llvm-6502/lib/Target/R600/AMDGPUTargetMachine.cpp
Tom Stellard edcd88ce1a R600/SI: Add SIFoldOperands pass
This pass attempts to fold the source operands of mov and copy
instructions into their uses.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222581 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-21 22:06:37 +00:00

225 lines
7.5 KiB
C++

//===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief The AMDGPU target machine contains all of the hardware specific
/// information needed to emit code for R600 and SI GPUs.
//
//===----------------------------------------------------------------------===//
#include "AMDGPUTargetMachine.h"
#include "AMDGPU.h"
#include "R600ISelLowering.h"
#include "R600InstrInfo.h"
#include "R600MachineScheduler.h"
#include "SIISelLowering.h"
#include "SIInstrInfo.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/CodeGen/MachineFunctionAnalysis.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/Verifier.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/PassManager.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_os_ostream.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/Scalar.h"
#include <llvm/CodeGen/Passes.h>
using namespace llvm;
extern "C" void LLVMInitializeR600Target() {
// Register the target
RegisterTargetMachine<AMDGPUTargetMachine> X(TheAMDGPUTarget);
}
static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) {
return new ScheduleDAGMILive(C, make_unique<R600SchedStrategy>());
}
static MachineSchedRegistry
SchedCustomRegistry("r600", "Run R600's custom scheduler",
createR600MachineScheduler);
AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, StringRef TT,
StringRef CPU, StringRef FS,
TargetOptions Options, Reloc::Model RM,
CodeModel::Model CM,
CodeGenOpt::Level OptLevel)
: LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OptLevel),
TLOF(new TargetLoweringObjectFileELF()),
Subtarget(TT, CPU, FS, *this), IntrinsicInfo() {
setRequiresStructuredCFG(true);
initAsmInfo();
}
AMDGPUTargetMachine::~AMDGPUTargetMachine() {
delete TLOF;
}
namespace {
class AMDGPUPassConfig : public TargetPassConfig {
public:
AMDGPUPassConfig(AMDGPUTargetMachine *TM, PassManagerBase &PM)
: TargetPassConfig(TM, PM) {}
AMDGPUTargetMachine &getAMDGPUTargetMachine() const {
return getTM<AMDGPUTargetMachine>();
}
ScheduleDAGInstrs *
createMachineScheduler(MachineSchedContext *C) const override {
const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>();
if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS)
return createR600MachineScheduler(C);
return nullptr;
}
void addIRPasses() override;
void addCodeGenPrepare() override;
bool addPreISel() override;
bool addInstSelector() override;
bool addPreRegAlloc() override;
bool addPostRegAlloc() override;
bool addPreSched2() override;
bool addPreEmitPass() override;
};
} // End of anonymous namespace
TargetPassConfig *AMDGPUTargetMachine::createPassConfig(PassManagerBase &PM) {
return new AMDGPUPassConfig(this, PM);
}
//===----------------------------------------------------------------------===//
// AMDGPU Analysis Pass Setup
//===----------------------------------------------------------------------===//
void AMDGPUTargetMachine::addAnalysisPasses(PassManagerBase &PM) {
// Add first the target-independent BasicTTI pass, then our AMDGPU pass. This
// allows the AMDGPU pass to delegate to the target independent layer when
// appropriate.
PM.add(createBasicTargetTransformInfoPass(this));
PM.add(createAMDGPUTargetTransformInfoPass(this));
}
void AMDGPUPassConfig::addIRPasses() {
// Function calls are not supported, so make sure we inline everything.
addPass(createAMDGPUAlwaysInlinePass());
addPass(createAlwaysInlinerPass());
// We need to add the barrier noop pass, otherwise adding the function
// inlining pass will cause all of the PassConfigs passes to be run
// one function at a time, which means if we have a nodule with two
// functions, then we will generate code for the first function
// without ever running any passes on the second.
addPass(createBarrierNoopPass());
TargetPassConfig::addIRPasses();
}
void AMDGPUPassConfig::addCodeGenPrepare() {
const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>();
if (ST.isPromoteAllocaEnabled()) {
addPass(createAMDGPUPromoteAlloca(ST));
addPass(createSROAPass());
}
TargetPassConfig::addCodeGenPrepare();
}
bool
AMDGPUPassConfig::addPreISel() {
const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>();
addPass(createFlattenCFGPass());
if (ST.IsIRStructurizerEnabled())
addPass(createStructurizeCFGPass());
if (ST.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) {
addPass(createSinkingPass());
addPass(createSITypeRewriter());
addPass(createSIAnnotateControlFlowPass());
} else {
addPass(createR600TextureIntrinsicsReplacer());
}
return false;
}
bool AMDGPUPassConfig::addInstSelector() {
const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>();
addPass(createAMDGPUISelDag(getAMDGPUTargetMachine()));
if (ST.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) {
addPass(createSILowerI1CopiesPass());
addPass(createSIFixSGPRCopiesPass(*TM));
}
addPass(createSILowerI1CopiesPass());
addPass(createSIFoldOperandsPass());
return false;
}
bool AMDGPUPassConfig::addPreRegAlloc() {
const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>();
if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) {
addPass(createR600VectorRegMerger(*TM));
} else {
if (getOptLevel() > CodeGenOpt::None && ST.loadStoreOptEnabled()) {
// Don't do this with no optimizations since it throws away debug info by
// merging nonadjacent loads.
// This should be run after scheduling, but before register allocation. It
// also need extra copies to the address operand to be eliminated.
initializeSILoadStoreOptimizerPass(*PassRegistry::getPassRegistry());
insertPass(&MachineSchedulerID, &SILoadStoreOptimizerID);
}
addPass(createSIShrinkInstructionsPass());
addPass(createSIFixSGPRLiveRangesPass());
}
return false;
}
bool AMDGPUPassConfig::addPostRegAlloc() {
const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>();
addPass(createSIShrinkInstructionsPass());
if (ST.getGeneration() > AMDGPUSubtarget::NORTHERN_ISLANDS) {
addPass(createSIInsertWaits(*TM));
}
return false;
}
bool AMDGPUPassConfig::addPreSched2() {
const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>();
if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS)
addPass(createR600EmitClauseMarkers());
if (ST.isIfCvtEnabled())
addPass(&IfConverterID);
if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS)
addPass(createR600ClauseMergePass(*TM));
return false;
}
bool AMDGPUPassConfig::addPreEmitPass() {
const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>();
if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) {
addPass(createAMDGPUCFGStructurizerPass());
addPass(createR600ExpandSpecialInstrsPass(*TM));
addPass(&FinalizeMachineBundlesID);
addPass(createR600Packetizer(*TM));
addPass(createR600ControlFlowFinalizer(*TM));
} else {
addPass(createSILowerControlFlowPass(*TM));
}
return false;
}