llvm-6502/lib/ExecutionEngine/ExecutionEngine.cpp
Jeffrey Yasskin 4c5b23b24f Make the ExecutionEngine automatically remove global mappings on when their
GlobalValue is destroyed.  Function destruction still leaks machine code and
can crash on leaked stubs, but this is some progress.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@83987 91177308-0d34-0410-b5e6-96231b3b80d8
2009-10-13 17:42:08 +00:00

1089 lines
40 KiB
C++

//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the common interface used by the various execution engine
// subclasses.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "jit"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/ModuleProvider.h"
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MutexGuard.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/System/DynamicLibrary.h"
#include "llvm/System/Host.h"
#include "llvm/Target/TargetData.h"
#include <cmath>
#include <cstring>
using namespace llvm;
STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
STATISTIC(NumGlobals , "Number of global vars initialized");
ExecutionEngine *(*ExecutionEngine::JITCtor)(ModuleProvider *MP,
std::string *ErrorStr,
JITMemoryManager *JMM,
CodeGenOpt::Level OptLevel,
bool GVsWithCode) = 0;
ExecutionEngine *(*ExecutionEngine::InterpCtor)(ModuleProvider *MP,
std::string *ErrorStr) = 0;
ExecutionEngine::EERegisterFn ExecutionEngine::ExceptionTableRegister = 0;
ExecutionEngine::ExecutionEngine(ModuleProvider *P)
: EEState(*this),
LazyFunctionCreator(0) {
LazyCompilationDisabled = false;
GVCompilationDisabled = false;
SymbolSearchingDisabled = false;
DlsymStubsEnabled = false;
Modules.push_back(P);
assert(P && "ModuleProvider is null?");
}
ExecutionEngine::~ExecutionEngine() {
clearAllGlobalMappings();
for (unsigned i = 0, e = Modules.size(); i != e; ++i)
delete Modules[i];
}
char* ExecutionEngine::getMemoryForGV(const GlobalVariable* GV) {
const Type *ElTy = GV->getType()->getElementType();
size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy);
return new char[GVSize];
}
/// removeModuleProvider - Remove a ModuleProvider from the list of modules.
/// Relases the Module from the ModuleProvider, materializing it in the
/// process, and returns the materialized Module.
Module* ExecutionEngine::removeModuleProvider(ModuleProvider *P,
std::string *ErrInfo) {
for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(),
E = Modules.end(); I != E; ++I) {
ModuleProvider *MP = *I;
if (MP == P) {
Modules.erase(I);
clearGlobalMappingsFromModule(MP->getModule());
return MP->releaseModule(ErrInfo);
}
}
return NULL;
}
/// deleteModuleProvider - Remove a ModuleProvider from the list of modules,
/// and deletes the ModuleProvider and owned Module. Avoids materializing
/// the underlying module.
void ExecutionEngine::deleteModuleProvider(ModuleProvider *P,
std::string *ErrInfo) {
for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(),
E = Modules.end(); I != E; ++I) {
ModuleProvider *MP = *I;
if (MP == P) {
Modules.erase(I);
clearGlobalMappingsFromModule(MP->getModule());
delete MP;
return;
}
}
}
/// FindFunctionNamed - Search all of the active modules to find the one that
/// defines FnName. This is very slow operation and shouldn't be used for
/// general code.
Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
if (Function *F = Modules[i]->getModule()->getFunction(FnName))
return F;
}
return 0;
}
void *ExecutionEngineState::RemoveMapping(
const MutexGuard &, const GlobalValue *ToUnmap) {
std::map<MapUpdatingCVH, void *>::iterator I =
GlobalAddressMap.find(getVH(ToUnmap));
void *OldVal;
if (I == GlobalAddressMap.end())
OldVal = 0;
else {
OldVal = I->second;
GlobalAddressMap.erase(I);
}
GlobalAddressReverseMap.erase(OldVal);
return OldVal;
}
/// addGlobalMapping - Tell the execution engine that the specified global is
/// at the specified location. This is used internally as functions are JIT'd
/// and as global variables are laid out in memory. It can and should also be
/// used by clients of the EE that want to have an LLVM global overlay
/// existing data in memory.
void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
MutexGuard locked(lock);
DEBUG(errs() << "JIT: Map \'" << GV->getName()
<< "\' to [" << Addr << "]\n";);
void *&CurVal = EEState.getGlobalAddressMap(locked)[EEState.getVH(GV)];
assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
CurVal = Addr;
// If we are using the reverse mapping, add it too
if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
AssertingVH<const GlobalValue> &V =
EEState.getGlobalAddressReverseMap(locked)[Addr];
assert((V == 0 || GV == 0) && "GlobalMapping already established!");
V = GV;
}
}
/// clearAllGlobalMappings - Clear all global mappings and start over again
/// use in dynamic compilation scenarios when you want to move globals
void ExecutionEngine::clearAllGlobalMappings() {
MutexGuard locked(lock);
EEState.getGlobalAddressMap(locked).clear();
EEState.getGlobalAddressReverseMap(locked).clear();
}
/// clearGlobalMappingsFromModule - Clear all global mappings that came from a
/// particular module, because it has been removed from the JIT.
void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
MutexGuard locked(lock);
for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) {
EEState.RemoveMapping(locked, FI);
}
for (Module::global_iterator GI = M->global_begin(), GE = M->global_end();
GI != GE; ++GI) {
EEState.RemoveMapping(locked, GI);
}
}
/// updateGlobalMapping - Replace an existing mapping for GV with a new
/// address. This updates both maps as required. If "Addr" is null, the
/// entry for the global is removed from the mappings.
void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
MutexGuard locked(lock);
std::map<ExecutionEngineState::MapUpdatingCVH, void *> &Map =
EEState.getGlobalAddressMap(locked);
// Deleting from the mapping?
if (Addr == 0) {
return EEState.RemoveMapping(locked, GV);
}
void *&CurVal = Map[EEState.getVH(GV)];
void *OldVal = CurVal;
if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty())
EEState.getGlobalAddressReverseMap(locked).erase(CurVal);
CurVal = Addr;
// If we are using the reverse mapping, add it too
if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
AssertingVH<const GlobalValue> &V =
EEState.getGlobalAddressReverseMap(locked)[Addr];
assert((V == 0 || GV == 0) && "GlobalMapping already established!");
V = GV;
}
return OldVal;
}
/// getPointerToGlobalIfAvailable - This returns the address of the specified
/// global value if it is has already been codegen'd, otherwise it returns null.
///
void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
MutexGuard locked(lock);
std::map<ExecutionEngineState::MapUpdatingCVH, void*>::iterator I =
EEState.getGlobalAddressMap(locked).find(EEState.getVH(GV));
return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0;
}
/// getGlobalValueAtAddress - Return the LLVM global value object that starts
/// at the specified address.
///
const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
MutexGuard locked(lock);
// If we haven't computed the reverse mapping yet, do so first.
if (EEState.getGlobalAddressReverseMap(locked).empty()) {
for (std::map<ExecutionEngineState::MapUpdatingCVH, void *>::iterator
I = EEState.getGlobalAddressMap(locked).begin(),
E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I)
EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second,
I->first));
}
std::map<void *, AssertingVH<const GlobalValue> >::iterator I =
EEState.getGlobalAddressReverseMap(locked).find(Addr);
return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
}
// CreateArgv - Turn a vector of strings into a nice argv style array of
// pointers to null terminated strings.
//
static void *CreateArgv(LLVMContext &C, ExecutionEngine *EE,
const std::vector<std::string> &InputArgv) {
unsigned PtrSize = EE->getTargetData()->getPointerSize();
char *Result = new char[(InputArgv.size()+1)*PtrSize];
DEBUG(errs() << "JIT: ARGV = " << (void*)Result << "\n");
const Type *SBytePtr = Type::getInt8PtrTy(C);
for (unsigned i = 0; i != InputArgv.size(); ++i) {
unsigned Size = InputArgv[i].size()+1;
char *Dest = new char[Size];
DEBUG(errs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n");
std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
Dest[Size-1] = 0;
// Endian safe: Result[i] = (PointerTy)Dest;
EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize),
SBytePtr);
}
// Null terminate it
EE->StoreValueToMemory(PTOGV(0),
(GenericValue*)(Result+InputArgv.size()*PtrSize),
SBytePtr);
return Result;
}
/// runStaticConstructorsDestructors - This method is used to execute all of
/// the static constructors or destructors for a module, depending on the
/// value of isDtors.
void ExecutionEngine::runStaticConstructorsDestructors(Module *module,
bool isDtors) {
const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
// Execute global ctors/dtors for each module in the program.
GlobalVariable *GV = module->getNamedGlobal(Name);
// If this global has internal linkage, or if it has a use, then it must be
// an old-style (llvmgcc3) static ctor with __main linked in and in use. If
// this is the case, don't execute any of the global ctors, __main will do
// it.
if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
// Should be an array of '{ int, void ()* }' structs. The first value is
// the init priority, which we ignore.
ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
if (!InitList) return;
for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
if (ConstantStruct *CS =
dyn_cast<ConstantStruct>(InitList->getOperand(i))) {
if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
Constant *FP = CS->getOperand(1);
if (FP->isNullValue())
break; // Found a null terminator, exit.
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
if (CE->isCast())
FP = CE->getOperand(0);
if (Function *F = dyn_cast<Function>(FP)) {
// Execute the ctor/dtor function!
runFunction(F, std::vector<GenericValue>());
}
}
}
/// runStaticConstructorsDestructors - This method is used to execute all of
/// the static constructors or destructors for a program, depending on the
/// value of isDtors.
void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
// Execute global ctors/dtors for each module in the program.
for (unsigned m = 0, e = Modules.size(); m != e; ++m)
runStaticConstructorsDestructors(Modules[m]->getModule(), isDtors);
}
#ifndef NDEBUG
/// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
unsigned PtrSize = EE->getTargetData()->getPointerSize();
for (unsigned i = 0; i < PtrSize; ++i)
if (*(i + (uint8_t*)Loc))
return false;
return true;
}
#endif
/// runFunctionAsMain - This is a helper function which wraps runFunction to
/// handle the common task of starting up main with the specified argc, argv,
/// and envp parameters.
int ExecutionEngine::runFunctionAsMain(Function *Fn,
const std::vector<std::string> &argv,
const char * const * envp) {
std::vector<GenericValue> GVArgs;
GenericValue GVArgc;
GVArgc.IntVal = APInt(32, argv.size());
// Check main() type
unsigned NumArgs = Fn->getFunctionType()->getNumParams();
const FunctionType *FTy = Fn->getFunctionType();
const Type* PPInt8Ty =
PointerType::getUnqual(PointerType::getUnqual(
Type::getInt8Ty(Fn->getContext())));
switch (NumArgs) {
case 3:
if (FTy->getParamType(2) != PPInt8Ty) {
llvm_report_error("Invalid type for third argument of main() supplied");
}
// FALLS THROUGH
case 2:
if (FTy->getParamType(1) != PPInt8Ty) {
llvm_report_error("Invalid type for second argument of main() supplied");
}
// FALLS THROUGH
case 1:
if (FTy->getParamType(0) != Type::getInt32Ty(Fn->getContext())) {
llvm_report_error("Invalid type for first argument of main() supplied");
}
// FALLS THROUGH
case 0:
if (!isa<IntegerType>(FTy->getReturnType()) &&
FTy->getReturnType() != Type::getVoidTy(FTy->getContext())) {
llvm_report_error("Invalid return type of main() supplied");
}
break;
default:
llvm_report_error("Invalid number of arguments of main() supplied");
}
if (NumArgs) {
GVArgs.push_back(GVArgc); // Arg #0 = argc.
if (NumArgs > 1) {
// Arg #1 = argv.
GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, argv)));
assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
"argv[0] was null after CreateArgv");
if (NumArgs > 2) {
std::vector<std::string> EnvVars;
for (unsigned i = 0; envp[i]; ++i)
EnvVars.push_back(envp[i]);
// Arg #2 = envp.
GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, EnvVars)));
}
}
}
return runFunction(Fn, GVArgs).IntVal.getZExtValue();
}
/// If possible, create a JIT, unless the caller specifically requests an
/// Interpreter or there's an error. If even an Interpreter cannot be created,
/// NULL is returned.
///
ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP,
bool ForceInterpreter,
std::string *ErrorStr,
CodeGenOpt::Level OptLevel,
bool GVsWithCode) {
return EngineBuilder(MP)
.setEngineKind(ForceInterpreter
? EngineKind::Interpreter
: EngineKind::JIT)
.setErrorStr(ErrorStr)
.setOptLevel(OptLevel)
.setAllocateGVsWithCode(GVsWithCode)
.create();
}
ExecutionEngine *ExecutionEngine::create(Module *M) {
return EngineBuilder(M).create();
}
/// EngineBuilder - Overloaded constructor that automatically creates an
/// ExistingModuleProvider for an existing module.
EngineBuilder::EngineBuilder(Module *m) : MP(new ExistingModuleProvider(m)) {
InitEngine();
}
ExecutionEngine *EngineBuilder::create() {
// Make sure we can resolve symbols in the program as well. The zero arg
// to the function tells DynamicLibrary to load the program, not a library.
if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr))
return 0;
// If the user specified a memory manager but didn't specify which engine to
// create, we assume they only want the JIT, and we fail if they only want
// the interpreter.
if (JMM) {
if (WhichEngine & EngineKind::JIT)
WhichEngine = EngineKind::JIT;
else {
if (ErrorStr)
*ErrorStr = "Cannot create an interpreter with a memory manager.";
return 0;
}
}
// Unless the interpreter was explicitly selected or the JIT is not linked,
// try making a JIT.
if (WhichEngine & EngineKind::JIT) {
if (ExecutionEngine::JITCtor) {
ExecutionEngine *EE =
ExecutionEngine::JITCtor(MP, ErrorStr, JMM, OptLevel,
AllocateGVsWithCode);
if (EE) return EE;
}
}
// If we can't make a JIT and we didn't request one specifically, try making
// an interpreter instead.
if (WhichEngine & EngineKind::Interpreter) {
if (ExecutionEngine::InterpCtor)
return ExecutionEngine::InterpCtor(MP, ErrorStr);
if (ErrorStr)
*ErrorStr = "Interpreter has not been linked in.";
return 0;
}
if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0) {
if (ErrorStr)
*ErrorStr = "JIT has not been linked in.";
}
return 0;
}
/// getPointerToGlobal - This returns the address of the specified global
/// value. This may involve code generation if it's a function.
///
void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
return getPointerToFunction(F);
MutexGuard locked(lock);
void *p = EEState.getGlobalAddressMap(locked)[EEState.getVH(GV)];
if (p)
return p;
// Global variable might have been added since interpreter started.
if (GlobalVariable *GVar =
const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
EmitGlobalVariable(GVar);
else
llvm_unreachable("Global hasn't had an address allocated yet!");
return EEState.getGlobalAddressMap(locked)[EEState.getVH(GV)];
}
/// This function converts a Constant* into a GenericValue. The interesting
/// part is if C is a ConstantExpr.
/// @brief Get a GenericValue for a Constant*
GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
// If its undefined, return the garbage.
if (isa<UndefValue>(C))
return GenericValue();
// If the value is a ConstantExpr
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
Constant *Op0 = CE->getOperand(0);
switch (CE->getOpcode()) {
case Instruction::GetElementPtr: {
// Compute the index
GenericValue Result = getConstantValue(Op0);
SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
uint64_t Offset =
TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size());
char* tmp = (char*) Result.PointerVal;
Result = PTOGV(tmp + Offset);
return Result;
}
case Instruction::Trunc: {
GenericValue GV = getConstantValue(Op0);
uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
GV.IntVal = GV.IntVal.trunc(BitWidth);
return GV;
}
case Instruction::ZExt: {
GenericValue GV = getConstantValue(Op0);
uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
GV.IntVal = GV.IntVal.zext(BitWidth);
return GV;
}
case Instruction::SExt: {
GenericValue GV = getConstantValue(Op0);
uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
GV.IntVal = GV.IntVal.sext(BitWidth);
return GV;
}
case Instruction::FPTrunc: {
// FIXME long double
GenericValue GV = getConstantValue(Op0);
GV.FloatVal = float(GV.DoubleVal);
return GV;
}
case Instruction::FPExt:{
// FIXME long double
GenericValue GV = getConstantValue(Op0);
GV.DoubleVal = double(GV.FloatVal);
return GV;
}
case Instruction::UIToFP: {
GenericValue GV = getConstantValue(Op0);
if (CE->getType()->isFloatTy())
GV.FloatVal = float(GV.IntVal.roundToDouble());
else if (CE->getType()->isDoubleTy())
GV.DoubleVal = GV.IntVal.roundToDouble();
else if (CE->getType()->isX86_FP80Ty()) {
const uint64_t zero[] = {0, 0};
APFloat apf = APFloat(APInt(80, 2, zero));
(void)apf.convertFromAPInt(GV.IntVal,
false,
APFloat::rmNearestTiesToEven);
GV.IntVal = apf.bitcastToAPInt();
}
return GV;
}
case Instruction::SIToFP: {
GenericValue GV = getConstantValue(Op0);
if (CE->getType()->isFloatTy())
GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
else if (CE->getType()->isDoubleTy())
GV.DoubleVal = GV.IntVal.signedRoundToDouble();
else if (CE->getType()->isX86_FP80Ty()) {
const uint64_t zero[] = { 0, 0};
APFloat apf = APFloat(APInt(80, 2, zero));
(void)apf.convertFromAPInt(GV.IntVal,
true,
APFloat::rmNearestTiesToEven);
GV.IntVal = apf.bitcastToAPInt();
}
return GV;
}
case Instruction::FPToUI: // double->APInt conversion handles sign
case Instruction::FPToSI: {
GenericValue GV = getConstantValue(Op0);
uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
if (Op0->getType()->isFloatTy())
GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
else if (Op0->getType()->isDoubleTy())
GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
else if (Op0->getType()->isX86_FP80Ty()) {
APFloat apf = APFloat(GV.IntVal);
uint64_t v;
bool ignored;
(void)apf.convertToInteger(&v, BitWidth,
CE->getOpcode()==Instruction::FPToSI,
APFloat::rmTowardZero, &ignored);
GV.IntVal = v; // endian?
}
return GV;
}
case Instruction::PtrToInt: {
GenericValue GV = getConstantValue(Op0);
uint32_t PtrWidth = TD->getPointerSizeInBits();
GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
return GV;
}
case Instruction::IntToPtr: {
GenericValue GV = getConstantValue(Op0);
uint32_t PtrWidth = TD->getPointerSizeInBits();
if (PtrWidth != GV.IntVal.getBitWidth())
GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
return GV;
}
case Instruction::BitCast: {
GenericValue GV = getConstantValue(Op0);
const Type* DestTy = CE->getType();
switch (Op0->getType()->getTypeID()) {
default: llvm_unreachable("Invalid bitcast operand");
case Type::IntegerTyID:
assert(DestTy->isFloatingPoint() && "invalid bitcast");
if (DestTy->isFloatTy())
GV.FloatVal = GV.IntVal.bitsToFloat();
else if (DestTy->isDoubleTy())
GV.DoubleVal = GV.IntVal.bitsToDouble();
break;
case Type::FloatTyID:
assert(DestTy == Type::getInt32Ty(DestTy->getContext()) &&
"Invalid bitcast");
GV.IntVal.floatToBits(GV.FloatVal);
break;
case Type::DoubleTyID:
assert(DestTy == Type::getInt64Ty(DestTy->getContext()) &&
"Invalid bitcast");
GV.IntVal.doubleToBits(GV.DoubleVal);
break;
case Type::PointerTyID:
assert(isa<PointerType>(DestTy) && "Invalid bitcast");
break; // getConstantValue(Op0) above already converted it
}
return GV;
}
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
GenericValue LHS = getConstantValue(Op0);
GenericValue RHS = getConstantValue(CE->getOperand(1));
GenericValue GV;
switch (CE->getOperand(0)->getType()->getTypeID()) {
default: llvm_unreachable("Bad add type!");
case Type::IntegerTyID:
switch (CE->getOpcode()) {
default: llvm_unreachable("Invalid integer opcode");
case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break;
case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
}
break;
case Type::FloatTyID:
switch (CE->getOpcode()) {
default: llvm_unreachable("Invalid float opcode");
case Instruction::FAdd:
GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
case Instruction::FSub:
GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
case Instruction::FMul:
GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
case Instruction::FDiv:
GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
case Instruction::FRem:
GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break;
}
break;
case Type::DoubleTyID:
switch (CE->getOpcode()) {
default: llvm_unreachable("Invalid double opcode");
case Instruction::FAdd:
GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
case Instruction::FSub:
GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
case Instruction::FMul:
GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
case Instruction::FDiv:
GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
case Instruction::FRem:
GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
}
break;
case Type::X86_FP80TyID:
case Type::PPC_FP128TyID:
case Type::FP128TyID: {
APFloat apfLHS = APFloat(LHS.IntVal);
switch (CE->getOpcode()) {
default: llvm_unreachable("Invalid long double opcode");llvm_unreachable(0);
case Instruction::FAdd:
apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
GV.IntVal = apfLHS.bitcastToAPInt();
break;
case Instruction::FSub:
apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
GV.IntVal = apfLHS.bitcastToAPInt();
break;
case Instruction::FMul:
apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
GV.IntVal = apfLHS.bitcastToAPInt();
break;
case Instruction::FDiv:
apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
GV.IntVal = apfLHS.bitcastToAPInt();
break;
case Instruction::FRem:
apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
GV.IntVal = apfLHS.bitcastToAPInt();
break;
}
}
break;
}
return GV;
}
default:
break;
}
std::string msg;
raw_string_ostream Msg(msg);
Msg << "ConstantExpr not handled: " << *CE;
llvm_report_error(Msg.str());
}
GenericValue Result;
switch (C->getType()->getTypeID()) {
case Type::FloatTyID:
Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
break;
case Type::DoubleTyID:
Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
break;
case Type::X86_FP80TyID:
case Type::FP128TyID:
case Type::PPC_FP128TyID:
Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
break;
case Type::IntegerTyID:
Result.IntVal = cast<ConstantInt>(C)->getValue();
break;
case Type::PointerTyID:
if (isa<ConstantPointerNull>(C))
Result.PointerVal = 0;
else if (const Function *F = dyn_cast<Function>(C))
Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
else
llvm_unreachable("Unknown constant pointer type!");
break;
default:
std::string msg;
raw_string_ostream Msg(msg);
Msg << "ERROR: Constant unimplemented for type: " << *C->getType();
llvm_report_error(Msg.str());
}
return Result;
}
/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
/// with the integer held in IntVal.
static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
unsigned StoreBytes) {
assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
uint8_t *Src = (uint8_t *)IntVal.getRawData();
if (sys::isLittleEndianHost())
// Little-endian host - the source is ordered from LSB to MSB. Order the
// destination from LSB to MSB: Do a straight copy.
memcpy(Dst, Src, StoreBytes);
else {
// Big-endian host - the source is an array of 64 bit words ordered from
// LSW to MSW. Each word is ordered from MSB to LSB. Order the destination
// from MSB to LSB: Reverse the word order, but not the bytes in a word.
while (StoreBytes > sizeof(uint64_t)) {
StoreBytes -= sizeof(uint64_t);
// May not be aligned so use memcpy.
memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
Src += sizeof(uint64_t);
}
memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
}
}
/// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr
/// is the address of the memory at which to store Val, cast to GenericValue *.
/// It is not a pointer to a GenericValue containing the address at which to
/// store Val.
void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
GenericValue *Ptr, const Type *Ty) {
const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty);
switch (Ty->getTypeID()) {
case Type::IntegerTyID:
StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
break;
case Type::FloatTyID:
*((float*)Ptr) = Val.FloatVal;
break;
case Type::DoubleTyID:
*((double*)Ptr) = Val.DoubleVal;
break;
case Type::X86_FP80TyID:
memcpy(Ptr, Val.IntVal.getRawData(), 10);
break;
case Type::PointerTyID:
// Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
if (StoreBytes != sizeof(PointerTy))
memset(Ptr, 0, StoreBytes);
*((PointerTy*)Ptr) = Val.PointerVal;
break;
default:
errs() << "Cannot store value of type " << *Ty << "!\n";
}
if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian())
// Host and target are different endian - reverse the stored bytes.
std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
}
/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) {
assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
uint8_t *Dst = (uint8_t *)IntVal.getRawData();
if (sys::isLittleEndianHost())
// Little-endian host - the destination must be ordered from LSB to MSB.
// The source is ordered from LSB to MSB: Do a straight copy.
memcpy(Dst, Src, LoadBytes);
else {
// Big-endian - the destination is an array of 64 bit words ordered from
// LSW to MSW. Each word must be ordered from MSB to LSB. The source is
// ordered from MSB to LSB: Reverse the word order, but not the bytes in
// a word.
while (LoadBytes > sizeof(uint64_t)) {
LoadBytes -= sizeof(uint64_t);
// May not be aligned so use memcpy.
memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
Dst += sizeof(uint64_t);
}
memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
}
}
/// FIXME: document
///
void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
GenericValue *Ptr,
const Type *Ty) {
const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty);
switch (Ty->getTypeID()) {
case Type::IntegerTyID:
// An APInt with all words initially zero.
Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
break;
case Type::FloatTyID:
Result.FloatVal = *((float*)Ptr);
break;
case Type::DoubleTyID:
Result.DoubleVal = *((double*)Ptr);
break;
case Type::PointerTyID:
Result.PointerVal = *((PointerTy*)Ptr);
break;
case Type::X86_FP80TyID: {
// This is endian dependent, but it will only work on x86 anyway.
// FIXME: Will not trap if loading a signaling NaN.
uint64_t y[2];
memcpy(y, Ptr, 10);
Result.IntVal = APInt(80, 2, y);
break;
}
default:
std::string msg;
raw_string_ostream Msg(msg);
Msg << "Cannot load value of type " << *Ty << "!";
llvm_report_error(Msg.str());
}
}
// InitializeMemory - Recursive function to apply a Constant value into the
// specified memory location...
//
void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
DEBUG(errs() << "JIT: Initializing " << Addr << " ");
DEBUG(Init->dump());
if (isa<UndefValue>(Init)) {
return;
} else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
unsigned ElementSize =
getTargetData()->getTypeAllocSize(CP->getType()->getElementType());
for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
return;
} else if (isa<ConstantAggregateZero>(Init)) {
memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType()));
return;
} else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
unsigned ElementSize =
getTargetData()->getTypeAllocSize(CPA->getType()->getElementType());
for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
return;
} else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
const StructLayout *SL =
getTargetData()->getStructLayout(cast<StructType>(CPS->getType()));
for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
return;
} else if (Init->getType()->isFirstClassType()) {
GenericValue Val = getConstantValue(Init);
StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
return;
}
errs() << "Bad Type: " << *Init->getType() << "\n";
llvm_unreachable("Unknown constant type to initialize memory with!");
}
/// EmitGlobals - Emit all of the global variables to memory, storing their
/// addresses into GlobalAddress. This must make sure to copy the contents of
/// their initializers into the memory.
///
void ExecutionEngine::emitGlobals() {
// Loop over all of the global variables in the program, allocating the memory
// to hold them. If there is more than one module, do a prepass over globals
// to figure out how the different modules should link together.
//
std::map<std::pair<std::string, const Type*>,
const GlobalValue*> LinkedGlobalsMap;
if (Modules.size() != 1) {
for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
Module &M = *Modules[m]->getModule();
for (Module::const_global_iterator I = M.global_begin(),
E = M.global_end(); I != E; ++I) {
const GlobalValue *GV = I;
if (GV->hasLocalLinkage() || GV->isDeclaration() ||
GV->hasAppendingLinkage() || !GV->hasName())
continue;// Ignore external globals and globals with internal linkage.
const GlobalValue *&GVEntry =
LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
// If this is the first time we've seen this global, it is the canonical
// version.
if (!GVEntry) {
GVEntry = GV;
continue;
}
// If the existing global is strong, never replace it.
if (GVEntry->hasExternalLinkage() ||
GVEntry->hasDLLImportLinkage() ||
GVEntry->hasDLLExportLinkage())
continue;
// Otherwise, we know it's linkonce/weak, replace it if this is a strong
// symbol. FIXME is this right for common?
if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
GVEntry = GV;
}
}
}
std::vector<const GlobalValue*> NonCanonicalGlobals;
for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
Module &M = *Modules[m]->getModule();
for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I) {
// In the multi-module case, see what this global maps to.
if (!LinkedGlobalsMap.empty()) {
if (const GlobalValue *GVEntry =
LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
// If something else is the canonical global, ignore this one.
if (GVEntry != &*I) {
NonCanonicalGlobals.push_back(I);
continue;
}
}
}
if (!I->isDeclaration()) {
addGlobalMapping(I, getMemoryForGV(I));
} else {
// External variable reference. Try to use the dynamic loader to
// get a pointer to it.
if (void *SymAddr =
sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName()))
addGlobalMapping(I, SymAddr);
else {
llvm_report_error("Could not resolve external global address: "
+I->getName());
}
}
}
// If there are multiple modules, map the non-canonical globals to their
// canonical location.
if (!NonCanonicalGlobals.empty()) {
for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
const GlobalValue *GV = NonCanonicalGlobals[i];
const GlobalValue *CGV =
LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
void *Ptr = getPointerToGlobalIfAvailable(CGV);
assert(Ptr && "Canonical global wasn't codegen'd!");
addGlobalMapping(GV, Ptr);
}
}
// Now that all of the globals are set up in memory, loop through them all
// and initialize their contents.
for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I) {
if (!I->isDeclaration()) {
if (!LinkedGlobalsMap.empty()) {
if (const GlobalValue *GVEntry =
LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
if (GVEntry != &*I) // Not the canonical variable.
continue;
}
EmitGlobalVariable(I);
}
}
}
}
// EmitGlobalVariable - This method emits the specified global variable to the
// address specified in GlobalAddresses, or allocates new memory if it's not
// already in the map.
void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
void *GA = getPointerToGlobalIfAvailable(GV);
if (GA == 0) {
// If it's not already specified, allocate memory for the global.
GA = getMemoryForGV(GV);
addGlobalMapping(GV, GA);
}
// Don't initialize if it's thread local, let the client do it.
if (!GV->isThreadLocal())
InitializeMemory(GV->getInitializer(), GA);
const Type *ElTy = GV->getType()->getElementType();
size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy);
NumInitBytes += (unsigned)GVSize;
++NumGlobals;
}
ExecutionEngineState::MapUpdatingCVH::MapUpdatingCVH(
ExecutionEngineState &EES, const GlobalValue *GV)
: CallbackVH(const_cast<GlobalValue*>(GV)), EES(EES) {}
void ExecutionEngineState::MapUpdatingCVH::deleted() {
MutexGuard locked(EES.EE.lock);
EES.RemoveMapping(locked, *this); // Destroys *this.
}
void ExecutionEngineState::MapUpdatingCVH::allUsesReplacedWith(
Value *new_value) {
assert(false && "The ExecutionEngine doesn't know how to handle a"
" RAUW on a value it has a global mapping for.");
}