llvm-6502/lib/Target/PowerPC/AsmPrinter/PPCAsmPrinter.cpp
Chris Lattner 7a2ba94d03 rename GetPrivateGlobalValueSymbolStub -> GetSymbolWithGlobalValueBase,
and add an explicit ForcePrivate argument.

Switch FunctionEHFrameInfo to be MCSymbol based instead of string based.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@93646 91177308-0d34-0410-b5e6-96231b3b80d8
2010-01-16 18:37:32 +00:00

1271 lines
41 KiB
C++

//===-- PPCAsmPrinter.cpp - Print machine instrs to PowerPC assembly --------=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to PowerPC assembly language. This printer is
// the output mechanism used by `llc'.
//
// Documentation at http://developer.apple.com/documentation/DeveloperTools/
// Reference/Assembler/ASMIntroduction/chapter_1_section_1.html
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "asmprinter"
#include "PPC.h"
#include "PPCPredicates.h"
#include "PPCTargetMachine.h"
#include "PPCSubtarget.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/DwarfWriter.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegistry.h"
#include "llvm/Support/Mangler.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/SmallString.h"
using namespace llvm;
STATISTIC(EmittedInsts, "Number of machine instrs printed");
namespace {
class PPCAsmPrinter : public AsmPrinter {
protected:
struct FnStubInfo {
MCSymbol *Stub, *LazyPtr, *AnonSymbol;
FnStubInfo() {
Stub = LazyPtr = AnonSymbol = 0;
}
void Init(const GlobalValue *GV, AsmPrinter *Printer) {
// Already initialized.
if (Stub != 0) return;
// Get the names.
Stub = Printer->GetSymbolWithGlobalValueBase(GV, "$stub");
LazyPtr = Printer->GetSymbolWithGlobalValueBase(GV, "$lazy_ptr");
AnonSymbol = Printer->GetSymbolWithGlobalValueBase(GV, "$stub$tmp");
}
void Init(StringRef GVName, Mangler *Mang, MCContext &Ctx) {
assert(!GVName.empty() && "external symbol name shouldn't be empty");
if (Stub != 0) return; // Already initialized.
// Get the names for the external symbol name.
SmallString<128> TmpStr;
Mang->getNameWithPrefix(TmpStr, GVName, Mangler::Private);
TmpStr += "$stub";
Stub = Ctx.GetOrCreateSymbol(TmpStr.str());
TmpStr.erase(TmpStr.end()-5, TmpStr.end()); // Remove $stub
TmpStr += "$lazy_ptr";
LazyPtr = Ctx.GetOrCreateSymbol(TmpStr.str());
TmpStr.erase(TmpStr.end()-9, TmpStr.end()); // Remove $lazy_ptr
TmpStr += "$stub$tmp";
AnonSymbol = Ctx.GetOrCreateSymbol(TmpStr.str());
}
};
DenseMap<const MCSymbol*, FnStubInfo> FnStubs;
DenseMap<const MCSymbol*, const MCSymbol*> GVStubs, HiddenGVStubs, TOC;
const PPCSubtarget &Subtarget;
uint64_t LabelID;
public:
explicit PPCAsmPrinter(formatted_raw_ostream &O, TargetMachine &TM,
const MCAsmInfo *T, bool V)
: AsmPrinter(O, TM, T, V),
Subtarget(TM.getSubtarget<PPCSubtarget>()), LabelID(0) {}
virtual const char *getPassName() const {
return "PowerPC Assembly Printer";
}
PPCTargetMachine &getTM() {
return static_cast<PPCTargetMachine&>(TM);
}
unsigned enumRegToMachineReg(unsigned enumReg) {
switch (enumReg) {
default: llvm_unreachable("Unhandled register!");
case PPC::CR0: return 0;
case PPC::CR1: return 1;
case PPC::CR2: return 2;
case PPC::CR3: return 3;
case PPC::CR4: return 4;
case PPC::CR5: return 5;
case PPC::CR6: return 6;
case PPC::CR7: return 7;
}
llvm_unreachable(0);
}
/// printInstruction - This method is automatically generated by tablegen
/// from the instruction set description. This method returns true if the
/// machine instruction was sufficiently described to print it, otherwise it
/// returns false.
void printInstruction(const MachineInstr *MI);
static const char *getRegisterName(unsigned RegNo);
void printMachineInstruction(const MachineInstr *MI);
void printOp(const MachineOperand &MO);
/// stripRegisterPrefix - This method strips the character prefix from a
/// register name so that only the number is left. Used by for linux asm.
const char *stripRegisterPrefix(const char *RegName) {
switch (RegName[0]) {
case 'r':
case 'f':
case 'v': return RegName + 1;
case 'c': if (RegName[1] == 'r') return RegName + 2;
}
return RegName;
}
/// printRegister - Print register according to target requirements.
///
void printRegister(const MachineOperand &MO, bool R0AsZero) {
unsigned RegNo = MO.getReg();
assert(TargetRegisterInfo::isPhysicalRegister(RegNo) && "Not physreg??");
// If we should use 0 for R0.
if (R0AsZero && RegNo == PPC::R0) {
O << "0";
return;
}
const char *RegName = getRegisterName(RegNo);
// Linux assembler (Others?) does not take register mnemonics.
// FIXME - What about special registers used in mfspr/mtspr?
if (!Subtarget.isDarwin()) RegName = stripRegisterPrefix(RegName);
O << RegName;
}
void printOperand(const MachineInstr *MI, unsigned OpNo) {
const MachineOperand &MO = MI->getOperand(OpNo);
if (MO.isReg()) {
printRegister(MO, false);
} else if (MO.isImm()) {
O << MO.getImm();
} else {
printOp(MO);
}
}
bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant, const char *ExtraCode);
bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant, const char *ExtraCode);
void printS5ImmOperand(const MachineInstr *MI, unsigned OpNo) {
char value = MI->getOperand(OpNo).getImm();
value = (value << (32-5)) >> (32-5);
O << (int)value;
}
void printU5ImmOperand(const MachineInstr *MI, unsigned OpNo) {
unsigned char value = MI->getOperand(OpNo).getImm();
assert(value <= 31 && "Invalid u5imm argument!");
O << (unsigned int)value;
}
void printU6ImmOperand(const MachineInstr *MI, unsigned OpNo) {
unsigned char value = MI->getOperand(OpNo).getImm();
assert(value <= 63 && "Invalid u6imm argument!");
O << (unsigned int)value;
}
void printS16ImmOperand(const MachineInstr *MI, unsigned OpNo) {
O << (short)MI->getOperand(OpNo).getImm();
}
void printU16ImmOperand(const MachineInstr *MI, unsigned OpNo) {
O << (unsigned short)MI->getOperand(OpNo).getImm();
}
void printS16X4ImmOperand(const MachineInstr *MI, unsigned OpNo) {
if (MI->getOperand(OpNo).isImm()) {
O << (short)(MI->getOperand(OpNo).getImm()*4);
} else {
O << "lo16(";
printOp(MI->getOperand(OpNo));
if (TM.getRelocationModel() == Reloc::PIC_)
O << "-\"L" << getFunctionNumber() << "$pb\")";
else
O << ')';
}
}
void printBranchOperand(const MachineInstr *MI, unsigned OpNo) {
// Branches can take an immediate operand. This is used by the branch
// selection pass to print $+8, an eight byte displacement from the PC.
if (MI->getOperand(OpNo).isImm()) {
O << "$+" << MI->getOperand(OpNo).getImm()*4;
} else {
printOp(MI->getOperand(OpNo));
}
}
void printCallOperand(const MachineInstr *MI, unsigned OpNo) {
const MachineOperand &MO = MI->getOperand(OpNo);
if (TM.getRelocationModel() != Reloc::Static) {
if (MO.getType() == MachineOperand::MO_GlobalAddress) {
GlobalValue *GV = MO.getGlobal();
if (GV->isDeclaration() || GV->isWeakForLinker()) {
// Dynamically-resolved functions need a stub for the function.
FnStubInfo &FnInfo = FnStubs[GetGlobalValueSymbol(GV)];
FnInfo.Init(GV, this);
FnInfo.Stub->print(O, MAI);
return;
}
}
if (MO.getType() == MachineOperand::MO_ExternalSymbol) {
FnStubInfo &FnInfo =
FnStubs[GetExternalSymbolSymbol(MO.getSymbolName())];
FnInfo.Init(MO.getSymbolName(), Mang, OutContext);
FnInfo.Stub->print(O, MAI);
return;
}
}
printOp(MI->getOperand(OpNo));
}
void printAbsAddrOperand(const MachineInstr *MI, unsigned OpNo) {
O << (int)MI->getOperand(OpNo).getImm()*4;
}
void printPICLabel(const MachineInstr *MI, unsigned OpNo) {
O << "\"L" << getFunctionNumber() << "$pb\"\n";
O << "\"L" << getFunctionNumber() << "$pb\":";
}
void printSymbolHi(const MachineInstr *MI, unsigned OpNo) {
if (MI->getOperand(OpNo).isImm()) {
printS16ImmOperand(MI, OpNo);
} else {
if (Subtarget.isDarwin()) O << "ha16(";
printOp(MI->getOperand(OpNo));
if (TM.getRelocationModel() == Reloc::PIC_)
O << "-\"L" << getFunctionNumber() << "$pb\"";
if (Subtarget.isDarwin())
O << ')';
else
O << "@ha";
}
}
void printSymbolLo(const MachineInstr *MI, unsigned OpNo) {
if (MI->getOperand(OpNo).isImm()) {
printS16ImmOperand(MI, OpNo);
} else {
if (Subtarget.isDarwin()) O << "lo16(";
printOp(MI->getOperand(OpNo));
if (TM.getRelocationModel() == Reloc::PIC_)
O << "-\"L" << getFunctionNumber() << "$pb\"";
if (Subtarget.isDarwin())
O << ')';
else
O << "@l";
}
}
void printcrbitm(const MachineInstr *MI, unsigned OpNo) {
unsigned CCReg = MI->getOperand(OpNo).getReg();
unsigned RegNo = enumRegToMachineReg(CCReg);
O << (0x80 >> RegNo);
}
// The new addressing mode printers.
void printMemRegImm(const MachineInstr *MI, unsigned OpNo) {
printSymbolLo(MI, OpNo);
O << '(';
if (MI->getOperand(OpNo+1).isReg() &&
MI->getOperand(OpNo+1).getReg() == PPC::R0)
O << "0";
else
printOperand(MI, OpNo+1);
O << ')';
}
void printMemRegImmShifted(const MachineInstr *MI, unsigned OpNo) {
if (MI->getOperand(OpNo).isImm())
printS16X4ImmOperand(MI, OpNo);
else
printSymbolLo(MI, OpNo);
O << '(';
if (MI->getOperand(OpNo+1).isReg() &&
MI->getOperand(OpNo+1).getReg() == PPC::R0)
O << "0";
else
printOperand(MI, OpNo+1);
O << ')';
}
void printMemRegReg(const MachineInstr *MI, unsigned OpNo) {
// When used as the base register, r0 reads constant zero rather than
// the value contained in the register. For this reason, the darwin
// assembler requires that we print r0 as 0 (no r) when used as the base.
const MachineOperand &MO = MI->getOperand(OpNo);
printRegister(MO, true);
O << ", ";
printOperand(MI, OpNo+1);
}
void printTOCEntryLabel(const MachineInstr *MI, unsigned OpNo) {
const MachineOperand &MO = MI->getOperand(OpNo);
assert(MO.getType() == MachineOperand::MO_GlobalAddress);
const MCSymbol *Sym = GetGlobalValueSymbol(MO.getGlobal());
// Map symbol -> label of TOC entry.
const MCSymbol *&TOCEntry = TOC[Sym];
if (TOCEntry == 0)
TOCEntry = OutContext.
GetOrCreateSymbol(StringRef(MAI->getPrivateGlobalPrefix()) + "C" +
Twine(LabelID++));
TOCEntry->print(O, MAI);
O << "@toc";
}
void printPredicateOperand(const MachineInstr *MI, unsigned OpNo,
const char *Modifier);
virtual bool runOnMachineFunction(MachineFunction &F) = 0;
};
/// PPCLinuxAsmPrinter - PowerPC assembly printer, customized for Linux
class PPCLinuxAsmPrinter : public PPCAsmPrinter {
public:
explicit PPCLinuxAsmPrinter(formatted_raw_ostream &O, TargetMachine &TM,
const MCAsmInfo *T, bool V)
: PPCAsmPrinter(O, TM, T, V){}
virtual const char *getPassName() const {
return "Linux PPC Assembly Printer";
}
bool runOnMachineFunction(MachineFunction &F);
bool doFinalization(Module &M);
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<MachineModuleInfo>();
AU.addRequired<DwarfWriter>();
PPCAsmPrinter::getAnalysisUsage(AU);
}
void PrintGlobalVariable(const GlobalVariable *GVar);
};
/// PPCDarwinAsmPrinter - PowerPC assembly printer, customized for Darwin/Mac
/// OS X
class PPCDarwinAsmPrinter : public PPCAsmPrinter {
formatted_raw_ostream &OS;
public:
explicit PPCDarwinAsmPrinter(formatted_raw_ostream &O, TargetMachine &TM,
const MCAsmInfo *T, bool V)
: PPCAsmPrinter(O, TM, T, V), OS(O) {}
virtual const char *getPassName() const {
return "Darwin PPC Assembly Printer";
}
bool runOnMachineFunction(MachineFunction &F);
bool doFinalization(Module &M);
void EmitStartOfAsmFile(Module &M);
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<MachineModuleInfo>();
AU.addRequired<DwarfWriter>();
PPCAsmPrinter::getAnalysisUsage(AU);
}
void PrintGlobalVariable(const GlobalVariable *GVar);
};
} // end of anonymous namespace
// Include the auto-generated portion of the assembly writer
#include "PPCGenAsmWriter.inc"
void PPCAsmPrinter::printOp(const MachineOperand &MO) {
switch (MO.getType()) {
case MachineOperand::MO_Immediate:
llvm_unreachable("printOp() does not handle immediate values");
case MachineOperand::MO_MachineBasicBlock:
GetMBBSymbol(MO.getMBB()->getNumber())->print(O, MAI);
return;
case MachineOperand::MO_JumpTableIndex:
O << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
<< '_' << MO.getIndex();
// FIXME: PIC relocation model
return;
case MachineOperand::MO_ConstantPoolIndex:
O << MAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber()
<< '_' << MO.getIndex();
return;
case MachineOperand::MO_BlockAddress:
GetBlockAddressSymbol(MO.getBlockAddress())->print(O, MAI);
return;
case MachineOperand::MO_ExternalSymbol: {
// Computing the address of an external symbol, not calling it.
const MCSymbol *SymName = GetExternalSymbolSymbol(MO.getSymbolName());
if (TM.getRelocationModel() == Reloc::Static) {
SymName->print(O, MAI);
return;
}
const MCSymbol *NLPSym =
OutContext.GetOrCreateSymbol(StringRef(MAI->getGlobalPrefix())+
MO.getSymbolName()+"$non_lazy_ptr");
GVStubs[SymName] = NLPSym;
NLPSym->print(O, MAI);
return;
}
case MachineOperand::MO_GlobalAddress: {
// Computing the address of a global symbol, not calling it.
GlobalValue *GV = MO.getGlobal();
MCSymbol *SymToPrint;
// External or weakly linked global variables need non-lazily-resolved stubs
if (TM.getRelocationModel() != Reloc::Static &&
(GV->isDeclaration() || GV->isWeakForLinker())) {
if (!GV->hasHiddenVisibility()) {
SymToPrint = GetSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
GVStubs[GetGlobalValueSymbol(GV)] = SymToPrint;
} else if (GV->isDeclaration() || GV->hasCommonLinkage() ||
GV->hasAvailableExternallyLinkage()) {
SymToPrint = GetSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
HiddenGVStubs[GetGlobalValueSymbol(GV)] = SymToPrint;
} else {
SymToPrint = GetGlobalValueSymbol(GV);
}
} else {
SymToPrint = GetGlobalValueSymbol(GV);
}
SymToPrint->print(O, MAI);
printOffset(MO.getOffset());
return;
}
default:
O << "<unknown operand type: " << MO.getType() << ">";
return;
}
}
/// PrintAsmOperand - Print out an operand for an inline asm expression.
///
bool PPCAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant,
const char *ExtraCode) {
// Does this asm operand have a single letter operand modifier?
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0) return true; // Unknown modifier.
switch (ExtraCode[0]) {
default: return true; // Unknown modifier.
case 'c': // Don't print "$" before a global var name or constant.
// PPC never has a prefix.
printOperand(MI, OpNo);
return false;
case 'L': // Write second word of DImode reference.
// Verify that this operand has two consecutive registers.
if (!MI->getOperand(OpNo).isReg() ||
OpNo+1 == MI->getNumOperands() ||
!MI->getOperand(OpNo+1).isReg())
return true;
++OpNo; // Return the high-part.
break;
case 'I':
// Write 'i' if an integer constant, otherwise nothing. Used to print
// addi vs add, etc.
if (MI->getOperand(OpNo).isImm())
O << "i";
return false;
}
}
printOperand(MI, OpNo);
return false;
}
// At the moment, all inline asm memory operands are a single register.
// In any case, the output of this routine should always be just one
// assembler operand.
bool PPCAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant,
const char *ExtraCode) {
if (ExtraCode && ExtraCode[0])
return true; // Unknown modifier.
assert (MI->getOperand(OpNo).isReg());
O << "0(";
printOperand(MI, OpNo);
O << ")";
return false;
}
void PPCAsmPrinter::printPredicateOperand(const MachineInstr *MI, unsigned OpNo,
const char *Modifier) {
assert(Modifier && "Must specify 'cc' or 'reg' as predicate op modifier!");
unsigned Code = MI->getOperand(OpNo).getImm();
if (!strcmp(Modifier, "cc")) {
switch ((PPC::Predicate)Code) {
case PPC::PRED_ALWAYS: return; // Don't print anything for always.
case PPC::PRED_LT: O << "lt"; return;
case PPC::PRED_LE: O << "le"; return;
case PPC::PRED_EQ: O << "eq"; return;
case PPC::PRED_GE: O << "ge"; return;
case PPC::PRED_GT: O << "gt"; return;
case PPC::PRED_NE: O << "ne"; return;
case PPC::PRED_UN: O << "un"; return;
case PPC::PRED_NU: O << "nu"; return;
}
} else {
assert(!strcmp(Modifier, "reg") &&
"Need to specify 'cc' or 'reg' as predicate op modifier!");
// Don't print the register for 'always'.
if (Code == PPC::PRED_ALWAYS) return;
printOperand(MI, OpNo+1);
}
}
/// printMachineInstruction -- Print out a single PowerPC MI in Darwin syntax to
/// the current output stream.
///
void PPCAsmPrinter::printMachineInstruction(const MachineInstr *MI) {
++EmittedInsts;
processDebugLoc(MI, true);
// Check for slwi/srwi mnemonics.
bool useSubstituteMnemonic = false;
if (MI->getOpcode() == PPC::RLWINM) {
unsigned char SH = MI->getOperand(2).getImm();
unsigned char MB = MI->getOperand(3).getImm();
unsigned char ME = MI->getOperand(4).getImm();
if (SH <= 31 && MB == 0 && ME == (31-SH)) {
O << "\tslwi "; useSubstituteMnemonic = true;
}
if (SH <= 31 && MB == (32-SH) && ME == 31) {
O << "\tsrwi "; useSubstituteMnemonic = true;
SH = 32-SH;
}
if (useSubstituteMnemonic) {
printOperand(MI, 0);
O << ", ";
printOperand(MI, 1);
O << ", " << (unsigned int)SH;
}
} else if (MI->getOpcode() == PPC::OR || MI->getOpcode() == PPC::OR8) {
if (MI->getOperand(1).getReg() == MI->getOperand(2).getReg()) {
useSubstituteMnemonic = true;
O << "\tmr ";
printOperand(MI, 0);
O << ", ";
printOperand(MI, 1);
}
} else if (MI->getOpcode() == PPC::RLDICR) {
unsigned char SH = MI->getOperand(2).getImm();
unsigned char ME = MI->getOperand(3).getImm();
// rldicr RA, RS, SH, 63-SH == sldi RA, RS, SH
if (63-SH == ME) {
useSubstituteMnemonic = true;
O << "\tsldi ";
printOperand(MI, 0);
O << ", ";
printOperand(MI, 1);
O << ", " << (unsigned int)SH;
}
}
if (!useSubstituteMnemonic)
printInstruction(MI);
if (VerboseAsm)
EmitComments(*MI);
O << '\n';
processDebugLoc(MI, false);
}
/// runOnMachineFunction - This uses the printMachineInstruction()
/// method to print assembly for each instruction.
///
bool PPCLinuxAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
this->MF = &MF;
SetupMachineFunction(MF);
O << "\n\n";
// Print out constants referenced by the function
EmitConstantPool(MF.getConstantPool());
// Print out labels for the function.
const Function *F = MF.getFunction();
OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
switch (F->getLinkage()) {
default: llvm_unreachable("Unknown linkage type!");
case Function::PrivateLinkage:
case Function::InternalLinkage: // Symbols default to internal.
break;
case Function::ExternalLinkage:
O << "\t.global\t";
CurrentFnSym->print(O, MAI);
O << '\n' << "\t.type\t";
CurrentFnSym->print(O, MAI);
O << ", @function\n";
break;
case Function::LinkerPrivateLinkage:
case Function::WeakAnyLinkage:
case Function::WeakODRLinkage:
case Function::LinkOnceAnyLinkage:
case Function::LinkOnceODRLinkage:
O << "\t.global\t";
CurrentFnSym->print(O, MAI);
O << '\n';
O << "\t.weak\t";
CurrentFnSym->print(O, MAI);
O << '\n';
break;
}
printVisibility(CurrentFnSym, F->getVisibility());
EmitAlignment(MF.getAlignment(), F);
if (Subtarget.isPPC64()) {
// Emit an official procedure descriptor.
// FIXME 64-bit SVR4: Use MCSection here!
O << "\t.section\t\".opd\",\"aw\"\n";
O << "\t.align 3\n";
CurrentFnSym->print(O, MAI);
O << ":\n";
O << "\t.quad .L.";
CurrentFnSym->print(O, MAI);
O << ",.TOC.@tocbase\n";
O << "\t.previous\n";
O << ".L.";
CurrentFnSym->print(O, MAI);
O << ":\n";
} else {
CurrentFnSym->print(O, MAI);
O << ":\n";
}
// Emit pre-function debug information.
DW->BeginFunction(&MF);
// Print out code for the function.
for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
I != E; ++I) {
// Print a label for the basic block.
if (I != MF.begin()) {
EmitBasicBlockStart(I);
}
for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
II != E; ++II) {
// Print the assembly for the instruction.
printMachineInstruction(II);
}
}
O << "\t.size\t";
CurrentFnSym->print(O, MAI);
O << ",.-";
CurrentFnSym->print(O, MAI);
O << '\n';
OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
// Emit post-function debug information.
DW->EndFunction(&MF);
// Print out jump tables referenced by the function.
EmitJumpTableInfo(MF.getJumpTableInfo(), MF);
// We didn't modify anything.
return false;
}
void PPCLinuxAsmPrinter::PrintGlobalVariable(const GlobalVariable *GVar) {
const TargetData *TD = TM.getTargetData();
if (!GVar->hasInitializer())
return; // External global require no code
// Check to see if this is a special global used by LLVM, if so, emit it.
if (EmitSpecialLLVMGlobal(GVar))
return;
MCSymbol *GVarSym = GetGlobalValueSymbol(GVar);
printVisibility(GVarSym, GVar->getVisibility());
Constant *C = GVar->getInitializer();
const Type *Type = C->getType();
unsigned Size = TD->getTypeAllocSize(Type);
unsigned Align = TD->getPreferredAlignmentLog(GVar);
OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(GVar, Mang,
TM));
if (C->isNullValue() && /* FIXME: Verify correct */
!GVar->hasSection() &&
(GVar->hasLocalLinkage() || GVar->hasExternalLinkage() ||
GVar->isWeakForLinker())) {
if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it.
if (GVar->hasExternalLinkage()) {
O << "\t.global ";
GVarSym->print(O, MAI);
O << '\n';
O << "\t.type ";
GVarSym->print(O, MAI);
O << ", @object\n";
GVarSym->print(O, MAI);
O << ":\n";
O << "\t.zero " << Size << '\n';
} else if (GVar->hasLocalLinkage()) {
O << MAI->getLCOMMDirective();
GVarSym->print(O, MAI);
O << ',' << Size;
} else {
O << ".comm ";
GVarSym->print(O, MAI);
O << ',' << Size;
}
if (VerboseAsm) {
O << "\t\t" << MAI->getCommentString() << " '";
WriteAsOperand(O, GVar, /*PrintType=*/false, GVar->getParent());
O << "'";
}
O << '\n';
return;
}
switch (GVar->getLinkage()) {
case GlobalValue::LinkOnceAnyLinkage:
case GlobalValue::LinkOnceODRLinkage:
case GlobalValue::WeakAnyLinkage:
case GlobalValue::WeakODRLinkage:
case GlobalValue::CommonLinkage:
case GlobalValue::LinkerPrivateLinkage:
O << "\t.global ";
GVarSym->print(O, MAI);
O << "\n\t.type ";
GVarSym->print(O, MAI);
O << ", @object\n\t.weak ";
GVarSym->print(O, MAI);
O << '\n';
break;
case GlobalValue::AppendingLinkage:
// FIXME: appending linkage variables should go into a section of
// their name or something. For now, just emit them as external.
case GlobalValue::ExternalLinkage:
// If external or appending, declare as a global symbol
O << "\t.global ";
GVarSym->print(O, MAI);
O << "\n\t.type ";
GVarSym->print(O, MAI);
O << ", @object\n";
// FALL THROUGH
case GlobalValue::InternalLinkage:
case GlobalValue::PrivateLinkage:
break;
default:
llvm_unreachable("Unknown linkage type!");
}
EmitAlignment(Align, GVar);
GVarSym->print(O, MAI);
O << ":";
if (VerboseAsm) {
O << "\t\t\t\t" << MAI->getCommentString() << " '";
WriteAsOperand(O, GVar, /*PrintType=*/false, GVar->getParent());
O << "'";
}
O << '\n';
EmitGlobalConstant(C);
O << '\n';
}
bool PPCLinuxAsmPrinter::doFinalization(Module &M) {
const TargetData *TD = TM.getTargetData();
bool isPPC64 = TD->getPointerSizeInBits() == 64;
if (isPPC64 && !TOC.empty()) {
// FIXME 64-bit SVR4: Use MCSection here?
O << "\t.section\t\".toc\",\"aw\"\n";
// FIXME: This is nondeterminstic!
for (DenseMap<const MCSymbol*, const MCSymbol*>::iterator I = TOC.begin(),
E = TOC.end(); I != E; ++I) {
I->second->print(O, MAI);
O << ":\n";
O << "\t.tc ";
I->first->print(O, MAI);
O << "[TC],";
I->first->print(O, MAI);
O << '\n';
}
}
return AsmPrinter::doFinalization(M);
}
/// runOnMachineFunction - This uses the printMachineInstruction()
/// method to print assembly for each instruction.
///
bool PPCDarwinAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
this->MF = &MF;
SetupMachineFunction(MF);
O << "\n\n";
// Print out constants referenced by the function
EmitConstantPool(MF.getConstantPool());
// Print out labels for the function.
const Function *F = MF.getFunction();
OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
switch (F->getLinkage()) {
default: llvm_unreachable("Unknown linkage type!");
case Function::PrivateLinkage:
case Function::InternalLinkage: // Symbols default to internal.
break;
case Function::ExternalLinkage:
O << "\t.globl\t";
CurrentFnSym->print(O, MAI);
O << '\n';
break;
case Function::WeakAnyLinkage:
case Function::WeakODRLinkage:
case Function::LinkOnceAnyLinkage:
case Function::LinkOnceODRLinkage:
case Function::LinkerPrivateLinkage:
O << "\t.globl\t";
CurrentFnSym->print(O, MAI);
O << '\n';
O << "\t.weak_definition\t";
CurrentFnSym->print(O, MAI);
O << '\n';
break;
}
printVisibility(CurrentFnSym, F->getVisibility());
EmitAlignment(MF.getAlignment(), F);
CurrentFnSym->print(O, MAI);
O << ":\n";
// Emit pre-function debug information.
DW->BeginFunction(&MF);
// If the function is empty, then we need to emit *something*. Otherwise, the
// function's label might be associated with something that it wasn't meant to
// be associated with. We emit a noop in this situation.
MachineFunction::iterator I = MF.begin();
if (++I == MF.end() && MF.front().empty())
O << "\tnop\n";
// Print out code for the function.
for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
I != E; ++I) {
// Print a label for the basic block.
if (I != MF.begin()) {
EmitBasicBlockStart(I);
}
for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
II != IE; ++II) {
// Print the assembly for the instruction.
printMachineInstruction(II);
}
}
// Emit post-function debug information.
DW->EndFunction(&MF);
// Print out jump tables referenced by the function.
EmitJumpTableInfo(MF.getJumpTableInfo(), MF);
// We didn't modify anything.
return false;
}
void PPCDarwinAsmPrinter::EmitStartOfAsmFile(Module &M) {
static const char *const CPUDirectives[] = {
"",
"ppc",
"ppc601",
"ppc602",
"ppc603",
"ppc7400",
"ppc750",
"ppc970",
"ppc64"
};
unsigned Directive = Subtarget.getDarwinDirective();
if (Subtarget.isGigaProcessor() && Directive < PPC::DIR_970)
Directive = PPC::DIR_970;
if (Subtarget.hasAltivec() && Directive < PPC::DIR_7400)
Directive = PPC::DIR_7400;
if (Subtarget.isPPC64() && Directive < PPC::DIR_970)
Directive = PPC::DIR_64;
assert(Directive <= PPC::DIR_64 && "Directive out of range.");
O << "\t.machine " << CPUDirectives[Directive] << '\n';
// Prime text sections so they are adjacent. This reduces the likelihood a
// large data or debug section causes a branch to exceed 16M limit.
TargetLoweringObjectFileMachO &TLOFMacho =
static_cast<TargetLoweringObjectFileMachO &>(getObjFileLowering());
OutStreamer.SwitchSection(TLOFMacho.getTextCoalSection());
if (TM.getRelocationModel() == Reloc::PIC_) {
OutStreamer.SwitchSection(
TLOFMacho.getMachOSection("__TEXT", "__picsymbolstub1",
MCSectionMachO::S_SYMBOL_STUBS |
MCSectionMachO::S_ATTR_PURE_INSTRUCTIONS,
32, SectionKind::getText()));
} else if (TM.getRelocationModel() == Reloc::DynamicNoPIC) {
OutStreamer.SwitchSection(
TLOFMacho.getMachOSection("__TEXT","__symbol_stub1",
MCSectionMachO::S_SYMBOL_STUBS |
MCSectionMachO::S_ATTR_PURE_INSTRUCTIONS,
16, SectionKind::getText()));
}
OutStreamer.SwitchSection(getObjFileLowering().getTextSection());
}
void PPCDarwinAsmPrinter::PrintGlobalVariable(const GlobalVariable *GVar) {
const TargetData *TD = TM.getTargetData();
if (!GVar->hasInitializer())
return; // External global require no code
// Check to see if this is a special global used by LLVM, if so, emit it.
if (EmitSpecialLLVMGlobal(GVar)) {
if (TM.getRelocationModel() == Reloc::Static) {
if (GVar->getName() == "llvm.global_ctors")
O << ".reference .constructors_used\n";
else if (GVar->getName() == "llvm.global_dtors")
O << ".reference .destructors_used\n";
}
return;
}
MCSymbol *GVarSym = GetGlobalValueSymbol(GVar);
printVisibility(GVarSym, GVar->getVisibility());
Constant *C = GVar->getInitializer();
const Type *Type = C->getType();
unsigned Size = TD->getTypeAllocSize(Type);
unsigned Align = TD->getPreferredAlignmentLog(GVar);
const MCSection *TheSection =
getObjFileLowering().SectionForGlobal(GVar, Mang, TM);
OutStreamer.SwitchSection(TheSection);
/// FIXME: Drive this off the section!
if (C->isNullValue() && /* FIXME: Verify correct */
!GVar->hasSection() &&
(GVar->hasLocalLinkage() || GVar->hasExternalLinkage() ||
GVar->isWeakForLinker()) &&
// Don't put things that should go in the cstring section into "comm".
!TheSection->getKind().isMergeableCString()) {
if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it.
if (GVar->hasExternalLinkage()) {
O << "\t.globl ";
GVarSym->print(O, MAI);
O << '\n';
O << "\t.zerofill __DATA, __common, ";
GVarSym->print(O, MAI);
O << ", " << Size << ", " << Align;
} else if (GVar->hasLocalLinkage()) {
O << MAI->getLCOMMDirective();
GVarSym->print(O, MAI);
O << ',' << Size << ',' << Align;
} else if (!GVar->hasCommonLinkage()) {
O << "\t.globl ";
GVarSym->print(O, MAI);
O << '\n' << MAI->getWeakDefDirective();
GVarSym->print(O, MAI);
O << '\n';
EmitAlignment(Align, GVar);
GVarSym->print(O, MAI);
O << ":";
if (VerboseAsm) {
O << "\t\t\t\t" << MAI->getCommentString() << " ";
WriteAsOperand(O, GVar, /*PrintType=*/false, GVar->getParent());
}
O << '\n';
EmitGlobalConstant(C);
return;
} else {
O << ".comm ";
GVarSym->print(O, MAI);
O << ',' << Size;
// Darwin 9 and above support aligned common data.
if (Subtarget.isDarwin9())
O << ',' << Align;
}
if (VerboseAsm) {
O << "\t\t" << MAI->getCommentString() << " '";
WriteAsOperand(O, GVar, /*PrintType=*/false, GVar->getParent());
O << "'";
}
O << '\n';
return;
}
switch (GVar->getLinkage()) {
case GlobalValue::LinkOnceAnyLinkage:
case GlobalValue::LinkOnceODRLinkage:
case GlobalValue::WeakAnyLinkage:
case GlobalValue::WeakODRLinkage:
case GlobalValue::CommonLinkage:
case GlobalValue::LinkerPrivateLinkage:
O << "\t.globl ";
GVarSym->print(O, MAI);
O << "\n\t.weak_definition ";
GVarSym->print(O, MAI);
O << '\n';
break;
case GlobalValue::AppendingLinkage:
// FIXME: appending linkage variables should go into a section of
// their name or something. For now, just emit them as external.
case GlobalValue::ExternalLinkage:
// If external or appending, declare as a global symbol
O << "\t.globl ";
GVarSym->print(O, MAI);
O << '\n';
// FALL THROUGH
case GlobalValue::InternalLinkage:
case GlobalValue::PrivateLinkage:
break;
default:
llvm_unreachable("Unknown linkage type!");
}
EmitAlignment(Align, GVar);
GVarSym->print(O, MAI);
O << ":";
if (VerboseAsm) {
O << "\t\t\t\t" << MAI->getCommentString() << " '";
WriteAsOperand(O, GVar, /*PrintType=*/false, GVar->getParent());
O << "'";
}
O << '\n';
EmitGlobalConstant(C);
O << '\n';
}
bool PPCDarwinAsmPrinter::doFinalization(Module &M) {
const TargetData *TD = TM.getTargetData();
bool isPPC64 = TD->getPointerSizeInBits() == 64;
// Darwin/PPC always uses mach-o.
TargetLoweringObjectFileMachO &TLOFMacho =
static_cast<TargetLoweringObjectFileMachO &>(getObjFileLowering());
const MCSection *LSPSection = 0;
if (!FnStubs.empty()) // .lazy_symbol_pointer
LSPSection = TLOFMacho.getLazySymbolPointerSection();
// Output stubs for dynamically-linked functions
if (TM.getRelocationModel() == Reloc::PIC_ && !FnStubs.empty()) {
const MCSection *StubSection =
TLOFMacho.getMachOSection("__TEXT", "__picsymbolstub1",
MCSectionMachO::S_SYMBOL_STUBS |
MCSectionMachO::S_ATTR_PURE_INSTRUCTIONS,
32, SectionKind::getText());
// FIXME: This is emitting in nondeterminstic order!
for (DenseMap<const MCSymbol*, FnStubInfo>::iterator I =
FnStubs.begin(), E = FnStubs.end(); I != E; ++I) {
OutStreamer.SwitchSection(StubSection);
EmitAlignment(4);
const FnStubInfo &Info = I->second;
Info.Stub->print(O, MAI);
O << ":\n";
O << "\t.indirect_symbol ";
I->first->print(O, MAI);
O << '\n';
O << "\tmflr r0\n";
O << "\tbcl 20,31,";
Info.AnonSymbol->print(O, MAI);
O << '\n';
Info.AnonSymbol->print(O, MAI);
O << ":\n";
O << "\tmflr r11\n";
O << "\taddis r11,r11,ha16(";
Info.LazyPtr->print(O, MAI);
O << '-';
Info.AnonSymbol->print(O, MAI);
O << ")\n";
O << "\tmtlr r0\n";
O << (isPPC64 ? "\tldu" : "\tlwzu") << " r12,lo16(";
Info.LazyPtr->print(O, MAI);
O << '-';
Info.AnonSymbol->print(O, MAI);
O << ")(r11)\n";
O << "\tmtctr r12\n";
O << "\tbctr\n";
OutStreamer.SwitchSection(LSPSection);
Info.LazyPtr->print(O, MAI);
O << ":\n";
O << "\t.indirect_symbol ";
I->first->print(O, MAI);
O << '\n';
O << (isPPC64 ? "\t.quad" : "\t.long") << " dyld_stub_binding_helper\n";
}
} else if (!FnStubs.empty()) {
const MCSection *StubSection =
TLOFMacho.getMachOSection("__TEXT","__symbol_stub1",
MCSectionMachO::S_SYMBOL_STUBS |
MCSectionMachO::S_ATTR_PURE_INSTRUCTIONS,
16, SectionKind::getText());
// FIXME: This is emitting in nondeterminstic order!
for (DenseMap<const MCSymbol*, FnStubInfo>::iterator I = FnStubs.begin(),
E = FnStubs.end(); I != E; ++I) {
OutStreamer.SwitchSection(StubSection);
EmitAlignment(4);
const FnStubInfo &Info = I->second;
Info.Stub->print(O, MAI);
O << ":\n";
O << "\t.indirect_symbol ";
I->first->print(O, MAI);
O << '\n';
O << "\tlis r11,ha16(";
Info.LazyPtr->print(O, MAI);
O << ")\n";
O << (isPPC64 ? "\tldu" : "\tlwzu") << " r12,lo16(";
Info.LazyPtr->print(O, MAI);
O << ")(r11)\n";
O << "\tmtctr r12\n";
O << "\tbctr\n";
OutStreamer.SwitchSection(LSPSection);
Info.LazyPtr->print(O, MAI);
O << ":\n";
O << "\t.indirect_symbol ";
I->first->print(O, MAI);
O << '\n';
O << (isPPC64 ? "\t.quad" : "\t.long") << " dyld_stub_binding_helper\n";
}
}
O << '\n';
if (MAI->doesSupportExceptionHandling() && MMI) {
// Add the (possibly multiple) personalities to the set of global values.
// Only referenced functions get into the Personalities list.
const std::vector<Function *> &Personalities = MMI->getPersonalities();
for (std::vector<Function *>::const_iterator I = Personalities.begin(),
E = Personalities.end(); I != E; ++I) {
if (*I)
GVStubs[GetGlobalValueSymbol(*I)] =
GetSymbolWithGlobalValueBase(*I, "$non_lazy_ptr");
}
}
// Output macho stubs for external and common global variables.
if (!GVStubs.empty()) {
// Switch with ".non_lazy_symbol_pointer" directive.
OutStreamer.SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
EmitAlignment(isPPC64 ? 3 : 2);
// FIXME: This is nondeterminstic.
for (DenseMap<const MCSymbol *, const MCSymbol *>::iterator
I = GVStubs.begin(), E = GVStubs.end(); I != E; ++I) {
I->second->print(O, MAI);
O << ":\n";
O << "\t.indirect_symbol ";
I->first->print(O, MAI);
O << '\n';
O << (isPPC64 ? "\t.quad\t0\n" : "\t.long\t0\n");
}
}
if (!HiddenGVStubs.empty()) {
OutStreamer.SwitchSection(getObjFileLowering().getDataSection());
EmitAlignment(isPPC64 ? 3 : 2);
// FIXME: This is nondeterminstic.
for (DenseMap<const MCSymbol *, const MCSymbol *>::iterator
I = HiddenGVStubs.begin(), E = HiddenGVStubs.end(); I != E; ++I) {
I->second->print(O, MAI);
O << ":\n";
O << (isPPC64 ? "\t.quad\t" : "\t.long\t");
I->first->print(O, MAI);
O << '\n';
}
}
// Funny Darwin hack: This flag tells the linker that no global symbols
// contain code that falls through to other global symbols (e.g. the obvious
// implementation of multiple entry points). If this doesn't occur, the
// linker can safely perform dead code stripping. Since LLVM never generates
// code that does this, it is always safe to set.
OutStreamer.EmitAssemblerFlag(MCStreamer::SubsectionsViaSymbols);
return AsmPrinter::doFinalization(M);
}
/// createPPCAsmPrinterPass - Returns a pass that prints the PPC assembly code
/// for a MachineFunction to the given output stream, in a format that the
/// Darwin assembler can deal with.
///
static AsmPrinter *createPPCAsmPrinterPass(formatted_raw_ostream &o,
TargetMachine &tm,
const MCAsmInfo *tai,
bool verbose) {
const PPCSubtarget *Subtarget = &tm.getSubtarget<PPCSubtarget>();
if (Subtarget->isDarwin())
return new PPCDarwinAsmPrinter(o, tm, tai, verbose);
return new PPCLinuxAsmPrinter(o, tm, tai, verbose);
}
// Force static initialization.
extern "C" void LLVMInitializePowerPCAsmPrinter() {
TargetRegistry::RegisterAsmPrinter(ThePPC32Target, createPPCAsmPrinterPass);
TargetRegistry::RegisterAsmPrinter(ThePPC64Target, createPPCAsmPrinterPass);
}