llvm-6502/lib/Target/Mips/MipsInstrInfo.td
Chris Lattner e0d2753f2b remove redundant instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97374 91177308-0d34-0410-b5e6-96231b3b80d8
2010-02-28 07:23:21 +00:00

707 lines
25 KiB
C++

//===- MipsInstrInfo.td - Mips Register defs --------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Instruction format superclass
//===----------------------------------------------------------------------===//
include "MipsInstrFormats.td"
//===----------------------------------------------------------------------===//
// Mips profiles and nodes
//===----------------------------------------------------------------------===//
def SDT_MipsRet : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
def SDT_MipsJmpLink : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>;
def SDT_MipsSelectCC : SDTypeProfile<1, 3, [SDTCisSameAs<0, 2>,
SDTCisSameAs<2, 3>, SDTCisInt<1>]>;
def SDT_MipsCMov : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
SDTCisSameAs<1, 2>, SDTCisSameAs<3, 4>,
SDTCisInt<4>]>;
def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
def SDT_MipsCallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
// Call
def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink,
[SDNPHasChain, SDNPOutFlag, SDNPOptInFlag]>;
// Hi and Lo nodes are used to handle global addresses. Used on
// MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol
// static model. (nothing to do with Mips Registers Hi and Lo)
def MipsHi : SDNode<"MipsISD::Hi", SDTIntUnaryOp>;
def MipsLo : SDNode<"MipsISD::Lo", SDTIntUnaryOp>;
def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>;
// Return
def MipsRet : SDNode<"MipsISD::Ret", SDT_MipsRet, [SDNPHasChain,
SDNPOptInFlag]>;
// These are target-independent nodes, but have target-specific formats.
def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart,
[SDNPHasChain, SDNPOutFlag]>;
def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd,
[SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
// Select Condition Code
def MipsSelectCC : SDNode<"MipsISD::SelectCC", SDT_MipsSelectCC>;
// Conditional Move
def MipsCMov : SDNode<"MipsISD::CMov", SDT_MipsCMov>;
//===----------------------------------------------------------------------===//
// Mips Instruction Predicate Definitions.
//===----------------------------------------------------------------------===//
def HasSEInReg : Predicate<"Subtarget.hasSEInReg()">;
def HasBitCount : Predicate<"Subtarget.hasBitCount()">;
def HasSwap : Predicate<"Subtarget.hasSwap()">;
def HasCondMov : Predicate<"Subtarget.hasCondMov()">;
//===----------------------------------------------------------------------===//
// Mips Operand, Complex Patterns and Transformations Definitions.
//===----------------------------------------------------------------------===//
// Instruction operand types
def brtarget : Operand<OtherVT>;
def calltarget : Operand<i32>;
def simm16 : Operand<i32>;
def shamt : Operand<i32>;
// Unsigned Operand
def uimm16 : Operand<i32> {
let PrintMethod = "printUnsignedImm";
}
// Address operand
def mem : Operand<i32> {
let PrintMethod = "printMemOperand";
let MIOperandInfo = (ops simm16, CPURegs);
}
// Transformation Function - get the lower 16 bits.
def LO16 : SDNodeXForm<imm, [{
return getI32Imm((unsigned)N->getZExtValue() & 0xFFFF);
}]>;
// Transformation Function - get the higher 16 bits.
def HI16 : SDNodeXForm<imm, [{
return getI32Imm((unsigned)N->getZExtValue() >> 16);
}]>;
// Node immediate fits as 16-bit sign extended on target immediate.
// e.g. addi, andi
def immSExt16 : PatLeaf<(imm), [{
if (N->getValueType(0) == MVT::i32)
return (int32_t)N->getZExtValue() == (short)N->getZExtValue();
else
return (int64_t)N->getZExtValue() == (short)N->getZExtValue();
}]>;
// Node immediate fits as 16-bit zero extended on target immediate.
// The LO16 param means that only the lower 16 bits of the node
// immediate are caught.
// e.g. addiu, sltiu
def immZExt16 : PatLeaf<(imm), [{
if (N->getValueType(0) == MVT::i32)
return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
else
return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
}], LO16>;
// shamt field must fit in 5 bits.
def immZExt5 : PatLeaf<(imm), [{
return N->getZExtValue() == ((N->getZExtValue()) & 0x1f) ;
}]>;
// Mips Address Mode! SDNode frameindex could possibily be a match
// since load and store instructions from stack used it.
def addr : ComplexPattern<iPTR, 2, "SelectAddr", [frameindex], []>;
//===----------------------------------------------------------------------===//
// Instructions specific format
//===----------------------------------------------------------------------===//
// Arithmetic 3 register operands
let isCommutable = 1 in
class ArithR<bits<6> op, bits<6> func, string instr_asm, SDNode OpNode,
InstrItinClass itin>:
FR< op,
func,
(outs CPURegs:$dst),
(ins CPURegs:$b, CPURegs:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[(set CPURegs:$dst, (OpNode CPURegs:$b, CPURegs:$c))], itin>;
let isCommutable = 1 in
class ArithOverflowR<bits<6> op, bits<6> func, string instr_asm>:
FR< op,
func,
(outs CPURegs:$dst),
(ins CPURegs:$b, CPURegs:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[], IIAlu>;
// Arithmetic 2 register operands
class ArithI<bits<6> op, string instr_asm, SDNode OpNode,
Operand Od, PatLeaf imm_type> :
FI< op,
(outs CPURegs:$dst),
(ins CPURegs:$b, Od:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[(set CPURegs:$dst, (OpNode CPURegs:$b, imm_type:$c))], IIAlu>;
class ArithOverflowI<bits<6> op, string instr_asm, SDNode OpNode,
Operand Od, PatLeaf imm_type> :
FI< op,
(outs CPURegs:$dst),
(ins CPURegs:$b, Od:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[], IIAlu>;
// Arithmetic Multiply ADD/SUB
let rd=0 in
class MArithR<bits<6> func, string instr_asm> :
FR< 0x1c,
func,
(outs CPURegs:$rs),
(ins CPURegs:$rt),
!strconcat(instr_asm, "\t$rs, $rt"),
[], IIImul>;
// Logical
class LogicR<bits<6> func, string instr_asm, SDNode OpNode>:
FR< 0x00,
func,
(outs CPURegs:$dst),
(ins CPURegs:$b, CPURegs:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[(set CPURegs:$dst, (OpNode CPURegs:$b, CPURegs:$c))], IIAlu>;
class LogicI<bits<6> op, string instr_asm, SDNode OpNode>:
FI< op,
(outs CPURegs:$dst),
(ins CPURegs:$b, uimm16:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[(set CPURegs:$dst, (OpNode CPURegs:$b, immZExt16:$c))], IIAlu>;
class LogicNOR<bits<6> op, bits<6> func, string instr_asm>:
FR< op,
func,
(outs CPURegs:$dst),
(ins CPURegs:$b, CPURegs:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[(set CPURegs:$dst, (not (or CPURegs:$b, CPURegs:$c)))], IIAlu>;
// Shifts
let rt = 0 in
class LogicR_shift_imm<bits<6> func, string instr_asm, SDNode OpNode>:
FR< 0x00,
func,
(outs CPURegs:$dst),
(ins CPURegs:$b, shamt:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[(set CPURegs:$dst, (OpNode CPURegs:$b, immZExt5:$c))], IIAlu>;
class LogicR_shift_reg<bits<6> func, string instr_asm, SDNode OpNode>:
FR< 0x00,
func,
(outs CPURegs:$dst),
(ins CPURegs:$b, CPURegs:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[(set CPURegs:$dst, (OpNode CPURegs:$b, CPURegs:$c))], IIAlu>;
// Load Upper Imediate
class LoadUpper<bits<6> op, string instr_asm>:
FI< op,
(outs CPURegs:$dst),
(ins uimm16:$imm),
!strconcat(instr_asm, "\t$dst, $imm"),
[], IIAlu>;
// Memory Load/Store
let canFoldAsLoad = 1, hasDelaySlot = 1 in
class LoadM<bits<6> op, string instr_asm, PatFrag OpNode>:
FI< op,
(outs CPURegs:$dst),
(ins mem:$addr),
!strconcat(instr_asm, "\t$dst, $addr"),
[(set CPURegs:$dst, (OpNode addr:$addr))], IILoad>;
class StoreM<bits<6> op, string instr_asm, PatFrag OpNode>:
FI< op,
(outs),
(ins CPURegs:$dst, mem:$addr),
!strconcat(instr_asm, "\t$dst, $addr"),
[(OpNode CPURegs:$dst, addr:$addr)], IIStore>;
// Conditional Branch
let isBranch = 1, isTerminator=1, hasDelaySlot = 1 in {
class CBranch<bits<6> op, string instr_asm, PatFrag cond_op>:
FI< op,
(outs),
(ins CPURegs:$a, CPURegs:$b, brtarget:$offset),
!strconcat(instr_asm, "\t$a, $b, $offset"),
[(brcond (cond_op CPURegs:$a, CPURegs:$b), bb:$offset)],
IIBranch>;
class CBranchZero<bits<6> op, string instr_asm, PatFrag cond_op>:
FI< op,
(outs),
(ins CPURegs:$src, brtarget:$offset),
!strconcat(instr_asm, "\t$src, $offset"),
[(brcond (cond_op CPURegs:$src, 0), bb:$offset)],
IIBranch>;
}
// SetCC
class SetCC_R<bits<6> op, bits<6> func, string instr_asm,
PatFrag cond_op>:
FR< op,
func,
(outs CPURegs:$dst),
(ins CPURegs:$b, CPURegs:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[(set CPURegs:$dst, (cond_op CPURegs:$b, CPURegs:$c))],
IIAlu>;
class SetCC_I<bits<6> op, string instr_asm, PatFrag cond_op,
Operand Od, PatLeaf imm_type>:
FI< op,
(outs CPURegs:$dst),
(ins CPURegs:$b, Od:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[(set CPURegs:$dst, (cond_op CPURegs:$b, imm_type:$c))],
IIAlu>;
// Unconditional branch
let isBranch=1, isTerminator=1, isBarrier=1, hasDelaySlot = 1 in
class JumpFJ<bits<6> op, string instr_asm>:
FJ< op,
(outs),
(ins brtarget:$target),
!strconcat(instr_asm, "\t$target"),
[(br bb:$target)], IIBranch>;
let isBranch=1, isTerminator=1, isBarrier=1, rd=0, hasDelaySlot = 1 in
class JumpFR<bits<6> op, bits<6> func, string instr_asm>:
FR< op,
func,
(outs),
(ins CPURegs:$target),
!strconcat(instr_asm, "\t$target"),
[(brind CPURegs:$target)], IIBranch>;
// Jump and Link (Call)
let isCall=1, hasDelaySlot=1,
// All calls clobber the non-callee saved registers...
Defs = [AT, V0, V1, A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, T6, T7, T8, T9,
K0, K1, D0, D1, D2, D3, D4, D5, D6, D7, D8, D9], Uses = [GP] in {
class JumpLink<bits<6> op, string instr_asm>:
FJ< op,
(outs),
(ins calltarget:$target, variable_ops),
!strconcat(instr_asm, "\t$target"),
[(MipsJmpLink imm:$target)], IIBranch>;
let rd=31 in
class JumpLinkReg<bits<6> op, bits<6> func, string instr_asm>:
FR< op,
func,
(outs),
(ins CPURegs:$rs, variable_ops),
!strconcat(instr_asm, "\t$rs"),
[(MipsJmpLink CPURegs:$rs)], IIBranch>;
class BranchLink<string instr_asm>:
FI< 0x1,
(outs),
(ins CPURegs:$rs, brtarget:$target, variable_ops),
!strconcat(instr_asm, "\t$rs, $target"),
[], IIBranch>;
}
// Mul, Div
class MulDiv<bits<6> func, string instr_asm, InstrItinClass itin>:
FR< 0x00,
func,
(outs),
(ins CPURegs:$a, CPURegs:$b),
!strconcat(instr_asm, "\t$a, $b"),
[], itin>;
// Move from Hi/Lo
class MoveFromLOHI<bits<6> func, string instr_asm>:
FR< 0x00,
func,
(outs CPURegs:$dst),
(ins),
!strconcat(instr_asm, "\t$dst"),
[], IIHiLo>;
class MoveToLOHI<bits<6> func, string instr_asm>:
FR< 0x00,
func,
(outs),
(ins CPURegs:$src),
!strconcat(instr_asm, "\t$src"),
[], IIHiLo>;
class EffectiveAddress<string instr_asm> :
FI<0x09,
(outs CPURegs:$dst),
(ins mem:$addr),
instr_asm,
[(set CPURegs:$dst, addr:$addr)], IIAlu>;
// Count Leading Ones/Zeros in Word
class CountLeading<bits<6> func, string instr_asm, SDNode CountOp>:
FR< 0x1c, func, (outs CPURegs:$dst), (ins CPURegs:$src),
!strconcat(instr_asm, "\t$dst, $src"),
[(set CPURegs:$dst, (CountOp CPURegs:$src))], IIAlu>;
// Sign Extend in Register.
class SignExtInReg<bits<6> func, string instr_asm, ValueType vt>:
FR< 0x3f, func, (outs CPURegs:$dst), (ins CPURegs:$src),
!strconcat(instr_asm, "\t$dst, $src"),
[(set CPURegs:$dst, (sext_inreg CPURegs:$src, vt))], NoItinerary>;
// Byte Swap
class ByteSwap<bits<6> func, string instr_asm>:
FR< 0x1f, func, (outs CPURegs:$dst), (ins CPURegs:$src),
!strconcat(instr_asm, "\t$dst, $src"),
[(set CPURegs:$dst, (bswap CPURegs:$src))], NoItinerary>;
// Conditional Move
class CondMov<bits<6> func, string instr_asm, PatLeaf MovCode>:
FR< 0x00, func, (outs CPURegs:$dst), (ins CPURegs:$F, CPURegs:$T,
CPURegs:$cond), !strconcat(instr_asm, "\t$dst, $T, $cond"),
[(set CPURegs:$dst, (MipsCMov CPURegs:$F, CPURegs:$T,
CPURegs:$cond, MovCode))], NoItinerary>;
//===----------------------------------------------------------------------===//
// Pseudo instructions
//===----------------------------------------------------------------------===//
// As stack alignment is always done with addiu, we need a 16-bit immediate
let Defs = [SP], Uses = [SP] in {
def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins uimm16:$amt),
"!ADJCALLSTACKDOWN $amt",
[(callseq_start timm:$amt)]>;
def ADJCALLSTACKUP : MipsPseudo<(outs), (ins uimm16:$amt1, uimm16:$amt2),
"!ADJCALLSTACKUP $amt1",
[(callseq_end timm:$amt1, timm:$amt2)]>;
}
// Some assembly macros need to avoid pseudoinstructions and assembler
// automatic reodering, we should reorder ourselves.
def MACRO : MipsPseudo<(outs), (ins), ".set\tmacro", []>;
def REORDER : MipsPseudo<(outs), (ins), ".set\treorder", []>;
def NOMACRO : MipsPseudo<(outs), (ins), ".set\tnomacro", []>;
def NOREORDER : MipsPseudo<(outs), (ins), ".set\tnoreorder", []>;
// When handling PIC code the assembler needs .cpload and .cprestore
// directives. If the real instructions corresponding these directives
// are used, we have the same behavior, but get also a bunch of warnings
// from the assembler.
def CPLOAD : MipsPseudo<(outs), (ins CPURegs:$picreg), ".cpload\t$picreg", []>;
def CPRESTORE : MipsPseudo<(outs), (ins uimm16:$loc), ".cprestore\t$loc\n", []>;
// The supported Mips ISAs dont have any instruction close to the SELECT_CC
// operation. The solution is to create a Mips pseudo SELECT_CC instruction
// (MipsSelectCC), use LowerSELECT_CC to generate this instruction and finally
// replace it for real supported nodes into EmitInstrWithCustomInserter
let usesCustomInserter = 1 in {
class PseudoSelCC<RegisterClass RC, string asmstr>:
MipsPseudo<(outs RC:$dst), (ins CPURegs:$CmpRes, RC:$T, RC:$F), asmstr,
[(set RC:$dst, (MipsSelectCC CPURegs:$CmpRes, RC:$T, RC:$F))]>;
}
def Select_CC : PseudoSelCC<CPURegs, "# MipsSelect_CC_i32">;
//===----------------------------------------------------------------------===//
// Instruction definition
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// MipsI Instructions
//===----------------------------------------------------------------------===//
/// Arithmetic Instructions (ALU Immediate)
def ADDiu : ArithI<0x09, "addiu", add, simm16, immSExt16>;
def ADDi : ArithOverflowI<0x08, "addi", add, simm16, immSExt16>;
def SLTi : SetCC_I<0x0a, "slti", setlt, simm16, immSExt16>;
def SLTiu : SetCC_I<0x0b, "sltiu", setult, simm16, immSExt16>;
def ANDi : LogicI<0x0c, "andi", and>;
def ORi : LogicI<0x0d, "ori", or>;
def XORi : LogicI<0x0e, "xori", xor>;
def LUi : LoadUpper<0x0f, "lui">;
/// Arithmetic Instructions (3-Operand, R-Type)
def ADDu : ArithR<0x00, 0x21, "addu", add, IIAlu>;
def SUBu : ArithR<0x00, 0x23, "subu", sub, IIAlu>;
def ADD : ArithOverflowR<0x00, 0x20, "add">;
def SUB : ArithOverflowR<0x00, 0x22, "sub">;
def SLT : SetCC_R<0x00, 0x2a, "slt", setlt>;
def SLTu : SetCC_R<0x00, 0x2b, "sltu", setult>;
def AND : LogicR<0x24, "and", and>;
def OR : LogicR<0x25, "or", or>;
def XOR : LogicR<0x26, "xor", xor>;
def NOR : LogicNOR<0x00, 0x27, "nor">;
/// Shift Instructions
def SLL : LogicR_shift_imm<0x00, "sll", shl>;
def SRL : LogicR_shift_imm<0x02, "srl", srl>;
def SRA : LogicR_shift_imm<0x03, "sra", sra>;
def SLLV : LogicR_shift_reg<0x04, "sllv", shl>;
def SRLV : LogicR_shift_reg<0x06, "srlv", srl>;
def SRAV : LogicR_shift_reg<0x07, "srav", sra>;
/// Load and Store Instructions
def LB : LoadM<0x20, "lb", sextloadi8>;
def LBu : LoadM<0x24, "lbu", zextloadi8>;
def LH : LoadM<0x21, "lh", sextloadi16>;
def LHu : LoadM<0x25, "lhu", zextloadi16>;
def LW : LoadM<0x23, "lw", load>;
def SB : StoreM<0x28, "sb", truncstorei8>;
def SH : StoreM<0x29, "sh", truncstorei16>;
def SW : StoreM<0x2b, "sw", store>;
/// Jump and Branch Instructions
def J : JumpFJ<0x02, "j">;
def JR : JumpFR<0x00, 0x08, "jr">;
def JAL : JumpLink<0x03, "jal">;
def JALR : JumpLinkReg<0x00, 0x09, "jalr">;
def BEQ : CBranch<0x04, "beq", seteq>;
def BNE : CBranch<0x05, "bne", setne>;
let rt=1 in
def BGEZ : CBranchZero<0x01, "bgez", setge>;
let rt=0 in {
def BGTZ : CBranchZero<0x07, "bgtz", setgt>;
def BLEZ : CBranchZero<0x07, "blez", setle>;
def BLTZ : CBranchZero<0x01, "bltz", setlt>;
}
def BGEZAL : BranchLink<"bgezal">;
def BLTZAL : BranchLink<"bltzal">;
let isReturn=1, isTerminator=1, hasDelaySlot=1,
isBarrier=1, hasCtrlDep=1, rs=0, rt=0, shamt=0 in
def RET : FR <0x00, 0x02, (outs), (ins CPURegs:$target),
"jr\t$target", [(MipsRet CPURegs:$target)], IIBranch>;
/// Multiply and Divide Instructions.
let Defs = [HI, LO] in {
def MULT : MulDiv<0x18, "mult", IIImul>;
def MULTu : MulDiv<0x19, "multu", IIImul>;
def DIV : MulDiv<0x1a, "div", IIIdiv>;
def DIVu : MulDiv<0x1b, "divu", IIIdiv>;
}
let Defs = [HI] in
def MTHI : MoveToLOHI<0x11, "mthi">;
let Defs = [LO] in
def MTLO : MoveToLOHI<0x13, "mtlo">;
let Uses = [HI] in
def MFHI : MoveFromLOHI<0x10, "mfhi">;
let Uses = [LO] in
def MFLO : MoveFromLOHI<0x12, "mflo">;
/// Sign Ext In Register Instructions.
let Predicates = [HasSEInReg] in {
let shamt = 0x10, rs = 0 in
def SEB : SignExtInReg<0x21, "seb", i8>;
let shamt = 0x18, rs = 0 in
def SEH : SignExtInReg<0x20, "seh", i16>;
}
/// Count Leading
let Predicates = [HasBitCount] in {
let rt = 0 in
def CLZ : CountLeading<0b010110, "clz", ctlz>;
}
/// Byte Swap
let Predicates = [HasSwap] in {
let shamt = 0x3, rs = 0 in
def WSBW : ByteSwap<0x20, "wsbw">;
}
/// Conditional Move
def MIPS_CMOV_ZERO : PatLeaf<(i32 0)>;
def MIPS_CMOV_NZERO : PatLeaf<(i32 1)>;
let Predicates = [HasCondMov], isTwoAddress = 1 in {
def MOVN : CondMov<0x0a, "movn", MIPS_CMOV_NZERO>;
def MOVZ : CondMov<0x0b, "movz", MIPS_CMOV_ZERO>;
}
/// No operation
let addr=0 in
def NOP : FJ<0, (outs), (ins), "nop", [], IIAlu>;
// FrameIndexes are legalized when they are operands from load/store
// instructions. The same not happens for stack address copies, so an
// add op with mem ComplexPattern is used and the stack address copy
// can be matched. It's similar to Sparc LEA_ADDRi
def LEA_ADDiu : EffectiveAddress<"addiu\t$dst, ${addr:stackloc}">;
// MADD*/MSUB* are not part of MipsI either.
//def MADD : MArithR<0x00, "madd">;
//def MADDU : MArithR<0x01, "maddu">;
//def MSUB : MArithR<0x04, "msub">;
//def MSUBU : MArithR<0x05, "msubu">;
// MUL is a assembly macro in the current used ISAs. In recent ISA's
// it is a real instruction.
//def MUL : ArithR<0x1c, 0x02, "mul", mul, IIImul>;
//===----------------------------------------------------------------------===//
// Arbitrary patterns that map to one or more instructions
//===----------------------------------------------------------------------===//
// Small immediates
def : Pat<(i32 immSExt16:$in),
(ADDiu ZERO, imm:$in)>;
def : Pat<(i32 immZExt16:$in),
(ORi ZERO, imm:$in)>;
// Arbitrary immediates
def : Pat<(i32 imm:$imm),
(ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>;
// Carry patterns
def : Pat<(subc CPURegs:$lhs, CPURegs:$rhs),
(SUBu CPURegs:$lhs, CPURegs:$rhs)>;
def : Pat<(addc CPURegs:$lhs, CPURegs:$rhs),
(ADDu CPURegs:$lhs, CPURegs:$rhs)>;
def : Pat<(addc CPURegs:$src, imm:$imm),
(ADDiu CPURegs:$src, imm:$imm)>;
// Call
def : Pat<(MipsJmpLink (i32 tglobaladdr:$dst)),
(JAL tglobaladdr:$dst)>;
def : Pat<(MipsJmpLink (i32 texternalsym:$dst)),
(JAL texternalsym:$dst)>;
//def : Pat<(MipsJmpLink CPURegs:$dst),
// (JALR CPURegs:$dst)>;
// hi/lo relocs
def : Pat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>;
def : Pat<(add CPURegs:$hi, (MipsLo tglobaladdr:$lo)),
(ADDiu CPURegs:$hi, tglobaladdr:$lo)>;
def : Pat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>;
def : Pat<(add CPURegs:$hi, (MipsLo tjumptable:$lo)),
(ADDiu CPURegs:$hi, tjumptable:$lo)>;
def : Pat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>;
def : Pat<(add CPURegs:$hi, (MipsLo tconstpool:$lo)),
(ADDiu CPURegs:$hi, tconstpool:$lo)>;
// gp_rel relocs
def : Pat<(add CPURegs:$gp, (MipsGPRel tglobaladdr:$in)),
(ADDiu CPURegs:$gp, tglobaladdr:$in)>;
def : Pat<(add CPURegs:$gp, (MipsGPRel tconstpool:$in)),
(ADDiu CPURegs:$gp, tconstpool:$in)>;
// Mips does not have "not", so we expand our way
def : Pat<(not CPURegs:$in),
(NOR CPURegs:$in, ZERO)>;
// extended load and stores
def : Pat<(extloadi1 addr:$src), (LBu addr:$src)>;
def : Pat<(extloadi8 addr:$src), (LBu addr:$src)>;
def : Pat<(extloadi16 addr:$src), (LHu addr:$src)>;
// peepholes
def : Pat<(store (i32 0), addr:$dst), (SW ZERO, addr:$dst)>;
// brcond patterns
def : Pat<(brcond (setne CPURegs:$lhs, 0), bb:$dst),
(BNE CPURegs:$lhs, ZERO, bb:$dst)>;
def : Pat<(brcond (seteq CPURegs:$lhs, 0), bb:$dst),
(BEQ CPURegs:$lhs, ZERO, bb:$dst)>;
def : Pat<(brcond (setge CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
(BEQ (SLT CPURegs:$lhs, CPURegs:$rhs), ZERO, bb:$dst)>;
def : Pat<(brcond (setuge CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
(BEQ (SLTu CPURegs:$lhs, CPURegs:$rhs), ZERO, bb:$dst)>;
def : Pat<(brcond (setge CPURegs:$lhs, immSExt16:$rhs), bb:$dst),
(BEQ (SLTi CPURegs:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
def : Pat<(brcond (setuge CPURegs:$lhs, immSExt16:$rhs), bb:$dst),
(BEQ (SLTiu CPURegs:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
def : Pat<(brcond (setle CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
(BEQ (SLT CPURegs:$rhs, CPURegs:$lhs), ZERO, bb:$dst)>;
def : Pat<(brcond (setule CPURegs:$lhs, CPURegs:$rhs), bb:$dst),
(BEQ (SLTu CPURegs:$rhs, CPURegs:$lhs), ZERO, bb:$dst)>;
def : Pat<(brcond CPURegs:$cond, bb:$dst),
(BNE CPURegs:$cond, ZERO, bb:$dst)>;
// select patterns
def : Pat<(select (setge CPURegs:$lhs, CPURegs:$rhs), CPURegs:$T, CPURegs:$F),
(MOVZ CPURegs:$F, CPURegs:$T, (SLT CPURegs:$lhs, CPURegs:$rhs))>;
def : Pat<(select (setuge CPURegs:$lhs, CPURegs:$rhs), CPURegs:$T, CPURegs:$F),
(MOVZ CPURegs:$F, CPURegs:$T, (SLTu CPURegs:$lhs, CPURegs:$rhs))>;
def : Pat<(select (setge CPURegs:$lhs, immSExt16:$rhs), CPURegs:$T, CPURegs:$F),
(MOVZ CPURegs:$F, CPURegs:$T, (SLTi CPURegs:$lhs, immSExt16:$rhs))>;
def : Pat<(select (setuge CPURegs:$lh, immSExt16:$rh), CPURegs:$T, CPURegs:$F),
(MOVZ CPURegs:$F, CPURegs:$T, (SLTiu CPURegs:$lh, immSExt16:$rh))>;
def : Pat<(select (setle CPURegs:$lhs, CPURegs:$rhs), CPURegs:$T, CPURegs:$F),
(MOVZ CPURegs:$F, CPURegs:$T, (SLT CPURegs:$rhs, CPURegs:$lhs))>;
def : Pat<(select (setule CPURegs:$lhs, CPURegs:$rhs), CPURegs:$T, CPURegs:$F),
(MOVZ CPURegs:$F, CPURegs:$T, (SLTu CPURegs:$rhs, CPURegs:$lhs))>;
def : Pat<(select (seteq CPURegs:$lhs, CPURegs:$rhs), CPURegs:$T, CPURegs:$F),
(MOVZ CPURegs:$F, CPURegs:$T, (XOR CPURegs:$lhs, CPURegs:$rhs))>;
def : Pat<(select (setne CPURegs:$lhs, CPURegs:$rhs), CPURegs:$T, CPURegs:$F),
(MOVN CPURegs:$F, CPURegs:$T, (XOR CPURegs:$lhs, CPURegs:$rhs))>;
def : Pat<(select CPURegs:$cond, CPURegs:$T, CPURegs:$F),
(MOVN CPURegs:$F, CPURegs:$T, CPURegs:$cond)>;
// setcc patterns
def : Pat<(seteq CPURegs:$lhs, CPURegs:$rhs),
(SLTu (XOR CPURegs:$lhs, CPURegs:$rhs), 1)>;
def : Pat<(setne CPURegs:$lhs, CPURegs:$rhs),
(SLTu ZERO, (XOR CPURegs:$lhs, CPURegs:$rhs))>;
def : Pat<(setle CPURegs:$lhs, CPURegs:$rhs),
(XORi (SLT CPURegs:$rhs, CPURegs:$lhs), 1)>;
def : Pat<(setule CPURegs:$lhs, CPURegs:$rhs),
(XORi (SLTu CPURegs:$rhs, CPURegs:$lhs), 1)>;
def : Pat<(setgt CPURegs:$lhs, CPURegs:$rhs),
(SLT CPURegs:$rhs, CPURegs:$lhs)>;
def : Pat<(setugt CPURegs:$lhs, CPURegs:$rhs),
(SLTu CPURegs:$rhs, CPURegs:$lhs)>;
def : Pat<(setge CPURegs:$lhs, CPURegs:$rhs),
(XORi (SLT CPURegs:$lhs, CPURegs:$rhs), 1)>;
def : Pat<(setuge CPURegs:$lhs, CPURegs:$rhs),
(XORi (SLTu CPURegs:$lhs, CPURegs:$rhs), 1)>;
def : Pat<(setge CPURegs:$lhs, immSExt16:$rhs),
(XORi (SLTi CPURegs:$lhs, immSExt16:$rhs), 1)>;
def : Pat<(setuge CPURegs:$lhs, immSExt16:$rhs),
(XORi (SLTiu CPURegs:$lhs, immSExt16:$rhs), 1)>;
//===----------------------------------------------------------------------===//
// Floating Point Support
//===----------------------------------------------------------------------===//
include "MipsInstrFPU.td"