|
ARM::ATOMIC_LOAD_OR_I8,
|
|
ARM::ATOMIC_LOAD_OR_I16,
|
|
ARM::ATOMIC_LOAD_OR_I32,
|
|
ARM::ATOMIC_LOAD_OR_I64);
|
|
case ISD::ATOMIC_LOAD_XOR:
|
|
return SelectAtomic(N,
|
|
ARM::ATOMIC_LOAD_XOR_I8,
|
|
ARM::ATOMIC_LOAD_XOR_I16,
|
|
ARM::ATOMIC_LOAD_XOR_I32,
|
|
ARM::ATOMIC_LOAD_XOR_I64);
|
|
case ISD::ATOMIC_LOAD_NAND:
|
|
return SelectAtomic(N,
|
|
ARM::ATOMIC_LOAD_NAND_I8,
|
|
ARM::ATOMIC_LOAD_NAND_I16,
|
|
ARM::ATOMIC_LOAD_NAND_I32,
|
|
ARM::ATOMIC_LOAD_NAND_I64);
|
|
case ISD::ATOMIC_LOAD_MIN:
|
|
return SelectAtomic(N,
|
|
ARM::ATOMIC_LOAD_MIN_I8,
|
|
ARM::ATOMIC_LOAD_MIN_I16,
|
|
ARM::ATOMIC_LOAD_MIN_I32,
|
|
ARM::ATOMIC_LOAD_MIN_I64);
|
|
case ISD::ATOMIC_LOAD_MAX:
|
|
return SelectAtomic(N,
|
|
ARM::ATOMIC_LOAD_MAX_I8,
|
|
ARM::ATOMIC_LOAD_MAX_I16,
|
|
ARM::ATOMIC_LOAD_MAX_I32,
|
|
ARM::ATOMIC_LOAD_MAX_I64);
|
|
case ISD::ATOMIC_LOAD_UMIN:
|
|
return SelectAtomic(N,
|
|
ARM::ATOMIC_LOAD_UMIN_I8,
|
|
ARM::ATOMIC_LOAD_UMIN_I16,
|
|
ARM::ATOMIC_LOAD_UMIN_I32,
|
|
ARM::ATOMIC_LOAD_UMIN_I64);
|
|
case ISD::ATOMIC_LOAD_UMAX:
|
|
return SelectAtomic(N,
|
|
ARM::ATOMIC_LOAD_UMAX_I8,
|
|
ARM::ATOMIC_LOAD_UMAX_I16,
|
|
ARM::ATOMIC_LOAD_UMAX_I32,
|
|
ARM::ATOMIC_LOAD_UMAX_I64);
|
|
case ISD::ATOMIC_SWAP:
|
|
return SelectAtomic(N,
|
|
ARM::ATOMIC_SWAP_I8,
|
|
ARM::ATOMIC_SWAP_I16,
|
|
ARM::ATOMIC_SWAP_I32,
|
|
ARM::ATOMIC_SWAP_I64);
|
|
case ISD::ATOMIC_CMP_SWAP:
|
|
return SelectAtomic(N,
|
|
ARM::ATOMIC_CMP_SWAP_I8,
|
|
ARM::ATOMIC_CMP_SWAP_I16,
|
|
ARM::ATOMIC_CMP_SWAP_I32,
|
|
ARM::ATOMIC_CMP_SWAP_I64);
|
|
}
|
|
|
|
return SelectCode(N);
|
|
}
|
|
|
|
SDNode *ARMDAGToDAGISel::SelectInlineAsm(SDNode *N){
|
|
std::vector<SDValue> AsmNodeOperands;
|
|
unsigned Flag, Kind;
|
|
bool Changed = false;
|
|
unsigned NumOps = N->getNumOperands();
|
|
|
|
// Normally, i64 data is bounded to two arbitrary GRPs for "%r" constraint.
|
|
// However, some instrstions (e.g. ldrexd/strexd in ARM mode) require
|
|
// (even/even+1) GPRs and use %n and %Hn to refer to the individual regs
|
|
// respectively. Since there is no constraint to explicitly specify a
|
|
// reg pair, we use GPRPair reg class for "%r" for 64-bit data. For Thumb,
|
|
// the 64-bit data may be referred by H, Q, R modifiers, so we still pack
|
|
// them into a GPRPair.
|
|
|
|
SDLoc dl(N);
|
|
SDValue Glue = N->getGluedNode() ? N->getOperand(NumOps-1) : SDValue(0,0);
|
|
|
|
SmallVector<bool, 8> OpChanged;
|
|
// Glue node will be appended late.
|
|
for(unsigned i = 0, e = N->getGluedNode() ? NumOps - 1 : NumOps; i < e; ++i) {
|
|
SDValue op = N->getOperand(i);
|
|
AsmNodeOperands.push_back(op);
|
|
|
|
if (i < InlineAsm::Op_FirstOperand)
|
|
continue;
|
|
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(i))) {
|
|
Flag = C->getZExtValue();
|
|
Kind = InlineAsm::getKind(Flag);
|
|
}
|
|
else
|
|
continue;
|
|
|
|
// Immediate operands to inline asm in the SelectionDAG are modeled with
|
|
// two operands. The first is a constant of value InlineAsm::Kind_Imm, and
|
|
// the second is a constant with the value of the immediate. If we get here
|
|
// and we have a Kind_Imm, skip the next operand, and continue.
|
|
if (Kind == InlineAsm::Kind_Imm) {
|
|
SDValue op = N->getOperand(++i);
|
|
AsmNodeOperands.push_back(op);
|
|
continue;
|
|
}
|
|
|
|
unsigned NumRegs = InlineAsm::getNumOperandRegisters(Flag);
|
|
if (NumRegs)
|
|
OpChanged.push_back(false);
|
|
|
|
unsigned DefIdx = 0;
|
|
bool IsTiedToChangedOp = false;
|
|
// If it's a use that is tied with a previous def, it has no
|
|
// reg class constraint.
|
|
if (Changed && InlineAsm::isUseOperandTiedToDef(Flag, DefIdx))
|
|
IsTiedToChangedOp = OpChanged[DefIdx];
|
|
|
|
if (Kind != InlineAsm::Kind_RegUse && Kind != InlineAsm::Kind_RegDef
|
|
&& Kind != InlineAsm::Kind_RegDefEarlyClobber)
|
|
continue;
|
|
|
|
unsigned RC;
|
|
bool HasRC = InlineAsm::hasRegClassConstraint(Flag, RC);
|
|
if ((!IsTiedToChangedOp && (!HasRC || RC != ARM::GPRRegClassID))
|
|
|| NumRegs != 2)
|
|
continue;
|
|
|
|
assert((i+2 < NumOps) && "Invalid number of operands in inline asm");
|
|
SDValue V0 = N->getOperand(i+1);
|
|
SDValue V1 = N->getOperand(i+2);
|
|
unsigned Reg0 = cast<RegisterSDNode>(V0)->getReg();
|
|
unsigned Reg1 = cast<RegisterSDNode>(V1)->getReg();
|
|
SDValue PairedReg;
|
|
MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
|
|
if (Kind == InlineAsm::Kind_RegDef ||
|
|
Kind == InlineAsm::Kind_RegDefEarlyClobber) {
|
|
// Replace the two GPRs with 1 GPRPair and copy values from GPRPair to
|
|
// the original GPRs.
|
|
|
|
unsigned GPVR = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
|
|
PairedReg = CurDAG->getRegister(GPVR, MVT::Untyped);
|
|
SDValue Chain = SDValue(N,0);
|
|
|
|
SDNode *GU = N->getGluedUser();
|
|
SDValue RegCopy = CurDAG->getCopyFromReg(Chain, dl, GPVR, MVT::Untyped,
|
|
Chain.getValue(1));
|
|
|
|
// Extract values from a GPRPair reg and copy to the original GPR reg.
|
|
SDValue Sub0 = CurDAG->getTargetExtractSubreg(ARM::gsub_0, dl, MVT::i32,
|
|
RegCopy);
|
|
SDValue Sub1 = CurDAG->getTargetExtractSubreg(ARM::gsub_1, dl, MVT::i32,
|
|
RegCopy);
|
|
SDValue T0 = CurDAG->getCopyToReg(Sub0, dl, Reg0, Sub0,
|
|
RegCopy.getValue(1));
|
|
SDValue T1 = CurDAG->getCopyToReg(Sub1, dl, Reg1, Sub1, T0.getValue(1));
|
|
|
|
// Update the original glue user.
|
|
std::vector<SDValue> Ops(GU->op_begin(), GU->op_end()-1);
|
|
Ops.push_back(T1.getValue(1));
|
|
CurDAG->UpdateNodeOperands(GU, &Ops[0], Ops.size());
|
|
GU = T1.getNode();
|
|
}
|
|
else {
|
|
// For Kind == InlineAsm::Kind_RegUse, we first copy two GPRs into a
|
|
// GPRPair and then pass the GPRPair to the inline asm.
|
|
SDValue Chain = AsmNodeOperands[InlineAsm::Op_InputChain];
|
|
|
|
// As REG_SEQ doesn't take RegisterSDNode, we copy them first.
|
|
SDValue T0 = CurDAG->getCopyFromReg(Chain, dl, Reg0, MVT::i32,
|
|
Chain.getValue(1));
|
|
SDValue T1 = CurDAG->getCopyFromReg(Chain, dl, Reg1, MVT::i32,
|
|
T0.getValue(1));
|
|
SDValue Pair = SDValue(createGPRPairNode(MVT::Untyped, T0, T1), 0);
|
|
|
|
// Copy REG_SEQ into a GPRPair-typed VR and replace the original two
|
|
// i32 VRs of inline asm with it.
|
|
unsigned GPVR = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
|
|
PairedReg = CurDAG->getRegister(GPVR, MVT::Untyped);
|
|
Chain = CurDAG->getCopyToReg(T1, dl, GPVR, Pair, T1.getValue(1));
|
|
|
|
AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
|
|
Glue = Chain.getValue(1);
|
|
}
|
|
|
|
Changed = true;
|
|
|
|
if(PairedReg.getNode()) {
|
|
OpChanged[OpChanged.size() -1 ] = true;
|
|
Flag = InlineAsm::getFlagWord(Kind, 1 /* RegNum*/);
|
|
if (IsTiedToChangedOp)
|
|
Flag = InlineAsm::getFlagWordForMatchingOp(Flag, DefIdx);
|
|
else
|
|
Flag = InlineAsm::getFlagWordForRegClass(Flag, ARM::GPRPairRegClassID);
|
|
// Replace the current flag.
|
|
AsmNodeOperands[AsmNodeOperands.size() -1] = CurDAG->getTargetConstant(
|
|
Flag, MVT::i32);
|
|
// Add the new register node and skip the original two GPRs.
|
|
AsmNodeOperands.push_back(PairedReg);
|
|
// Skip the next two GPRs.
|
|
i += 2;
|
|
}
|
|
}
|
|
|
|
if (Glue.getNode())
|
|
AsmNodeOperands.push_back(Glue);
|
|
if (!Changed)
|
|
return NULL;
|
|
|
|
SDValue New = CurDAG->getNode(ISD::INLINEASM, SDLoc(N),
|
|
CurDAG->getVTList(MVT::Other, MVT::Glue), &AsmNodeOperands[0],
|
|
AsmNodeOperands.size());
|
|
New->setNodeId(-1);
|
|
return New.getNode();
|
|
}
|
|
|
|
|
|
bool ARMDAGToDAGISel::
|
|
SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
|
|
std::vector<SDValue> &OutOps) {
|
|
assert(ConstraintCode == 'm' && "unexpected asm memory constraint");
|
|
// Require the address to be in a register. That is safe for all ARM
|
|
// variants and it is hard to do anything much smarter without knowing
|
|
// how the operand is used.
|
|
OutOps.push_back(Op);
|
|
return false;
|
|
}
|
|
|
|
/// createARMISelDag - This pass converts a legalized DAG into a
|
|
/// ARM-specific DAG, ready for instruction scheduling.
|
|
///
|
|
FunctionPass *llvm::createARMISelDag(ARMBaseTargetMachine &TM,
|
|
CodeGenOpt::Level OptLevel) {
|
|
return new ARMDAGToDAGISel(TM, OptLevel);
|
|
}
|