llvm-6502/lib/Target/Sparc/SparcV8CodeEmitter.cpp
Misha Brukman d8e6e7f563 * Add baseline structural JIT code, but disable the JIT to allow llvm-gcc builds
- Support added for functions, basic blocks, constant pool, constants,
    registers, and some basic support for globals, all untested
* Turn assert()s into abort()s so that unimplemented functions fail in release


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@17143 91177308-0d34-0410-b5e6-96231b3b80d8
2004-10-19 19:49:42 +00:00

211 lines
7.6 KiB
C++

//===-- SparcV8CodeEmitter.cpp - JIT Code Emitter for SparcV8 -----*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//
//===----------------------------------------------------------------------===//
#include "SparcV8.h"
#include "SparcV8TargetMachine.h"
#include "llvm/Module.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Support/Debug.h"
#include <cstdlib>
#include <map>
#include <vector>
namespace llvm {
namespace {
class SparcV8CodeEmitter : public MachineFunctionPass {
TargetMachine &TM;
MachineCodeEmitter &MCE;
/// getMachineOpValue - evaluates the MachineOperand of a given MachineInstr
///
int64_t getMachineOpValue(MachineInstr &MI, MachineOperand &MO);
// Tracks which instruction references which BasicBlock
std::vector<std::pair<const BasicBlock*,
std::pair<unsigned*,MachineInstr*> > > BBRefs;
// Tracks where each BasicBlock starts
std::map<const BasicBlock*, long> BBLocations;
public:
SparcV8CodeEmitter(TargetMachine &T, MachineCodeEmitter &M)
: TM(T), MCE(M) {}
const char *getPassName() const { return "SparcV8 Machine Code Emitter"; }
/// runOnMachineFunction - emits the given MachineFunction to memory
///
bool runOnMachineFunction(MachineFunction &MF);
/// emitBasicBlock - emits the given MachineBasicBlock to memory
///
void emitBasicBlock(MachineBasicBlock &MBB);
/// emitWord - write a 32-bit word to memory at the current PC
///
void emitWord(unsigned w) { MCE.emitWord(w); }
/// getValueBit - return the particular bit of Val
///
unsigned getValueBit(int64_t Val, unsigned bit) { return (Val >> bit) & 1; }
/// getBinaryCodeForInstr - This function, generated by the
/// CodeEmitterGenerator using TableGen, produces the binary encoding for
/// machine instructions.
///
unsigned getBinaryCodeForInstr(MachineInstr &MI);
};
}
/// addPassesToEmitMachineCode - Add passes to the specified pass manager to get
/// machine code emitted. This uses a MachineCodeEmitter object to handle
/// actually outputting the machine code and resolving things like the address
/// of functions. This method should returns true if machine code emission is
/// not supported.
///
bool SparcV8TargetMachine::addPassesToEmitMachineCode(FunctionPassManager &PM,
MachineCodeEmitter &MCE) {
// Keep as `true' until this is a functional JIT to allow llvm-gcc to build
return true;
// Machine code emitter pass for SparcV8
PM.add(new SparcV8CodeEmitter(*this, MCE));
// Delete machine code for this function after emitting it
PM.add(createMachineCodeDeleter());
return false;
}
bool SparcV8CodeEmitter::runOnMachineFunction(MachineFunction &MF) {
MCE.startFunction(MF);
MCE.emitConstantPool(MF.getConstantPool());
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
emitBasicBlock(*I);
MCE.finishFunction(MF);
// Resolve branches to BasicBlocks for the entire function
for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) {
long Location = BBLocations[BBRefs[i].first];
unsigned *Ref = BBRefs[i].second.first;
MachineInstr *MI = BBRefs[i].second.second;
DEBUG(std::cerr << "Fixup @ " << std::hex << Ref << " to 0x" << Location
<< " in instr: " << std::dec << *MI);
for (unsigned ii = 0, ee = MI->getNumOperands(); ii != ee; ++ii) {
MachineOperand &op = MI->getOperand(ii);
if (op.isPCRelativeDisp()) {
// the instruction's branch target is made such that it branches to
// PC + (branchTarget * 4), so undo that arithmetic here:
// Location is the target of the branch
// Ref is the location of the instruction, and hence the PC
int64_t branchTarget = (Location - (long)Ref) >> 2;
MI->SetMachineOperandConst(ii, MachineOperand::MO_SignExtendedImmed,
branchTarget);
unsigned fixedInstr = SparcV8CodeEmitter::getBinaryCodeForInstr(*MI);
MCE.emitWordAt(fixedInstr, Ref);
break;
}
}
}
BBRefs.clear();
BBLocations.clear();
return false;
}
void SparcV8CodeEmitter::emitBasicBlock(MachineBasicBlock &MBB) {
for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I)
emitWord(getBinaryCodeForInstr(*I));
}
int64_t SparcV8CodeEmitter::getMachineOpValue(MachineInstr &MI,
MachineOperand &MO) {
int64_t rv = 0; // Return value; defaults to 0 for unhandled cases
// or things that get fixed up later by the JIT.
if (MO.isPCRelativeDisp()) {
std::cerr << "SparcV8CodeEmitter: PC-relative disp unhandled\n";
abort();
} else if (MO.isRegister()) {
rv = MO.getReg();
} else if (MO.isImmediate()) {
rv = MO.getImmedValue();
} else if (MO.isGlobalAddress()) {
GlobalValue *GV = MO.getGlobal();
if (MO.isPCRelative()) { // Global variable reference
if (void *Addr = (void*)(intptr_t)MCE.getGlobalValueAddress(GV)) {
intptr_t CurrPC = MCE.getCurrentPCValue();
return (int64_t) (((long)Addr - (long)CurrPC) >> 2);
} else {
std::cerr << "Unhandled pc-relative global value: " << GV << "\n";
abort();
}
} else { // Function reference
if (!(rv = (intptr_t)MCE.getGlobalValueAddress(GV))) {
if (Function *F = dyn_cast<Function>(GV)) {
std::cerr << "SparcV8CodeEmitter error: no lazy fn resolution yet!\n";
abort();
#if 0
// Function has not yet been code generated!
TheJITResolver->addFunctionReference(MCE.getCurrentPCValue(),
cast<Function>(GV));
// Delayed resolution...
return (intptr_t)TheJITResolver->getLazyResolver(cast<Function>(GV));
#endif
} else {
std::cerr << "Unhandled global value: " << GV << "\n";
abort();
}
}
}
} else if (MO.isMachineBasicBlock()) {
const BasicBlock *BB = MO.getMachineBasicBlock()->getBasicBlock();
unsigned* CurrPC = (unsigned*)(intptr_t)MCE.getCurrentPCValue();
BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI)));
} else if (MO.isExternalSymbol()) {
} else if (MO.isConstantPoolIndex()) {
unsigned index = MO.getConstantPoolIndex();
rv = MCE.getConstantPoolEntryAddress(index);
} else if (MO.isFrameIndex()) {
std::cerr << "SparcV8CodeEmitter: error: Frame index unhandled!\n";
abort();
} else {
std::cerr << "ERROR: Unknown type of MachineOperand: " << MO << "\n";
abort();
}
// Adjust for special meaning of operands in some instructions
unsigned Opcode = MI.getOpcode();
if (Opcode == V8::SETHIi && !MO.isRegister() && !MO.isImmediate()) {
rv &= 0x03ff;
} else if (Opcode == V8::ORri &&!MO.isRegister() &&!MO.isImmediate()) {
rv = (rv >> 10) & 0x03fffff;
}
return rv;
}
void *SparcV8JITInfo::getJITStubForFunction(Function *F,
MachineCodeEmitter &MCE) {
std::cerr << "SparcV8JITInfo::getJITStubForFunction not implemented!\n";
abort();
return 0;
}
void SparcV8JITInfo::replaceMachineCodeForFunction(void *Old, void *New) {
std::cerr << "SparcV8JITInfo::replaceMachineCodeForFunction not implemented!";
abort();
}
#include "SparcV8GenCodeEmitter.inc"
} // end llvm namespace