llvm-6502/utils/TableGen/CodeGenRegisters.cpp
Jakob Stoklund Olesen 7b9cafde5e Move the list of register classes into CodeGenRegBank as well.
No functional change intended.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133029 91177308-0d34-0410-b5e6-96231b3b80d8
2011-06-15 00:20:40 +00:00

480 lines
18 KiB
C++

//===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines structures to encapsulate information gleaned from the
// target register and register class definitions.
//
//===----------------------------------------------------------------------===//
#include "CodeGenRegisters.h"
#include "CodeGenTarget.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
// CodeGenRegister
//===----------------------------------------------------------------------===//
CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
: TheDef(R),
EnumValue(Enum),
CostPerUse(R->getValueAsInt("CostPerUse")),
SubRegsComplete(false)
{}
const std::string &CodeGenRegister::getName() const {
return TheDef->getName();
}
namespace {
struct Orphan {
CodeGenRegister *SubReg;
Record *First, *Second;
Orphan(CodeGenRegister *r, Record *a, Record *b)
: SubReg(r), First(a), Second(b) {}
};
}
const CodeGenRegister::SubRegMap &
CodeGenRegister::getSubRegs(CodeGenRegBank &RegBank) {
// Only compute this map once.
if (SubRegsComplete)
return SubRegs;
SubRegsComplete = true;
std::vector<Record*> SubList = TheDef->getValueAsListOfDefs("SubRegs");
std::vector<Record*> Indices = TheDef->getValueAsListOfDefs("SubRegIndices");
if (SubList.size() != Indices.size())
throw TGError(TheDef->getLoc(), "Register " + getName() +
" SubRegIndices doesn't match SubRegs");
// First insert the direct subregs and make sure they are fully indexed.
for (unsigned i = 0, e = SubList.size(); i != e; ++i) {
CodeGenRegister *SR = RegBank.getReg(SubList[i]);
if (!SubRegs.insert(std::make_pair(Indices[i], SR)).second)
throw TGError(TheDef->getLoc(), "SubRegIndex " + Indices[i]->getName() +
" appears twice in Register " + getName());
}
// Keep track of inherited subregs and how they can be reached.
SmallVector<Orphan, 8> Orphans;
// Clone inherited subregs and place duplicate entries on Orphans.
// Here the order is important - earlier subregs take precedence.
for (unsigned i = 0, e = SubList.size(); i != e; ++i) {
CodeGenRegister *SR = RegBank.getReg(SubList[i]);
const SubRegMap &Map = SR->getSubRegs(RegBank);
// Add this as a super-register of SR now all sub-registers are in the list.
// This creates a topological ordering, the exact order depends on the
// order getSubRegs is called on all registers.
SR->SuperRegs.push_back(this);
for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
++SI) {
if (!SubRegs.insert(*SI).second)
Orphans.push_back(Orphan(SI->second, Indices[i], SI->first));
// Noop sub-register indexes are possible, so avoid duplicates.
if (SI->second != SR)
SI->second->SuperRegs.push_back(this);
}
}
// Process the composites.
ListInit *Comps = TheDef->getValueAsListInit("CompositeIndices");
for (unsigned i = 0, e = Comps->size(); i != e; ++i) {
DagInit *Pat = dynamic_cast<DagInit*>(Comps->getElement(i));
if (!Pat)
throw TGError(TheDef->getLoc(), "Invalid dag '" +
Comps->getElement(i)->getAsString() +
"' in CompositeIndices");
DefInit *BaseIdxInit = dynamic_cast<DefInit*>(Pat->getOperator());
if (!BaseIdxInit || !BaseIdxInit->getDef()->isSubClassOf("SubRegIndex"))
throw TGError(TheDef->getLoc(), "Invalid SubClassIndex in " +
Pat->getAsString());
// Resolve list of subreg indices into R2.
CodeGenRegister *R2 = this;
for (DagInit::const_arg_iterator di = Pat->arg_begin(),
de = Pat->arg_end(); di != de; ++di) {
DefInit *IdxInit = dynamic_cast<DefInit*>(*di);
if (!IdxInit || !IdxInit->getDef()->isSubClassOf("SubRegIndex"))
throw TGError(TheDef->getLoc(), "Invalid SubClassIndex in " +
Pat->getAsString());
const SubRegMap &R2Subs = R2->getSubRegs(RegBank);
SubRegMap::const_iterator ni = R2Subs.find(IdxInit->getDef());
if (ni == R2Subs.end())
throw TGError(TheDef->getLoc(), "Composite " + Pat->getAsString() +
" refers to bad index in " + R2->getName());
R2 = ni->second;
}
// Insert composite index. Allow overriding inherited indices etc.
SubRegs[BaseIdxInit->getDef()] = R2;
// R2 is no longer an orphan.
for (unsigned j = 0, je = Orphans.size(); j != je; ++j)
if (Orphans[j].SubReg == R2)
Orphans[j].SubReg = 0;
}
// Now Orphans contains the inherited subregisters without a direct index.
// Create inferred indexes for all missing entries.
for (unsigned i = 0, e = Orphans.size(); i != e; ++i) {
Orphan &O = Orphans[i];
if (!O.SubReg)
continue;
SubRegs[RegBank.getCompositeSubRegIndex(O.First, O.Second, true)] =
O.SubReg;
}
return SubRegs;
}
void
CodeGenRegister::addSubRegsPreOrder(SetVector<CodeGenRegister*> &OSet) const {
assert(SubRegsComplete && "Must precompute sub-registers");
std::vector<Record*> Indices = TheDef->getValueAsListOfDefs("SubRegIndices");
for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
CodeGenRegister *SR = SubRegs.find(Indices[i])->second;
if (OSet.insert(SR))
SR->addSubRegsPreOrder(OSet);
}
}
//===----------------------------------------------------------------------===//
// CodeGenRegisterClass
//===----------------------------------------------------------------------===//
CodeGenRegisterClass::CodeGenRegisterClass(Record *R) : TheDef(R) {
// Rename anonymous register classes.
if (R->getName().size() > 9 && R->getName()[9] == '.') {
static unsigned AnonCounter = 0;
R->setName("AnonRegClass_"+utostr(AnonCounter++));
}
std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
Record *Type = TypeList[i];
if (!Type->isSubClassOf("ValueType"))
throw "RegTypes list member '" + Type->getName() +
"' does not derive from the ValueType class!";
VTs.push_back(getValueType(Type));
}
assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!");
std::vector<Record*> RegList = R->getValueAsListOfDefs("MemberList");
for (unsigned i = 0, e = RegList.size(); i != e; ++i) {
Record *Reg = RegList[i];
if (!Reg->isSubClassOf("Register"))
throw "Register Class member '" + Reg->getName() +
"' does not derive from the Register class!";
Elements.push_back(Reg);
}
// SubRegClasses is a list<dag> containing (RC, subregindex, ...) dags.
ListInit *SRC = R->getValueAsListInit("SubRegClasses");
for (ListInit::const_iterator i = SRC->begin(), e = SRC->end(); i != e; ++i) {
DagInit *DAG = dynamic_cast<DagInit*>(*i);
if (!DAG) throw "SubRegClasses must contain DAGs";
DefInit *DAGOp = dynamic_cast<DefInit*>(DAG->getOperator());
Record *RCRec;
if (!DAGOp || !(RCRec = DAGOp->getDef())->isSubClassOf("RegisterClass"))
throw "Operator '" + DAG->getOperator()->getAsString() +
"' in SubRegClasses is not a RegisterClass";
// Iterate over args, all SubRegIndex instances.
for (DagInit::const_arg_iterator ai = DAG->arg_begin(), ae = DAG->arg_end();
ai != ae; ++ai) {
DefInit *Idx = dynamic_cast<DefInit*>(*ai);
Record *IdxRec;
if (!Idx || !(IdxRec = Idx->getDef())->isSubClassOf("SubRegIndex"))
throw "Argument '" + (*ai)->getAsString() +
"' in SubRegClasses is not a SubRegIndex";
if (!SubRegClasses.insert(std::make_pair(IdxRec, RCRec)).second)
throw "SubRegIndex '" + IdxRec->getName() + "' mentioned twice";
}
}
// Allow targets to override the size in bits of the RegisterClass.
unsigned Size = R->getValueAsInt("Size");
Namespace = R->getValueAsString("Namespace");
SpillSize = Size ? Size : EVT(VTs[0]).getSizeInBits();
SpillAlignment = R->getValueAsInt("Alignment");
CopyCost = R->getValueAsInt("CopyCost");
Allocatable = R->getValueAsBit("isAllocatable");
MethodBodies = R->getValueAsCode("MethodBodies");
MethodProtos = R->getValueAsCode("MethodProtos");
}
const std::string &CodeGenRegisterClass::getName() const {
return TheDef->getName();
}
//===----------------------------------------------------------------------===//
// CodeGenRegBank
//===----------------------------------------------------------------------===//
CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) : Records(Records) {
// Read in the user-defined (named) sub-register indices.
// More indices will be synthesized later.
SubRegIndices = Records.getAllDerivedDefinitions("SubRegIndex");
std::sort(SubRegIndices.begin(), SubRegIndices.end(), LessRecord());
NumNamedIndices = SubRegIndices.size();
// Read in the register definitions.
std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
std::sort(Regs.begin(), Regs.end(), LessRecord());
Registers.reserve(Regs.size());
// Assign the enumeration values.
for (unsigned i = 0, e = Regs.size(); i != e; ++i)
Registers.push_back(CodeGenRegister(Regs[i], i + 1));
// Read in register class definitions.
std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
if (RCs.empty())
throw std::string("No 'RegisterClass' subclasses defined!");
RegClasses.reserve(RCs.size());
RegClasses.assign(RCs.begin(), RCs.end());
}
CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
if (Def2Reg.empty())
for (unsigned i = 0, e = Registers.size(); i != e; ++i)
Def2Reg[Registers[i].TheDef] = &Registers[i];
if (CodeGenRegister *Reg = Def2Reg[Def])
return Reg;
throw TGError(Def->getLoc(), "Not a known Register!");
}
CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) {
if (Def2RC.empty())
for (unsigned i = 0, e = RegClasses.size(); i != e; ++i)
Def2RC[RegClasses[i].TheDef] = &RegClasses[i];
if (CodeGenRegisterClass *RC = Def2RC[Def])
return RC;
throw TGError(Def->getLoc(), "Not a known RegisterClass!");
}
Record *CodeGenRegBank::getCompositeSubRegIndex(Record *A, Record *B,
bool create) {
// Look for an existing entry.
Record *&Comp = Composite[std::make_pair(A, B)];
if (Comp || !create)
return Comp;
// None exists, synthesize one.
std::string Name = A->getName() + "_then_" + B->getName();
Comp = new Record(Name, SMLoc(), Records);
Records.addDef(Comp);
SubRegIndices.push_back(Comp);
return Comp;
}
unsigned CodeGenRegBank::getSubRegIndexNo(Record *idx) {
std::vector<Record*>::const_iterator i =
std::find(SubRegIndices.begin(), SubRegIndices.end(), idx);
assert(i != SubRegIndices.end() && "Not a SubRegIndex");
return (i - SubRegIndices.begin()) + 1;
}
void CodeGenRegBank::computeComposites() {
// Precompute all sub-register maps. This will create Composite entries for
// all inferred sub-register indices.
for (unsigned i = 0, e = Registers.size(); i != e; ++i)
Registers[i].getSubRegs(*this);
for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
CodeGenRegister *Reg1 = &Registers[i];
const CodeGenRegister::SubRegMap &SRM1 = Reg1->getSubRegs();
for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(),
e1 = SRM1.end(); i1 != e1; ++i1) {
Record *Idx1 = i1->first;
CodeGenRegister *Reg2 = i1->second;
// Ignore identity compositions.
if (Reg1 == Reg2)
continue;
const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
// Try composing Idx1 with another SubRegIndex.
for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(),
e2 = SRM2.end(); i2 != e2; ++i2) {
std::pair<Record*, Record*> IdxPair(Idx1, i2->first);
CodeGenRegister *Reg3 = i2->second;
// Ignore identity compositions.
if (Reg2 == Reg3)
continue;
// OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
for (CodeGenRegister::SubRegMap::const_iterator i1d = SRM1.begin(),
e1d = SRM1.end(); i1d != e1d; ++i1d) {
if (i1d->second == Reg3) {
std::pair<CompositeMap::iterator, bool> Ins =
Composite.insert(std::make_pair(IdxPair, i1d->first));
// Conflicting composition? Emit a warning but allow it.
if (!Ins.second && Ins.first->second != i1d->first) {
errs() << "Warning: SubRegIndex " << getQualifiedName(Idx1)
<< " and " << getQualifiedName(IdxPair.second)
<< " compose ambiguously as "
<< getQualifiedName(Ins.first->second) << " or "
<< getQualifiedName(i1d->first) << "\n";
}
}
}
}
}
}
// We don't care about the difference between (Idx1, Idx2) -> Idx2 and invalid
// compositions, so remove any mappings of that form.
for (CompositeMap::iterator i = Composite.begin(), e = Composite.end();
i != e;) {
CompositeMap::iterator j = i;
++i;
if (j->first.second == j->second)
Composite.erase(j);
}
}
// Compute sets of overlapping registers.
//
// The standard set is all super-registers and all sub-registers, but the
// target description can add arbitrary overlapping registers via the 'Aliases'
// field. This complicates things, but we can compute overlapping sets using
// the following rules:
//
// 1. The relation overlap(A, B) is reflexive and symmetric but not transitive.
//
// 2. overlap(A, B) implies overlap(A, S) for all S in supers(B).
//
// Alternatively:
//
// overlap(A, B) iff there exists:
// A' in { A, subregs(A) } and B' in { B, subregs(B) } such that:
// A' = B' or A' in aliases(B') or B' in aliases(A').
//
// Here subregs(A) is the full flattened sub-register set returned by
// A.getSubRegs() while aliases(A) is simply the special 'Aliases' field in the
// description of register A.
//
// This also implies that registers with a common sub-register are considered
// overlapping. This can happen when forming register pairs:
//
// P0 = (R0, R1)
// P1 = (R1, R2)
// P2 = (R2, R3)
//
// In this case, we will infer an overlap between P0 and P1 because of the
// shared sub-register R1. There is no overlap between P0 and P2.
//
void CodeGenRegBank::
computeOverlaps(std::map<const CodeGenRegister*, CodeGenRegister::Set> &Map) {
assert(Map.empty());
// Collect overlaps that don't follow from rule 2.
for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
CodeGenRegister *Reg = &Registers[i];
CodeGenRegister::Set &Overlaps = Map[Reg];
// Reg overlaps itself.
Overlaps.insert(Reg);
// All super-registers overlap.
const CodeGenRegister::SuperRegList &Supers = Reg->getSuperRegs();
Overlaps.insert(Supers.begin(), Supers.end());
// Form symmetrical relations from the special Aliases[] lists.
std::vector<Record*> RegList = Reg->TheDef->getValueAsListOfDefs("Aliases");
for (unsigned i2 = 0, e2 = RegList.size(); i2 != e2; ++i2) {
CodeGenRegister *Reg2 = getReg(RegList[i2]);
CodeGenRegister::Set &Overlaps2 = Map[Reg2];
const CodeGenRegister::SuperRegList &Supers2 = Reg2->getSuperRegs();
// Reg overlaps Reg2 which implies it overlaps supers(Reg2).
Overlaps.insert(Reg2);
Overlaps.insert(Supers2.begin(), Supers2.end());
Overlaps2.insert(Reg);
Overlaps2.insert(Supers.begin(), Supers.end());
}
}
// Apply rule 2. and inherit all sub-register overlaps.
for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
CodeGenRegister *Reg = &Registers[i];
CodeGenRegister::Set &Overlaps = Map[Reg];
const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM.begin(),
e2 = SRM.end(); i2 != e2; ++i2) {
CodeGenRegister::Set &Overlaps2 = Map[i2->second];
Overlaps.insert(Overlaps2.begin(), Overlaps2.end());
}
}
}
void CodeGenRegBank::computeDerivedInfo() {
computeComposites();
}
/// getRegisterClassForRegister - Find the register class that contains the
/// specified physical register. If the register is not in a register class,
/// return null. If the register is in multiple classes, and the classes have a
/// superset-subset relationship and the same set of types, return the
/// superclass. Otherwise return null.
const CodeGenRegisterClass*
CodeGenRegBank::getRegClassForRegister(Record *R) {
const std::vector<CodeGenRegisterClass> &RCs = getRegClasses();
const CodeGenRegisterClass *FoundRC = 0;
for (unsigned i = 0, e = RCs.size(); i != e; ++i) {
const CodeGenRegisterClass &RC = RCs[i];
if (!RC.containsRegister(R))
continue;
// If this is the first class that contains the register,
// make a note of it and go on to the next class.
if (!FoundRC) {
FoundRC = &RC;
continue;
}
// If a register's classes have different types, return null.
if (RC.getValueTypes() != FoundRC->getValueTypes())
return 0;
std::vector<Record *> Elements(RC.Elements);
std::vector<Record *> FoundElements(FoundRC->Elements);
std::sort(Elements.begin(), Elements.end());
std::sort(FoundElements.begin(), FoundElements.end());
// Check to see if the previously found class that contains
// the register is a subclass of the current class. If so,
// prefer the superclass.
if (std::includes(Elements.begin(), Elements.end(),
FoundElements.begin(), FoundElements.end())) {
FoundRC = &RC;
continue;
}
// Check to see if the previously found class that contains
// the register is a superclass of the current class. If so,
// prefer the superclass.
if (std::includes(FoundElements.begin(), FoundElements.end(),
Elements.begin(), Elements.end()))
continue;
// Multiple classes, and neither is a superclass of the other.
// Return null.
return 0;
}
return FoundRC;
}