mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-07 12:07:17 +00:00
dda4a07cd8
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@141024 91177308-0d34-0410-b5e6-96231b3b80d8
2576 lines
100 KiB
C++
2576 lines
100 KiB
C++
//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the interfaces that Mips uses to lower LLVM code into a
|
|
// selection DAG.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "mips-lower"
|
|
#include "MipsISelLowering.h"
|
|
#include "MipsMachineFunction.h"
|
|
#include "MipsTargetMachine.h"
|
|
#include "MipsTargetObjectFile.h"
|
|
#include "MipsSubtarget.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/GlobalVariable.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/CallingConv.h"
|
|
#include "InstPrinter/MipsInstPrinter.h"
|
|
#include "llvm/CodeGen/CallingConvLower.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/SelectionDAGISel.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
using namespace llvm;
|
|
|
|
// If I is a shifted mask, set the size (Size) and the first bit of the
|
|
// mask (Pos), and return true.
|
|
// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
|
|
static bool IsShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
|
|
if (!isUInt<32>(I) || !isShiftedMask_32(I))
|
|
return false;
|
|
|
|
Size = CountPopulation_32(I);
|
|
Pos = CountTrailingZeros_32(I);
|
|
return true;
|
|
}
|
|
|
|
const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
|
|
switch (Opcode) {
|
|
case MipsISD::JmpLink: return "MipsISD::JmpLink";
|
|
case MipsISD::Hi: return "MipsISD::Hi";
|
|
case MipsISD::Lo: return "MipsISD::Lo";
|
|
case MipsISD::GPRel: return "MipsISD::GPRel";
|
|
case MipsISD::TlsGd: return "MipsISD::TlsGd";
|
|
case MipsISD::TprelHi: return "MipsISD::TprelHi";
|
|
case MipsISD::TprelLo: return "MipsISD::TprelLo";
|
|
case MipsISD::ThreadPointer: return "MipsISD::ThreadPointer";
|
|
case MipsISD::Ret: return "MipsISD::Ret";
|
|
case MipsISD::FPBrcond: return "MipsISD::FPBrcond";
|
|
case MipsISD::FPCmp: return "MipsISD::FPCmp";
|
|
case MipsISD::CMovFP_T: return "MipsISD::CMovFP_T";
|
|
case MipsISD::CMovFP_F: return "MipsISD::CMovFP_F";
|
|
case MipsISD::FPRound: return "MipsISD::FPRound";
|
|
case MipsISD::MAdd: return "MipsISD::MAdd";
|
|
case MipsISD::MAddu: return "MipsISD::MAddu";
|
|
case MipsISD::MSub: return "MipsISD::MSub";
|
|
case MipsISD::MSubu: return "MipsISD::MSubu";
|
|
case MipsISD::DivRem: return "MipsISD::DivRem";
|
|
case MipsISD::DivRemU: return "MipsISD::DivRemU";
|
|
case MipsISD::BuildPairF64: return "MipsISD::BuildPairF64";
|
|
case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
|
|
case MipsISD::WrapperPIC: return "MipsISD::WrapperPIC";
|
|
case MipsISD::DynAlloc: return "MipsISD::DynAlloc";
|
|
case MipsISD::Sync: return "MipsISD::Sync";
|
|
case MipsISD::Ext: return "MipsISD::Ext";
|
|
case MipsISD::Ins: return "MipsISD::Ins";
|
|
default: return NULL;
|
|
}
|
|
}
|
|
|
|
MipsTargetLowering::
|
|
MipsTargetLowering(MipsTargetMachine &TM)
|
|
: TargetLowering(TM, new MipsTargetObjectFile()),
|
|
Subtarget(&TM.getSubtarget<MipsSubtarget>()),
|
|
HasMips64(Subtarget->hasMips64()) {
|
|
|
|
// Mips does not have i1 type, so use i32 for
|
|
// setcc operations results (slt, sgt, ...).
|
|
setBooleanContents(ZeroOrOneBooleanContent);
|
|
setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
|
|
|
|
// Set up the register classes
|
|
addRegisterClass(MVT::i32, Mips::CPURegsRegisterClass);
|
|
addRegisterClass(MVT::f32, Mips::FGR32RegisterClass);
|
|
|
|
if (HasMips64)
|
|
addRegisterClass(MVT::i64, Mips::CPU64RegsRegisterClass);
|
|
|
|
// When dealing with single precision only, use libcalls
|
|
if (!Subtarget->isSingleFloat()) {
|
|
if (HasMips64)
|
|
addRegisterClass(MVT::f64, Mips::FGR64RegisterClass);
|
|
else
|
|
addRegisterClass(MVT::f64, Mips::AFGR64RegisterClass);
|
|
}
|
|
|
|
// Load extented operations for i1 types must be promoted
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
|
|
setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
|
|
setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
|
|
|
|
// MIPS doesn't have extending float->double load/store
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
|
|
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
|
|
|
|
// Used by legalize types to correctly generate the setcc result.
|
|
// Without this, every float setcc comes with a AND/OR with the result,
|
|
// we don't want this, since the fpcmp result goes to a flag register,
|
|
// which is used implicitly by brcond and select operations.
|
|
AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
|
|
|
|
// Mips Custom Operations
|
|
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
|
|
setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
|
|
setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
|
|
setOperationAction(ISD::JumpTable, MVT::i32, Custom);
|
|
setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::f32, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::f64, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::i32, Custom);
|
|
setOperationAction(ISD::BRCOND, MVT::Other, Custom);
|
|
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
|
|
setOperationAction(ISD::VASTART, MVT::Other, Custom);
|
|
|
|
setOperationAction(ISD::SDIV, MVT::i32, Expand);
|
|
setOperationAction(ISD::SREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::UDIV, MVT::i32, Expand);
|
|
setOperationAction(ISD::UREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::SDIV, MVT::i64, Expand);
|
|
setOperationAction(ISD::SREM, MVT::i64, Expand);
|
|
setOperationAction(ISD::UDIV, MVT::i64, Expand);
|
|
setOperationAction(ISD::UREM, MVT::i64, Expand);
|
|
|
|
// Operations not directly supported by Mips.
|
|
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
|
|
setOperationAction(ISD::BR_CC, MVT::Other, Expand);
|
|
setOperationAction(ISD::SELECT_CC, MVT::Other, Expand);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
|
|
setOperationAction(ISD::CTPOP, MVT::i32, Expand);
|
|
setOperationAction(ISD::CTTZ, MVT::i32, Expand);
|
|
setOperationAction(ISD::ROTL, MVT::i32, Expand);
|
|
setOperationAction(ISD::ROTL, MVT::i64, Expand);
|
|
|
|
if (!Subtarget->hasMips32r2())
|
|
setOperationAction(ISD::ROTR, MVT::i32, Expand);
|
|
|
|
if (!Subtarget->hasMips64r2())
|
|
setOperationAction(ISD::ROTR, MVT::i64, Expand);
|
|
|
|
setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
|
|
setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
|
|
setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
|
|
setOperationAction(ISD::FSIN, MVT::f32, Expand);
|
|
setOperationAction(ISD::FSIN, MVT::f64, Expand);
|
|
setOperationAction(ISD::FCOS, MVT::f32, Expand);
|
|
setOperationAction(ISD::FCOS, MVT::f64, Expand);
|
|
setOperationAction(ISD::FPOWI, MVT::f32, Expand);
|
|
setOperationAction(ISD::FPOW, MVT::f32, Expand);
|
|
setOperationAction(ISD::FPOW, MVT::f64, Expand);
|
|
setOperationAction(ISD::FLOG, MVT::f32, Expand);
|
|
setOperationAction(ISD::FLOG2, MVT::f32, Expand);
|
|
setOperationAction(ISD::FLOG10, MVT::f32, Expand);
|
|
setOperationAction(ISD::FEXP, MVT::f32, Expand);
|
|
setOperationAction(ISD::FMA, MVT::f32, Expand);
|
|
setOperationAction(ISD::FMA, MVT::f64, Expand);
|
|
|
|
setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
|
|
setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
|
|
|
|
setOperationAction(ISD::VAARG, MVT::Other, Expand);
|
|
setOperationAction(ISD::VACOPY, MVT::Other, Expand);
|
|
setOperationAction(ISD::VAEND, MVT::Other, Expand);
|
|
|
|
// Use the default for now
|
|
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
|
|
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
|
|
|
|
setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
|
|
setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
|
|
|
|
setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
|
|
|
|
setInsertFencesForAtomic(true);
|
|
|
|
if (Subtarget->isSingleFloat())
|
|
setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
|
|
|
|
if (!Subtarget->hasSEInReg()) {
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
|
|
}
|
|
|
|
if (!Subtarget->hasBitCount())
|
|
setOperationAction(ISD::CTLZ, MVT::i32, Expand);
|
|
|
|
if (!Subtarget->hasSwap())
|
|
setOperationAction(ISD::BSWAP, MVT::i32, Expand);
|
|
|
|
setTargetDAGCombine(ISD::ADDE);
|
|
setTargetDAGCombine(ISD::SUBE);
|
|
setTargetDAGCombine(ISD::SDIVREM);
|
|
setTargetDAGCombine(ISD::UDIVREM);
|
|
setTargetDAGCombine(ISD::SETCC);
|
|
setTargetDAGCombine(ISD::AND);
|
|
setTargetDAGCombine(ISD::OR);
|
|
|
|
setMinFunctionAlignment(2);
|
|
|
|
setStackPointerRegisterToSaveRestore(Mips::SP);
|
|
computeRegisterProperties();
|
|
|
|
setExceptionPointerRegister(Mips::A0);
|
|
setExceptionSelectorRegister(Mips::A1);
|
|
}
|
|
|
|
bool MipsTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
|
|
MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
|
|
return SVT == MVT::i32 || SVT == MVT::i16;
|
|
}
|
|
|
|
EVT MipsTargetLowering::getSetCCResultType(EVT VT) const {
|
|
return MVT::i32;
|
|
}
|
|
|
|
// SelectMadd -
|
|
// Transforms a subgraph in CurDAG if the following pattern is found:
|
|
// (addc multLo, Lo0), (adde multHi, Hi0),
|
|
// where,
|
|
// multHi/Lo: product of multiplication
|
|
// Lo0: initial value of Lo register
|
|
// Hi0: initial value of Hi register
|
|
// Return true if pattern matching was successful.
|
|
static bool SelectMadd(SDNode* ADDENode, SelectionDAG* CurDAG) {
|
|
// ADDENode's second operand must be a flag output of an ADDC node in order
|
|
// for the matching to be successful.
|
|
SDNode* ADDCNode = ADDENode->getOperand(2).getNode();
|
|
|
|
if (ADDCNode->getOpcode() != ISD::ADDC)
|
|
return false;
|
|
|
|
SDValue MultHi = ADDENode->getOperand(0);
|
|
SDValue MultLo = ADDCNode->getOperand(0);
|
|
SDNode* MultNode = MultHi.getNode();
|
|
unsigned MultOpc = MultHi.getOpcode();
|
|
|
|
// MultHi and MultLo must be generated by the same node,
|
|
if (MultLo.getNode() != MultNode)
|
|
return false;
|
|
|
|
// and it must be a multiplication.
|
|
if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
|
|
return false;
|
|
|
|
// MultLo amd MultHi must be the first and second output of MultNode
|
|
// respectively.
|
|
if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
|
|
return false;
|
|
|
|
// Transform this to a MADD only if ADDENode and ADDCNode are the only users
|
|
// of the values of MultNode, in which case MultNode will be removed in later
|
|
// phases.
|
|
// If there exist users other than ADDENode or ADDCNode, this function returns
|
|
// here, which will result in MultNode being mapped to a single MULT
|
|
// instruction node rather than a pair of MULT and MADD instructions being
|
|
// produced.
|
|
if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
|
|
return false;
|
|
|
|
SDValue Chain = CurDAG->getEntryNode();
|
|
DebugLoc dl = ADDENode->getDebugLoc();
|
|
|
|
// create MipsMAdd(u) node
|
|
MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
|
|
|
|
SDValue MAdd = CurDAG->getNode(MultOpc, dl,
|
|
MVT::Glue,
|
|
MultNode->getOperand(0),// Factor 0
|
|
MultNode->getOperand(1),// Factor 1
|
|
ADDCNode->getOperand(1),// Lo0
|
|
ADDENode->getOperand(1));// Hi0
|
|
|
|
// create CopyFromReg nodes
|
|
SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
|
|
MAdd);
|
|
SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
|
|
Mips::HI, MVT::i32,
|
|
CopyFromLo.getValue(2));
|
|
|
|
// replace uses of adde and addc here
|
|
if (!SDValue(ADDCNode, 0).use_empty())
|
|
CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), CopyFromLo);
|
|
|
|
if (!SDValue(ADDENode, 0).use_empty())
|
|
CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), CopyFromHi);
|
|
|
|
return true;
|
|
}
|
|
|
|
// SelectMsub -
|
|
// Transforms a subgraph in CurDAG if the following pattern is found:
|
|
// (addc Lo0, multLo), (sube Hi0, multHi),
|
|
// where,
|
|
// multHi/Lo: product of multiplication
|
|
// Lo0: initial value of Lo register
|
|
// Hi0: initial value of Hi register
|
|
// Return true if pattern matching was successful.
|
|
static bool SelectMsub(SDNode* SUBENode, SelectionDAG* CurDAG) {
|
|
// SUBENode's second operand must be a flag output of an SUBC node in order
|
|
// for the matching to be successful.
|
|
SDNode* SUBCNode = SUBENode->getOperand(2).getNode();
|
|
|
|
if (SUBCNode->getOpcode() != ISD::SUBC)
|
|
return false;
|
|
|
|
SDValue MultHi = SUBENode->getOperand(1);
|
|
SDValue MultLo = SUBCNode->getOperand(1);
|
|
SDNode* MultNode = MultHi.getNode();
|
|
unsigned MultOpc = MultHi.getOpcode();
|
|
|
|
// MultHi and MultLo must be generated by the same node,
|
|
if (MultLo.getNode() != MultNode)
|
|
return false;
|
|
|
|
// and it must be a multiplication.
|
|
if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
|
|
return false;
|
|
|
|
// MultLo amd MultHi must be the first and second output of MultNode
|
|
// respectively.
|
|
if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
|
|
return false;
|
|
|
|
// Transform this to a MSUB only if SUBENode and SUBCNode are the only users
|
|
// of the values of MultNode, in which case MultNode will be removed in later
|
|
// phases.
|
|
// If there exist users other than SUBENode or SUBCNode, this function returns
|
|
// here, which will result in MultNode being mapped to a single MULT
|
|
// instruction node rather than a pair of MULT and MSUB instructions being
|
|
// produced.
|
|
if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
|
|
return false;
|
|
|
|
SDValue Chain = CurDAG->getEntryNode();
|
|
DebugLoc dl = SUBENode->getDebugLoc();
|
|
|
|
// create MipsSub(u) node
|
|
MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;
|
|
|
|
SDValue MSub = CurDAG->getNode(MultOpc, dl,
|
|
MVT::Glue,
|
|
MultNode->getOperand(0),// Factor 0
|
|
MultNode->getOperand(1),// Factor 1
|
|
SUBCNode->getOperand(0),// Lo0
|
|
SUBENode->getOperand(0));// Hi0
|
|
|
|
// create CopyFromReg nodes
|
|
SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
|
|
MSub);
|
|
SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
|
|
Mips::HI, MVT::i32,
|
|
CopyFromLo.getValue(2));
|
|
|
|
// replace uses of sube and subc here
|
|
if (!SDValue(SUBCNode, 0).use_empty())
|
|
CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), CopyFromLo);
|
|
|
|
if (!SDValue(SUBENode, 0).use_empty())
|
|
CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), CopyFromHi);
|
|
|
|
return true;
|
|
}
|
|
|
|
static SDValue PerformADDECombine(SDNode *N, SelectionDAG& DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const MipsSubtarget* Subtarget) {
|
|
if (DCI.isBeforeLegalize())
|
|
return SDValue();
|
|
|
|
if (Subtarget->hasMips32() && SelectMadd(N, &DAG))
|
|
return SDValue(N, 0);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue PerformSUBECombine(SDNode *N, SelectionDAG& DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const MipsSubtarget* Subtarget) {
|
|
if (DCI.isBeforeLegalize())
|
|
return SDValue();
|
|
|
|
if (Subtarget->hasMips32() && SelectMsub(N, &DAG))
|
|
return SDValue(N, 0);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue PerformDivRemCombine(SDNode *N, SelectionDAG& DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const MipsSubtarget* Subtarget) {
|
|
if (DCI.isBeforeLegalizeOps())
|
|
return SDValue();
|
|
|
|
EVT Ty = N->getValueType(0);
|
|
unsigned LO = (Ty == MVT::i32) ? Mips::LO : Mips::LO64;
|
|
unsigned HI = (Ty == MVT::i32) ? Mips::HI : Mips::HI64;
|
|
unsigned opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem :
|
|
MipsISD::DivRemU;
|
|
DebugLoc dl = N->getDebugLoc();
|
|
|
|
SDValue DivRem = DAG.getNode(opc, dl, MVT::Glue,
|
|
N->getOperand(0), N->getOperand(1));
|
|
SDValue InChain = DAG.getEntryNode();
|
|
SDValue InGlue = DivRem;
|
|
|
|
// insert MFLO
|
|
if (N->hasAnyUseOfValue(0)) {
|
|
SDValue CopyFromLo = DAG.getCopyFromReg(InChain, dl, LO, Ty,
|
|
InGlue);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
|
|
InChain = CopyFromLo.getValue(1);
|
|
InGlue = CopyFromLo.getValue(2);
|
|
}
|
|
|
|
// insert MFHI
|
|
if (N->hasAnyUseOfValue(1)) {
|
|
SDValue CopyFromHi = DAG.getCopyFromReg(InChain, dl,
|
|
HI, Ty, InGlue);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static Mips::CondCode FPCondCCodeToFCC(ISD::CondCode CC) {
|
|
switch (CC) {
|
|
default: llvm_unreachable("Unknown fp condition code!");
|
|
case ISD::SETEQ:
|
|
case ISD::SETOEQ: return Mips::FCOND_OEQ;
|
|
case ISD::SETUNE: return Mips::FCOND_UNE;
|
|
case ISD::SETLT:
|
|
case ISD::SETOLT: return Mips::FCOND_OLT;
|
|
case ISD::SETGT:
|
|
case ISD::SETOGT: return Mips::FCOND_OGT;
|
|
case ISD::SETLE:
|
|
case ISD::SETOLE: return Mips::FCOND_OLE;
|
|
case ISD::SETGE:
|
|
case ISD::SETOGE: return Mips::FCOND_OGE;
|
|
case ISD::SETULT: return Mips::FCOND_ULT;
|
|
case ISD::SETULE: return Mips::FCOND_ULE;
|
|
case ISD::SETUGT: return Mips::FCOND_UGT;
|
|
case ISD::SETUGE: return Mips::FCOND_UGE;
|
|
case ISD::SETUO: return Mips::FCOND_UN;
|
|
case ISD::SETO: return Mips::FCOND_OR;
|
|
case ISD::SETNE:
|
|
case ISD::SETONE: return Mips::FCOND_ONE;
|
|
case ISD::SETUEQ: return Mips::FCOND_UEQ;
|
|
}
|
|
}
|
|
|
|
|
|
// Returns true if condition code has to be inverted.
|
|
static bool InvertFPCondCode(Mips::CondCode CC) {
|
|
if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
|
|
return false;
|
|
|
|
if (CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT)
|
|
return true;
|
|
|
|
assert(false && "Illegal Condition Code");
|
|
return false;
|
|
}
|
|
|
|
// Creates and returns an FPCmp node from a setcc node.
|
|
// Returns Op if setcc is not a floating point comparison.
|
|
static SDValue CreateFPCmp(SelectionDAG& DAG, const SDValue& Op) {
|
|
// must be a SETCC node
|
|
if (Op.getOpcode() != ISD::SETCC)
|
|
return Op;
|
|
|
|
SDValue LHS = Op.getOperand(0);
|
|
|
|
if (!LHS.getValueType().isFloatingPoint())
|
|
return Op;
|
|
|
|
SDValue RHS = Op.getOperand(1);
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
// Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
|
|
// node if necessary.
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
|
|
|
|
return DAG.getNode(MipsISD::FPCmp, dl, MVT::Glue, LHS, RHS,
|
|
DAG.getConstant(FPCondCCodeToFCC(CC), MVT::i32));
|
|
}
|
|
|
|
// Creates and returns a CMovFPT/F node.
|
|
static SDValue CreateCMovFP(SelectionDAG& DAG, SDValue Cond, SDValue True,
|
|
SDValue False, DebugLoc DL) {
|
|
bool invert = InvertFPCondCode((Mips::CondCode)
|
|
cast<ConstantSDNode>(Cond.getOperand(2))
|
|
->getSExtValue());
|
|
|
|
return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
|
|
True.getValueType(), True, False, Cond);
|
|
}
|
|
|
|
static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG& DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const MipsSubtarget* Subtarget) {
|
|
if (DCI.isBeforeLegalizeOps())
|
|
return SDValue();
|
|
|
|
SDValue Cond = CreateFPCmp(DAG, SDValue(N, 0));
|
|
|
|
if (Cond.getOpcode() != MipsISD::FPCmp)
|
|
return SDValue();
|
|
|
|
SDValue True = DAG.getConstant(1, MVT::i32);
|
|
SDValue False = DAG.getConstant(0, MVT::i32);
|
|
|
|
return CreateCMovFP(DAG, Cond, True, False, N->getDebugLoc());
|
|
}
|
|
|
|
static SDValue PerformANDCombine(SDNode *N, SelectionDAG& DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const MipsSubtarget* Subtarget) {
|
|
// Pattern match EXT.
|
|
// $dst = and ((sra or srl) $src , pos), (2**size - 1)
|
|
// => ext $dst, $src, size, pos
|
|
if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
|
|
return SDValue();
|
|
|
|
SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
|
|
|
|
// Op's first operand must be a shift right.
|
|
if (ShiftRight.getOpcode() != ISD::SRA && ShiftRight.getOpcode() != ISD::SRL)
|
|
return SDValue();
|
|
|
|
// The second operand of the shift must be an immediate.
|
|
uint64_t Pos;
|
|
ConstantSDNode *CN;
|
|
if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
|
|
return SDValue();
|
|
|
|
Pos = CN->getZExtValue();
|
|
|
|
uint64_t SMPos, SMSize;
|
|
// Op's second operand must be a shifted mask.
|
|
if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
|
|
!IsShiftedMask(CN->getZExtValue(), SMPos, SMSize))
|
|
return SDValue();
|
|
|
|
// Return if the shifted mask does not start at bit 0 or the sum of its size
|
|
// and Pos exceeds the word's size.
|
|
if (SMPos != 0 || Pos + SMSize > 32)
|
|
return SDValue();
|
|
|
|
return DAG.getNode(MipsISD::Ext, N->getDebugLoc(), MVT::i32,
|
|
ShiftRight.getOperand(0),
|
|
DAG.getConstant(Pos, MVT::i32),
|
|
DAG.getConstant(SMSize, MVT::i32));
|
|
}
|
|
|
|
static SDValue PerformORCombine(SDNode *N, SelectionDAG& DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const MipsSubtarget* Subtarget) {
|
|
// Pattern match INS.
|
|
// $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
|
|
// where mask1 = (2**size - 1) << pos, mask0 = ~mask1
|
|
// => ins $dst, $src, size, pos, $src1
|
|
if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
|
|
return SDValue();
|
|
|
|
SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
|
|
uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
|
|
ConstantSDNode *CN;
|
|
|
|
// See if Op's first operand matches (and $src1 , mask0).
|
|
if (And0.getOpcode() != ISD::AND)
|
|
return SDValue();
|
|
|
|
if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
|
|
!IsShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
|
|
return SDValue();
|
|
|
|
// See if Op's second operand matches (and (shl $src, pos), mask1).
|
|
if (And1.getOpcode() != ISD::AND)
|
|
return SDValue();
|
|
|
|
if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
|
|
!IsShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
|
|
return SDValue();
|
|
|
|
// The shift masks must have the same position and size.
|
|
if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
|
|
return SDValue();
|
|
|
|
SDValue Shl = And1.getOperand(0);
|
|
if (Shl.getOpcode() != ISD::SHL)
|
|
return SDValue();
|
|
|
|
if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
|
|
return SDValue();
|
|
|
|
unsigned Shamt = CN->getZExtValue();
|
|
|
|
// Return if the shift amount and the first bit position of mask are not the
|
|
// same.
|
|
if (Shamt != SMPos0)
|
|
return SDValue();
|
|
|
|
return DAG.getNode(MipsISD::Ins, N->getDebugLoc(), MVT::i32,
|
|
Shl.getOperand(0),
|
|
DAG.getConstant(SMPos0, MVT::i32),
|
|
DAG.getConstant(SMSize0, MVT::i32),
|
|
And0.getOperand(0));
|
|
}
|
|
|
|
SDValue MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
|
|
const {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
unsigned opc = N->getOpcode();
|
|
|
|
switch (opc) {
|
|
default: break;
|
|
case ISD::ADDE:
|
|
return PerformADDECombine(N, DAG, DCI, Subtarget);
|
|
case ISD::SUBE:
|
|
return PerformSUBECombine(N, DAG, DCI, Subtarget);
|
|
case ISD::SDIVREM:
|
|
case ISD::UDIVREM:
|
|
return PerformDivRemCombine(N, DAG, DCI, Subtarget);
|
|
case ISD::SETCC:
|
|
return PerformSETCCCombine(N, DAG, DCI, Subtarget);
|
|
case ISD::AND:
|
|
return PerformANDCombine(N, DAG, DCI, Subtarget);
|
|
case ISD::OR:
|
|
return PerformORCombine(N, DAG, DCI, Subtarget);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue MipsTargetLowering::
|
|
LowerOperation(SDValue Op, SelectionDAG &DAG) const
|
|
{
|
|
switch (Op.getOpcode())
|
|
{
|
|
case ISD::BRCOND: return LowerBRCOND(Op, DAG);
|
|
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
|
|
case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
|
|
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
|
|
case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
|
|
case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
|
|
case ISD::JumpTable: return LowerJumpTable(Op, DAG);
|
|
case ISD::SELECT: return LowerSELECT(Op, DAG);
|
|
case ISD::VASTART: return LowerVASTART(Op, DAG);
|
|
case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
|
|
case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
|
|
case ISD::MEMBARRIER: return LowerMEMBARRIER(Op, DAG);
|
|
case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Lower helper functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// AddLiveIn - This helper function adds the specified physical register to the
|
|
// MachineFunction as a live in value. It also creates a corresponding
|
|
// virtual register for it.
|
|
static unsigned
|
|
AddLiveIn(MachineFunction &MF, unsigned PReg, TargetRegisterClass *RC)
|
|
{
|
|
assert(RC->contains(PReg) && "Not the correct regclass!");
|
|
unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
|
|
MF.getRegInfo().addLiveIn(PReg, VReg);
|
|
return VReg;
|
|
}
|
|
|
|
// Get fp branch code (not opcode) from condition code.
|
|
static Mips::FPBranchCode GetFPBranchCodeFromCond(Mips::CondCode CC) {
|
|
if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
|
|
return Mips::BRANCH_T;
|
|
|
|
if (CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT)
|
|
return Mips::BRANCH_F;
|
|
|
|
return Mips::BRANCH_INVALID;
|
|
}
|
|
|
|
static MachineBasicBlock* ExpandCondMov(MachineInstr *MI, MachineBasicBlock *BB,
|
|
DebugLoc dl,
|
|
const MipsSubtarget* Subtarget,
|
|
const TargetInstrInfo *TII,
|
|
bool isFPCmp, unsigned Opc) {
|
|
// There is no need to expand CMov instructions if target has
|
|
// conditional moves.
|
|
if (Subtarget->hasCondMov())
|
|
return BB;
|
|
|
|
// To "insert" a SELECT_CC instruction, we actually have to insert the
|
|
// diamond control-flow pattern. The incoming instruction knows the
|
|
// destination vreg to set, the condition code register to branch on, the
|
|
// true/false values to select between, and a branch opcode to use.
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineFunction::iterator It = BB;
|
|
++It;
|
|
|
|
// thisMBB:
|
|
// ...
|
|
// TrueVal = ...
|
|
// setcc r1, r2, r3
|
|
// bNE r1, r0, copy1MBB
|
|
// fallthrough --> copy0MBB
|
|
MachineBasicBlock *thisMBB = BB;
|
|
MachineFunction *F = BB->getParent();
|
|
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
F->insert(It, copy0MBB);
|
|
F->insert(It, sinkMBB);
|
|
|
|
// Transfer the remainder of BB and its successor edges to sinkMBB.
|
|
sinkMBB->splice(sinkMBB->begin(), BB,
|
|
llvm::next(MachineBasicBlock::iterator(MI)),
|
|
BB->end());
|
|
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
// Next, add the true and fallthrough blocks as its successors.
|
|
BB->addSuccessor(copy0MBB);
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
// Emit the right instruction according to the type of the operands compared
|
|
if (isFPCmp)
|
|
BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
|
|
else
|
|
BuildMI(BB, dl, TII->get(Opc)).addReg(MI->getOperand(2).getReg())
|
|
.addReg(Mips::ZERO).addMBB(sinkMBB);
|
|
|
|
// copy0MBB:
|
|
// %FalseValue = ...
|
|
// # fallthrough to sinkMBB
|
|
BB = copy0MBB;
|
|
|
|
// Update machine-CFG edges
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
// sinkMBB:
|
|
// %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
|
|
// ...
|
|
BB = sinkMBB;
|
|
|
|
if (isFPCmp)
|
|
BuildMI(*BB, BB->begin(), dl,
|
|
TII->get(Mips::PHI), MI->getOperand(0).getReg())
|
|
.addReg(MI->getOperand(2).getReg()).addMBB(thisMBB)
|
|
.addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
|
|
else
|
|
BuildMI(*BB, BB->begin(), dl,
|
|
TII->get(Mips::PHI), MI->getOperand(0).getReg())
|
|
.addReg(MI->getOperand(3).getReg()).addMBB(thisMBB)
|
|
.addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
|
|
|
|
MI->eraseFromParent(); // The pseudo instruction is gone now.
|
|
return BB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
|
|
MachineBasicBlock *BB) const {
|
|
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
|
|
switch (MI->getOpcode()) {
|
|
default:
|
|
assert(false && "Unexpected instr type to insert");
|
|
return NULL;
|
|
case Mips::MOVT:
|
|
case Mips::MOVT_S:
|
|
case Mips::MOVT_D:
|
|
return ExpandCondMov(MI, BB, dl, Subtarget, TII, true, Mips::BC1F);
|
|
case Mips::MOVF:
|
|
case Mips::MOVF_S:
|
|
case Mips::MOVF_D:
|
|
return ExpandCondMov(MI, BB, dl, Subtarget, TII, true, Mips::BC1T);
|
|
case Mips::MOVZ_I:
|
|
case Mips::MOVZ_S:
|
|
case Mips::MOVZ_D:
|
|
return ExpandCondMov(MI, BB, dl, Subtarget, TII, false, Mips::BNE);
|
|
case Mips::MOVN_I:
|
|
case Mips::MOVN_S:
|
|
case Mips::MOVN_D:
|
|
return ExpandCondMov(MI, BB, dl, Subtarget, TII, false, Mips::BEQ);
|
|
|
|
case Mips::ATOMIC_LOAD_ADD_I8:
|
|
return EmitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
|
|
case Mips::ATOMIC_LOAD_ADD_I16:
|
|
return EmitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
|
|
case Mips::ATOMIC_LOAD_ADD_I32:
|
|
return EmitAtomicBinary(MI, BB, 4, Mips::ADDu);
|
|
|
|
case Mips::ATOMIC_LOAD_AND_I8:
|
|
return EmitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
|
|
case Mips::ATOMIC_LOAD_AND_I16:
|
|
return EmitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
|
|
case Mips::ATOMIC_LOAD_AND_I32:
|
|
return EmitAtomicBinary(MI, BB, 4, Mips::AND);
|
|
|
|
case Mips::ATOMIC_LOAD_OR_I8:
|
|
return EmitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
|
|
case Mips::ATOMIC_LOAD_OR_I16:
|
|
return EmitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
|
|
case Mips::ATOMIC_LOAD_OR_I32:
|
|
return EmitAtomicBinary(MI, BB, 4, Mips::OR);
|
|
|
|
case Mips::ATOMIC_LOAD_XOR_I8:
|
|
return EmitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
|
|
case Mips::ATOMIC_LOAD_XOR_I16:
|
|
return EmitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
|
|
case Mips::ATOMIC_LOAD_XOR_I32:
|
|
return EmitAtomicBinary(MI, BB, 4, Mips::XOR);
|
|
|
|
case Mips::ATOMIC_LOAD_NAND_I8:
|
|
return EmitAtomicBinaryPartword(MI, BB, 1, 0, true);
|
|
case Mips::ATOMIC_LOAD_NAND_I16:
|
|
return EmitAtomicBinaryPartword(MI, BB, 2, 0, true);
|
|
case Mips::ATOMIC_LOAD_NAND_I32:
|
|
return EmitAtomicBinary(MI, BB, 4, 0, true);
|
|
|
|
case Mips::ATOMIC_LOAD_SUB_I8:
|
|
return EmitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
|
|
case Mips::ATOMIC_LOAD_SUB_I16:
|
|
return EmitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
|
|
case Mips::ATOMIC_LOAD_SUB_I32:
|
|
return EmitAtomicBinary(MI, BB, 4, Mips::SUBu);
|
|
|
|
case Mips::ATOMIC_SWAP_I8:
|
|
return EmitAtomicBinaryPartword(MI, BB, 1, 0);
|
|
case Mips::ATOMIC_SWAP_I16:
|
|
return EmitAtomicBinaryPartword(MI, BB, 2, 0);
|
|
case Mips::ATOMIC_SWAP_I32:
|
|
return EmitAtomicBinary(MI, BB, 4, 0);
|
|
|
|
case Mips::ATOMIC_CMP_SWAP_I8:
|
|
return EmitAtomicCmpSwapPartword(MI, BB, 1);
|
|
case Mips::ATOMIC_CMP_SWAP_I16:
|
|
return EmitAtomicCmpSwapPartword(MI, BB, 2);
|
|
case Mips::ATOMIC_CMP_SWAP_I32:
|
|
return EmitAtomicCmpSwap(MI, BB, 4);
|
|
}
|
|
}
|
|
|
|
// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
|
|
// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
|
|
MachineBasicBlock *
|
|
MipsTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
|
|
unsigned Size, unsigned BinOpcode,
|
|
bool Nand) const {
|
|
assert(Size == 4 && "Unsupported size for EmitAtomicBinary.");
|
|
|
|
MachineFunction *MF = BB->getParent();
|
|
MachineRegisterInfo &RegInfo = MF->getRegInfo();
|
|
const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
|
|
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
|
|
unsigned OldVal = MI->getOperand(0).getReg();
|
|
unsigned Ptr = MI->getOperand(1).getReg();
|
|
unsigned Incr = MI->getOperand(2).getReg();
|
|
|
|
unsigned StoreVal = RegInfo.createVirtualRegister(RC);
|
|
unsigned AndRes = RegInfo.createVirtualRegister(RC);
|
|
unsigned Success = RegInfo.createVirtualRegister(RC);
|
|
|
|
// insert new blocks after the current block
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineFunction::iterator It = BB;
|
|
++It;
|
|
MF->insert(It, loopMBB);
|
|
MF->insert(It, exitMBB);
|
|
|
|
// Transfer the remainder of BB and its successor edges to exitMBB.
|
|
exitMBB->splice(exitMBB->begin(), BB,
|
|
llvm::next(MachineBasicBlock::iterator(MI)),
|
|
BB->end());
|
|
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
// thisMBB:
|
|
// ...
|
|
// fallthrough --> loopMBB
|
|
BB->addSuccessor(loopMBB);
|
|
loopMBB->addSuccessor(loopMBB);
|
|
loopMBB->addSuccessor(exitMBB);
|
|
|
|
// loopMBB:
|
|
// ll oldval, 0(ptr)
|
|
// <binop> storeval, oldval, incr
|
|
// sc success, storeval, 0(ptr)
|
|
// beq success, $0, loopMBB
|
|
BB = loopMBB;
|
|
BuildMI(BB, dl, TII->get(Mips::LL), OldVal).addReg(Ptr).addImm(0);
|
|
if (Nand) {
|
|
// and andres, oldval, incr
|
|
// nor storeval, $0, andres
|
|
BuildMI(BB, dl, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr);
|
|
BuildMI(BB, dl, TII->get(Mips::NOR), StoreVal)
|
|
.addReg(Mips::ZERO).addReg(AndRes);
|
|
} else if (BinOpcode) {
|
|
// <binop> storeval, oldval, incr
|
|
BuildMI(BB, dl, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
|
|
} else {
|
|
StoreVal = Incr;
|
|
}
|
|
BuildMI(BB, dl, TII->get(Mips::SC), Success)
|
|
.addReg(StoreVal).addReg(Ptr).addImm(0);
|
|
BuildMI(BB, dl, TII->get(Mips::BEQ))
|
|
.addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
|
|
|
|
MI->eraseFromParent(); // The instruction is gone now.
|
|
|
|
return exitMBB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
MipsTargetLowering::EmitAtomicBinaryPartword(MachineInstr *MI,
|
|
MachineBasicBlock *BB,
|
|
unsigned Size, unsigned BinOpcode,
|
|
bool Nand) const {
|
|
assert((Size == 1 || Size == 2) &&
|
|
"Unsupported size for EmitAtomicBinaryPartial.");
|
|
|
|
MachineFunction *MF = BB->getParent();
|
|
MachineRegisterInfo &RegInfo = MF->getRegInfo();
|
|
const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
|
|
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
|
|
unsigned Dest = MI->getOperand(0).getReg();
|
|
unsigned Ptr = MI->getOperand(1).getReg();
|
|
unsigned Incr = MI->getOperand(2).getReg();
|
|
|
|
unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
|
|
unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
|
|
unsigned Mask = RegInfo.createVirtualRegister(RC);
|
|
unsigned Mask2 = RegInfo.createVirtualRegister(RC);
|
|
unsigned NewVal = RegInfo.createVirtualRegister(RC);
|
|
unsigned OldVal = RegInfo.createVirtualRegister(RC);
|
|
unsigned Incr2 = RegInfo.createVirtualRegister(RC);
|
|
unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
|
|
unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
|
|
unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
|
|
unsigned AndRes = RegInfo.createVirtualRegister(RC);
|
|
unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
|
|
unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
|
|
unsigned StoreVal = RegInfo.createVirtualRegister(RC);
|
|
unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
|
|
unsigned SrlRes = RegInfo.createVirtualRegister(RC);
|
|
unsigned SllRes = RegInfo.createVirtualRegister(RC);
|
|
unsigned Success = RegInfo.createVirtualRegister(RC);
|
|
|
|
// insert new blocks after the current block
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineFunction::iterator It = BB;
|
|
++It;
|
|
MF->insert(It, loopMBB);
|
|
MF->insert(It, sinkMBB);
|
|
MF->insert(It, exitMBB);
|
|
|
|
// Transfer the remainder of BB and its successor edges to exitMBB.
|
|
exitMBB->splice(exitMBB->begin(), BB,
|
|
llvm::next(MachineBasicBlock::iterator(MI)),
|
|
BB->end());
|
|
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
BB->addSuccessor(loopMBB);
|
|
loopMBB->addSuccessor(loopMBB);
|
|
loopMBB->addSuccessor(sinkMBB);
|
|
sinkMBB->addSuccessor(exitMBB);
|
|
|
|
// thisMBB:
|
|
// addiu masklsb2,$0,-4 # 0xfffffffc
|
|
// and alignedaddr,ptr,masklsb2
|
|
// andi ptrlsb2,ptr,3
|
|
// sll shiftamt,ptrlsb2,3
|
|
// ori maskupper,$0,255 # 0xff
|
|
// sll mask,maskupper,shiftamt
|
|
// nor mask2,$0,mask
|
|
// sll incr2,incr,shiftamt
|
|
|
|
int64_t MaskImm = (Size == 1) ? 255 : 65535;
|
|
BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
|
|
.addReg(Mips::ZERO).addImm(-4);
|
|
BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
|
|
.addReg(Ptr).addReg(MaskLSB2);
|
|
BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
|
|
BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
|
|
BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
|
|
.addReg(Mips::ZERO).addImm(MaskImm);
|
|
BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
|
|
.addReg(ShiftAmt).addReg(MaskUpper);
|
|
BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
|
|
BuildMI(BB, dl, TII->get(Mips::SLLV), Incr2).addReg(ShiftAmt).addReg(Incr);
|
|
|
|
|
|
// atomic.load.binop
|
|
// loopMBB:
|
|
// ll oldval,0(alignedaddr)
|
|
// binop binopres,oldval,incr2
|
|
// and newval,binopres,mask
|
|
// and maskedoldval0,oldval,mask2
|
|
// or storeval,maskedoldval0,newval
|
|
// sc success,storeval,0(alignedaddr)
|
|
// beq success,$0,loopMBB
|
|
|
|
// atomic.swap
|
|
// loopMBB:
|
|
// ll oldval,0(alignedaddr)
|
|
// and newval,incr2,mask
|
|
// and maskedoldval0,oldval,mask2
|
|
// or storeval,maskedoldval0,newval
|
|
// sc success,storeval,0(alignedaddr)
|
|
// beq success,$0,loopMBB
|
|
|
|
BB = loopMBB;
|
|
BuildMI(BB, dl, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0);
|
|
if (Nand) {
|
|
// and andres, oldval, incr2
|
|
// nor binopres, $0, andres
|
|
// and newval, binopres, mask
|
|
BuildMI(BB, dl, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
|
|
BuildMI(BB, dl, TII->get(Mips::NOR), BinOpRes)
|
|
.addReg(Mips::ZERO).addReg(AndRes);
|
|
BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
|
|
} else if (BinOpcode) {
|
|
// <binop> binopres, oldval, incr2
|
|
// and newval, binopres, mask
|
|
BuildMI(BB, dl, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
|
|
BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
|
|
} else {// atomic.swap
|
|
// and newval, incr2, mask
|
|
BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
|
|
}
|
|
|
|
BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
|
|
.addReg(OldVal).addReg(Mask2);
|
|
BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
|
|
.addReg(MaskedOldVal0).addReg(NewVal);
|
|
BuildMI(BB, dl, TII->get(Mips::SC), Success)
|
|
.addReg(StoreVal).addReg(AlignedAddr).addImm(0);
|
|
BuildMI(BB, dl, TII->get(Mips::BEQ))
|
|
.addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
|
|
|
|
// sinkMBB:
|
|
// and maskedoldval1,oldval,mask
|
|
// srl srlres,maskedoldval1,shiftamt
|
|
// sll sllres,srlres,24
|
|
// sra dest,sllres,24
|
|
BB = sinkMBB;
|
|
int64_t ShiftImm = (Size == 1) ? 24 : 16;
|
|
|
|
BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
|
|
.addReg(OldVal).addReg(Mask);
|
|
BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
|
|
.addReg(ShiftAmt).addReg(MaskedOldVal1);
|
|
BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
|
|
.addReg(SrlRes).addImm(ShiftImm);
|
|
BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
|
|
.addReg(SllRes).addImm(ShiftImm);
|
|
|
|
MI->eraseFromParent(); // The instruction is gone now.
|
|
|
|
return exitMBB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
MipsTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
|
|
MachineBasicBlock *BB,
|
|
unsigned Size) const {
|
|
assert(Size == 4 && "Unsupported size for EmitAtomicCmpSwap.");
|
|
|
|
MachineFunction *MF = BB->getParent();
|
|
MachineRegisterInfo &RegInfo = MF->getRegInfo();
|
|
const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
|
|
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
|
|
unsigned Dest = MI->getOperand(0).getReg();
|
|
unsigned Ptr = MI->getOperand(1).getReg();
|
|
unsigned OldVal = MI->getOperand(2).getReg();
|
|
unsigned NewVal = MI->getOperand(3).getReg();
|
|
|
|
unsigned Success = RegInfo.createVirtualRegister(RC);
|
|
|
|
// insert new blocks after the current block
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineFunction::iterator It = BB;
|
|
++It;
|
|
MF->insert(It, loop1MBB);
|
|
MF->insert(It, loop2MBB);
|
|
MF->insert(It, exitMBB);
|
|
|
|
// Transfer the remainder of BB and its successor edges to exitMBB.
|
|
exitMBB->splice(exitMBB->begin(), BB,
|
|
llvm::next(MachineBasicBlock::iterator(MI)),
|
|
BB->end());
|
|
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
// thisMBB:
|
|
// ...
|
|
// fallthrough --> loop1MBB
|
|
BB->addSuccessor(loop1MBB);
|
|
loop1MBB->addSuccessor(exitMBB);
|
|
loop1MBB->addSuccessor(loop2MBB);
|
|
loop2MBB->addSuccessor(loop1MBB);
|
|
loop2MBB->addSuccessor(exitMBB);
|
|
|
|
// loop1MBB:
|
|
// ll dest, 0(ptr)
|
|
// bne dest, oldval, exitMBB
|
|
BB = loop1MBB;
|
|
BuildMI(BB, dl, TII->get(Mips::LL), Dest).addReg(Ptr).addImm(0);
|
|
BuildMI(BB, dl, TII->get(Mips::BNE))
|
|
.addReg(Dest).addReg(OldVal).addMBB(exitMBB);
|
|
|
|
// loop2MBB:
|
|
// sc success, newval, 0(ptr)
|
|
// beq success, $0, loop1MBB
|
|
BB = loop2MBB;
|
|
BuildMI(BB, dl, TII->get(Mips::SC), Success)
|
|
.addReg(NewVal).addReg(Ptr).addImm(0);
|
|
BuildMI(BB, dl, TII->get(Mips::BEQ))
|
|
.addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
|
|
|
|
MI->eraseFromParent(); // The instruction is gone now.
|
|
|
|
return exitMBB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
MipsTargetLowering::EmitAtomicCmpSwapPartword(MachineInstr *MI,
|
|
MachineBasicBlock *BB,
|
|
unsigned Size) const {
|
|
assert((Size == 1 || Size == 2) &&
|
|
"Unsupported size for EmitAtomicCmpSwapPartial.");
|
|
|
|
MachineFunction *MF = BB->getParent();
|
|
MachineRegisterInfo &RegInfo = MF->getRegInfo();
|
|
const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
|
|
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
|
|
unsigned Dest = MI->getOperand(0).getReg();
|
|
unsigned Ptr = MI->getOperand(1).getReg();
|
|
unsigned CmpVal = MI->getOperand(2).getReg();
|
|
unsigned NewVal = MI->getOperand(3).getReg();
|
|
|
|
unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
|
|
unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
|
|
unsigned Mask = RegInfo.createVirtualRegister(RC);
|
|
unsigned Mask2 = RegInfo.createVirtualRegister(RC);
|
|
unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
|
|
unsigned OldVal = RegInfo.createVirtualRegister(RC);
|
|
unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
|
|
unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
|
|
unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
|
|
unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
|
|
unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
|
|
unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
|
|
unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
|
|
unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
|
|
unsigned StoreVal = RegInfo.createVirtualRegister(RC);
|
|
unsigned SrlRes = RegInfo.createVirtualRegister(RC);
|
|
unsigned SllRes = RegInfo.createVirtualRegister(RC);
|
|
unsigned Success = RegInfo.createVirtualRegister(RC);
|
|
|
|
// insert new blocks after the current block
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineFunction::iterator It = BB;
|
|
++It;
|
|
MF->insert(It, loop1MBB);
|
|
MF->insert(It, loop2MBB);
|
|
MF->insert(It, sinkMBB);
|
|
MF->insert(It, exitMBB);
|
|
|
|
// Transfer the remainder of BB and its successor edges to exitMBB.
|
|
exitMBB->splice(exitMBB->begin(), BB,
|
|
llvm::next(MachineBasicBlock::iterator(MI)),
|
|
BB->end());
|
|
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
BB->addSuccessor(loop1MBB);
|
|
loop1MBB->addSuccessor(sinkMBB);
|
|
loop1MBB->addSuccessor(loop2MBB);
|
|
loop2MBB->addSuccessor(loop1MBB);
|
|
loop2MBB->addSuccessor(sinkMBB);
|
|
sinkMBB->addSuccessor(exitMBB);
|
|
|
|
// FIXME: computation of newval2 can be moved to loop2MBB.
|
|
// thisMBB:
|
|
// addiu masklsb2,$0,-4 # 0xfffffffc
|
|
// and alignedaddr,ptr,masklsb2
|
|
// andi ptrlsb2,ptr,3
|
|
// sll shiftamt,ptrlsb2,3
|
|
// ori maskupper,$0,255 # 0xff
|
|
// sll mask,maskupper,shiftamt
|
|
// nor mask2,$0,mask
|
|
// andi maskedcmpval,cmpval,255
|
|
// sll shiftedcmpval,maskedcmpval,shiftamt
|
|
// andi maskednewval,newval,255
|
|
// sll shiftednewval,maskednewval,shiftamt
|
|
int64_t MaskImm = (Size == 1) ? 255 : 65535;
|
|
BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
|
|
.addReg(Mips::ZERO).addImm(-4);
|
|
BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
|
|
.addReg(Ptr).addReg(MaskLSB2);
|
|
BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
|
|
BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
|
|
BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
|
|
.addReg(Mips::ZERO).addImm(MaskImm);
|
|
BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
|
|
.addReg(ShiftAmt).addReg(MaskUpper);
|
|
BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
|
|
BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedCmpVal)
|
|
.addReg(CmpVal).addImm(MaskImm);
|
|
BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedCmpVal)
|
|
.addReg(ShiftAmt).addReg(MaskedCmpVal);
|
|
BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedNewVal)
|
|
.addReg(NewVal).addImm(MaskImm);
|
|
BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedNewVal)
|
|
.addReg(ShiftAmt).addReg(MaskedNewVal);
|
|
|
|
// loop1MBB:
|
|
// ll oldval,0(alginedaddr)
|
|
// and maskedoldval0,oldval,mask
|
|
// bne maskedoldval0,shiftedcmpval,sinkMBB
|
|
BB = loop1MBB;
|
|
BuildMI(BB, dl, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0);
|
|
BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
|
|
.addReg(OldVal).addReg(Mask);
|
|
BuildMI(BB, dl, TII->get(Mips::BNE))
|
|
.addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
|
|
|
|
// loop2MBB:
|
|
// and maskedoldval1,oldval,mask2
|
|
// or storeval,maskedoldval1,shiftednewval
|
|
// sc success,storeval,0(alignedaddr)
|
|
// beq success,$0,loop1MBB
|
|
BB = loop2MBB;
|
|
BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
|
|
.addReg(OldVal).addReg(Mask2);
|
|
BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
|
|
.addReg(MaskedOldVal1).addReg(ShiftedNewVal);
|
|
BuildMI(BB, dl, TII->get(Mips::SC), Success)
|
|
.addReg(StoreVal).addReg(AlignedAddr).addImm(0);
|
|
BuildMI(BB, dl, TII->get(Mips::BEQ))
|
|
.addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
|
|
|
|
// sinkMBB:
|
|
// srl srlres,maskedoldval0,shiftamt
|
|
// sll sllres,srlres,24
|
|
// sra dest,sllres,24
|
|
BB = sinkMBB;
|
|
int64_t ShiftImm = (Size == 1) ? 24 : 16;
|
|
|
|
BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
|
|
.addReg(ShiftAmt).addReg(MaskedOldVal0);
|
|
BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
|
|
.addReg(SrlRes).addImm(ShiftImm);
|
|
BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
|
|
.addReg(SllRes).addImm(ShiftImm);
|
|
|
|
MI->eraseFromParent(); // The instruction is gone now.
|
|
|
|
return exitMBB;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Misc Lower Operation implementation
|
|
//===----------------------------------------------------------------------===//
|
|
SDValue MipsTargetLowering::
|
|
LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const
|
|
{
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
|
|
|
|
assert(getTargetMachine().getFrameLowering()->getStackAlignment() >=
|
|
cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue() &&
|
|
"Cannot lower if the alignment of the allocated space is larger than \
|
|
that of the stack.");
|
|
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Size = Op.getOperand(1);
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
// Get a reference from Mips stack pointer
|
|
SDValue StackPointer = DAG.getCopyFromReg(Chain, dl, Mips::SP, MVT::i32);
|
|
|
|
// Subtract the dynamic size from the actual stack size to
|
|
// obtain the new stack size.
|
|
SDValue Sub = DAG.getNode(ISD::SUB, dl, MVT::i32, StackPointer, Size);
|
|
|
|
// The Sub result contains the new stack start address, so it
|
|
// must be placed in the stack pointer register.
|
|
Chain = DAG.getCopyToReg(StackPointer.getValue(1), dl, Mips::SP, Sub,
|
|
SDValue());
|
|
|
|
// This node always has two return values: a new stack pointer
|
|
// value and a chain
|
|
SDVTList VTLs = DAG.getVTList(MVT::i32, MVT::Other);
|
|
SDValue Ptr = DAG.getFrameIndex(MipsFI->getDynAllocFI(), getPointerTy());
|
|
SDValue Ops[] = { Chain, Ptr, Chain.getValue(1) };
|
|
|
|
return DAG.getNode(MipsISD::DynAlloc, dl, VTLs, Ops, 3);
|
|
}
|
|
|
|
SDValue MipsTargetLowering::
|
|
LowerBRCOND(SDValue Op, SelectionDAG &DAG) const
|
|
{
|
|
// The first operand is the chain, the second is the condition, the third is
|
|
// the block to branch to if the condition is true.
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Dest = Op.getOperand(2);
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
SDValue CondRes = CreateFPCmp(DAG, Op.getOperand(1));
|
|
|
|
// Return if flag is not set by a floating point comparison.
|
|
if (CondRes.getOpcode() != MipsISD::FPCmp)
|
|
return Op;
|
|
|
|
SDValue CCNode = CondRes.getOperand(2);
|
|
Mips::CondCode CC =
|
|
(Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
|
|
SDValue BrCode = DAG.getConstant(GetFPBranchCodeFromCond(CC), MVT::i32);
|
|
|
|
return DAG.getNode(MipsISD::FPBrcond, dl, Op.getValueType(), Chain, BrCode,
|
|
Dest, CondRes);
|
|
}
|
|
|
|
SDValue MipsTargetLowering::
|
|
LowerSELECT(SDValue Op, SelectionDAG &DAG) const
|
|
{
|
|
SDValue Cond = CreateFPCmp(DAG, Op.getOperand(0));
|
|
|
|
// Return if flag is not set by a floating point comparison.
|
|
if (Cond.getOpcode() != MipsISD::FPCmp)
|
|
return Op;
|
|
|
|
return CreateCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
|
|
Op.getDebugLoc());
|
|
}
|
|
|
|
SDValue MipsTargetLowering::LowerGlobalAddress(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
// FIXME there isn't actually debug info here
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
|
|
|
|
if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
|
|
SDVTList VTs = DAG.getVTList(MVT::i32);
|
|
|
|
MipsTargetObjectFile &TLOF = (MipsTargetObjectFile&)getObjFileLowering();
|
|
|
|
// %gp_rel relocation
|
|
if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
|
|
SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
|
|
MipsII::MO_GPREL);
|
|
SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, dl, VTs, &GA, 1);
|
|
SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
|
|
return DAG.getNode(ISD::ADD, dl, MVT::i32, GOT, GPRelNode);
|
|
}
|
|
// %hi/%lo relocation
|
|
SDValue GAHi = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
|
|
MipsII::MO_ABS_HI);
|
|
SDValue GALo = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
|
|
MipsII::MO_ABS_LO);
|
|
SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, VTs, &GAHi, 1);
|
|
SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, GALo);
|
|
return DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
|
|
}
|
|
|
|
SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
|
|
MipsII::MO_GOT);
|
|
GA = DAG.getNode(MipsISD::WrapperPIC, dl, MVT::i32, GA);
|
|
SDValue ResNode = DAG.getLoad(MVT::i32, dl,
|
|
DAG.getEntryNode(), GA, MachinePointerInfo(),
|
|
false, false, 0);
|
|
// On functions and global targets not internal linked only
|
|
// a load from got/GP is necessary for PIC to work.
|
|
if (!GV->hasInternalLinkage() &&
|
|
(!GV->hasLocalLinkage() || isa<Function>(GV)))
|
|
return ResNode;
|
|
SDValue GALo = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
|
|
MipsII::MO_ABS_LO);
|
|
SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, GALo);
|
|
return DAG.getNode(ISD::ADD, dl, MVT::i32, ResNode, Lo);
|
|
}
|
|
|
|
SDValue MipsTargetLowering::LowerBlockAddress(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
|
|
// FIXME there isn't actually debug info here
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
|
|
// %hi/%lo relocation
|
|
SDValue BAHi = DAG.getBlockAddress(BA, MVT::i32, true,
|
|
MipsII::MO_ABS_HI);
|
|
SDValue BALo = DAG.getBlockAddress(BA, MVT::i32, true,
|
|
MipsII::MO_ABS_LO);
|
|
SDValue Hi = DAG.getNode(MipsISD::Hi, dl, MVT::i32, BAHi);
|
|
SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, BALo);
|
|
return DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, Lo);
|
|
}
|
|
|
|
SDValue BAGOTOffset = DAG.getBlockAddress(BA, MVT::i32, true,
|
|
MipsII::MO_GOT);
|
|
BAGOTOffset = DAG.getNode(MipsISD::WrapperPIC, dl, MVT::i32, BAGOTOffset);
|
|
SDValue BALOOffset = DAG.getBlockAddress(BA, MVT::i32, true,
|
|
MipsII::MO_ABS_LO);
|
|
SDValue Load = DAG.getLoad(MVT::i32, dl,
|
|
DAG.getEntryNode(), BAGOTOffset,
|
|
MachinePointerInfo(), false, false, 0);
|
|
SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, BALOOffset);
|
|
return DAG.getNode(ISD::ADD, dl, MVT::i32, Load, Lo);
|
|
}
|
|
|
|
SDValue MipsTargetLowering::
|
|
LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
|
|
{
|
|
// If the relocation model is PIC, use the General Dynamic TLS Model,
|
|
// otherwise use the Initial Exec or Local Exec TLS Model.
|
|
// TODO: implement Local Dynamic TLS model
|
|
|
|
GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
|
|
DebugLoc dl = GA->getDebugLoc();
|
|
const GlobalValue *GV = GA->getGlobal();
|
|
EVT PtrVT = getPointerTy();
|
|
|
|
if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
|
|
// General Dynamic TLS Model
|
|
SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32,
|
|
0, MipsII::MO_TLSGD);
|
|
SDValue Tlsgd = DAG.getNode(MipsISD::TlsGd, dl, MVT::i32, TGA);
|
|
SDValue GP = DAG.getRegister(Mips::GP, MVT::i32);
|
|
SDValue Argument = DAG.getNode(ISD::ADD, dl, MVT::i32, GP, Tlsgd);
|
|
|
|
ArgListTy Args;
|
|
ArgListEntry Entry;
|
|
Entry.Node = Argument;
|
|
Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
|
|
Args.push_back(Entry);
|
|
std::pair<SDValue, SDValue> CallResult =
|
|
LowerCallTo(DAG.getEntryNode(),
|
|
(Type *) Type::getInt32Ty(*DAG.getContext()),
|
|
false, false, false, false, 0, CallingConv::C, false, true,
|
|
DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG,
|
|
dl);
|
|
|
|
return CallResult.first;
|
|
}
|
|
|
|
SDValue Offset;
|
|
if (GV->isDeclaration()) {
|
|
// Initial Exec TLS Model
|
|
SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
|
|
MipsII::MO_GOTTPREL);
|
|
Offset = DAG.getLoad(MVT::i32, dl,
|
|
DAG.getEntryNode(), TGA, MachinePointerInfo(),
|
|
false, false, 0);
|
|
} else {
|
|
// Local Exec TLS Model
|
|
SDVTList VTs = DAG.getVTList(MVT::i32);
|
|
SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
|
|
MipsII::MO_TPREL_HI);
|
|
SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
|
|
MipsII::MO_TPREL_LO);
|
|
SDValue Hi = DAG.getNode(MipsISD::TprelHi, dl, VTs, &TGAHi, 1);
|
|
SDValue Lo = DAG.getNode(MipsISD::TprelLo, dl, MVT::i32, TGALo);
|
|
Offset = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, Lo);
|
|
}
|
|
|
|
SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, dl, PtrVT);
|
|
return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
|
|
}
|
|
|
|
SDValue MipsTargetLowering::
|
|
LowerJumpTable(SDValue Op, SelectionDAG &DAG) const
|
|
{
|
|
SDValue ResNode;
|
|
SDValue HiPart;
|
|
// FIXME there isn't actually debug info here
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
|
|
unsigned char OpFlag = IsPIC ? MipsII::MO_GOT : MipsII::MO_ABS_HI;
|
|
|
|
EVT PtrVT = Op.getValueType();
|
|
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
|
|
|
|
SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, OpFlag);
|
|
|
|
if (!IsPIC) {
|
|
SDValue Ops[] = { JTI };
|
|
HiPart = DAG.getNode(MipsISD::Hi, dl, DAG.getVTList(MVT::i32), Ops, 1);
|
|
} else {// Emit Load from Global Pointer
|
|
JTI = DAG.getNode(MipsISD::WrapperPIC, dl, MVT::i32, JTI);
|
|
HiPart = DAG.getLoad(MVT::i32, dl, DAG.getEntryNode(), JTI,
|
|
MachinePointerInfo(),
|
|
false, false, 0);
|
|
}
|
|
|
|
SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
|
|
MipsII::MO_ABS_LO);
|
|
SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, JTILo);
|
|
ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
|
|
|
|
return ResNode;
|
|
}
|
|
|
|
SDValue MipsTargetLowering::
|
|
LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
|
|
{
|
|
SDValue ResNode;
|
|
ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
|
|
const Constant *C = N->getConstVal();
|
|
// FIXME there isn't actually debug info here
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
// gp_rel relocation
|
|
// FIXME: we should reference the constant pool using small data sections,
|
|
// but the asm printer currently doesn't support this feature without
|
|
// hacking it. This feature should come soon so we can uncomment the
|
|
// stuff below.
|
|
//if (IsInSmallSection(C->getType())) {
|
|
// SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
|
|
// SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
|
|
// ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
|
|
|
|
if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
|
|
SDValue CPHi = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
|
|
N->getOffset(), MipsII::MO_ABS_HI);
|
|
SDValue CPLo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
|
|
N->getOffset(), MipsII::MO_ABS_LO);
|
|
SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, MVT::i32, CPHi);
|
|
SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, CPLo);
|
|
ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
|
|
} else {
|
|
SDValue CP = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
|
|
N->getOffset(), MipsII::MO_GOT);
|
|
CP = DAG.getNode(MipsISD::WrapperPIC, dl, MVT::i32, CP);
|
|
SDValue Load = DAG.getLoad(MVT::i32, dl, DAG.getEntryNode(),
|
|
CP, MachinePointerInfo::getConstantPool(),
|
|
false, false, 0);
|
|
SDValue CPLo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
|
|
N->getOffset(), MipsII::MO_ABS_LO);
|
|
SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, CPLo);
|
|
ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, Load, Lo);
|
|
}
|
|
|
|
return ResNode;
|
|
}
|
|
|
|
SDValue MipsTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
|
|
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
|
|
getPointerTy());
|
|
|
|
// vastart just stores the address of the VarArgsFrameIndex slot into the
|
|
// memory location argument.
|
|
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
|
|
return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
|
|
MachinePointerInfo(SV),
|
|
false, false, 0);
|
|
}
|
|
|
|
static SDValue LowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG) {
|
|
// FIXME: Use ext/ins instructions if target architecture is Mips32r2.
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
SDValue Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op.getOperand(0));
|
|
SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op.getOperand(1));
|
|
SDValue And0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op0,
|
|
DAG.getConstant(0x7fffffff, MVT::i32));
|
|
SDValue And1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op1,
|
|
DAG.getConstant(0x80000000, MVT::i32));
|
|
SDValue Result = DAG.getNode(ISD::OR, dl, MVT::i32, And0, And1);
|
|
return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Result);
|
|
}
|
|
|
|
static SDValue LowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, bool isLittle) {
|
|
// FIXME:
|
|
// Use ext/ins instructions if target architecture is Mips32r2.
|
|
// Eliminate redundant mfc1 and mtc1 instructions.
|
|
unsigned LoIdx = 0, HiIdx = 1;
|
|
|
|
if (!isLittle)
|
|
std::swap(LoIdx, HiIdx);
|
|
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
SDValue Word0 = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
|
|
Op.getOperand(0),
|
|
DAG.getConstant(LoIdx, MVT::i32));
|
|
SDValue Hi0 = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
|
|
Op.getOperand(0), DAG.getConstant(HiIdx, MVT::i32));
|
|
SDValue Hi1 = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
|
|
Op.getOperand(1), DAG.getConstant(HiIdx, MVT::i32));
|
|
SDValue And0 = DAG.getNode(ISD::AND, dl, MVT::i32, Hi0,
|
|
DAG.getConstant(0x7fffffff, MVT::i32));
|
|
SDValue And1 = DAG.getNode(ISD::AND, dl, MVT::i32, Hi1,
|
|
DAG.getConstant(0x80000000, MVT::i32));
|
|
SDValue Word1 = DAG.getNode(ISD::OR, dl, MVT::i32, And0, And1);
|
|
|
|
if (!isLittle)
|
|
std::swap(Word0, Word1);
|
|
|
|
return DAG.getNode(MipsISD::BuildPairF64, dl, MVT::f64, Word0, Word1);
|
|
}
|
|
|
|
SDValue MipsTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG)
|
|
const {
|
|
EVT Ty = Op.getValueType();
|
|
|
|
assert(Ty == MVT::f32 || Ty == MVT::f64);
|
|
|
|
if (Ty == MVT::f32)
|
|
return LowerFCOPYSIGN32(Op, DAG);
|
|
else
|
|
return LowerFCOPYSIGN64(Op, DAG, Subtarget->isLittle());
|
|
}
|
|
|
|
SDValue MipsTargetLowering::
|
|
LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
|
|
// check the depth
|
|
assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
|
|
"Frame address can only be determined for current frame.");
|
|
|
|
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
|
|
MFI->setFrameAddressIsTaken(true);
|
|
EVT VT = Op.getValueType();
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Mips::FP, VT);
|
|
return FrameAddr;
|
|
}
|
|
|
|
// TODO: set SType according to the desired memory barrier behavior.
|
|
SDValue MipsTargetLowering::LowerMEMBARRIER(SDValue Op,
|
|
SelectionDAG& DAG) const {
|
|
unsigned SType = 0;
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
|
|
DAG.getConstant(SType, MVT::i32));
|
|
}
|
|
|
|
SDValue MipsTargetLowering::LowerATOMIC_FENCE(SDValue Op,
|
|
SelectionDAG& DAG) const {
|
|
// FIXME: Need pseudo-fence for 'singlethread' fences
|
|
// FIXME: Set SType for weaker fences where supported/appropriate.
|
|
unsigned SType = 0;
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
|
|
DAG.getConstant(SType, MVT::i32));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Calling Convention Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "MipsGenCallingConv.inc"
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TODO: Implement a generic logic using tblgen that can support this.
|
|
// Mips O32 ABI rules:
|
|
// ---
|
|
// i32 - Passed in A0, A1, A2, A3 and stack
|
|
// f32 - Only passed in f32 registers if no int reg has been used yet to hold
|
|
// an argument. Otherwise, passed in A1, A2, A3 and stack.
|
|
// f64 - Only passed in two aliased f32 registers if no int reg has been used
|
|
// yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
|
|
// not used, it must be shadowed. If only A3 is avaiable, shadow it and
|
|
// go to stack.
|
|
//
|
|
// For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
|
|
MVT LocVT, CCValAssign::LocInfo LocInfo,
|
|
ISD::ArgFlagsTy ArgFlags, CCState &State) {
|
|
|
|
static const unsigned IntRegsSize=4, FloatRegsSize=2;
|
|
|
|
static const unsigned IntRegs[] = {
|
|
Mips::A0, Mips::A1, Mips::A2, Mips::A3
|
|
};
|
|
static const unsigned F32Regs[] = {
|
|
Mips::F12, Mips::F14
|
|
};
|
|
static const unsigned F64Regs[] = {
|
|
Mips::D6, Mips::D7
|
|
};
|
|
|
|
// ByVal Args
|
|
if (ArgFlags.isByVal()) {
|
|
State.HandleByVal(ValNo, ValVT, LocVT, LocInfo,
|
|
1 /*MinSize*/, 4 /*MinAlign*/, ArgFlags);
|
|
unsigned NextReg = (State.getNextStackOffset() + 3) / 4;
|
|
for (unsigned r = State.getFirstUnallocated(IntRegs, IntRegsSize);
|
|
r < std::min(IntRegsSize, NextReg); ++r)
|
|
State.AllocateReg(IntRegs[r]);
|
|
return false;
|
|
}
|
|
|
|
// Promote i8 and i16
|
|
if (LocVT == MVT::i8 || LocVT == MVT::i16) {
|
|
LocVT = MVT::i32;
|
|
if (ArgFlags.isSExt())
|
|
LocInfo = CCValAssign::SExt;
|
|
else if (ArgFlags.isZExt())
|
|
LocInfo = CCValAssign::ZExt;
|
|
else
|
|
LocInfo = CCValAssign::AExt;
|
|
}
|
|
|
|
unsigned Reg;
|
|
|
|
// f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
|
|
// is true: function is vararg, argument is 3rd or higher, there is previous
|
|
// argument which is not f32 or f64.
|
|
bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
|
|
|| State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
|
|
unsigned OrigAlign = ArgFlags.getOrigAlign();
|
|
bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
|
|
|
|
if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
|
|
Reg = State.AllocateReg(IntRegs, IntRegsSize);
|
|
// If this is the first part of an i64 arg,
|
|
// the allocated register must be either A0 or A2.
|
|
if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
|
|
Reg = State.AllocateReg(IntRegs, IntRegsSize);
|
|
LocVT = MVT::i32;
|
|
} else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
|
|
// Allocate int register and shadow next int register. If first
|
|
// available register is Mips::A1 or Mips::A3, shadow it too.
|
|
Reg = State.AllocateReg(IntRegs, IntRegsSize);
|
|
if (Reg == Mips::A1 || Reg == Mips::A3)
|
|
Reg = State.AllocateReg(IntRegs, IntRegsSize);
|
|
State.AllocateReg(IntRegs, IntRegsSize);
|
|
LocVT = MVT::i32;
|
|
} else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
|
|
// we are guaranteed to find an available float register
|
|
if (ValVT == MVT::f32) {
|
|
Reg = State.AllocateReg(F32Regs, FloatRegsSize);
|
|
// Shadow int register
|
|
State.AllocateReg(IntRegs, IntRegsSize);
|
|
} else {
|
|
Reg = State.AllocateReg(F64Regs, FloatRegsSize);
|
|
// Shadow int registers
|
|
unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
|
|
if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
|
|
State.AllocateReg(IntRegs, IntRegsSize);
|
|
State.AllocateReg(IntRegs, IntRegsSize);
|
|
}
|
|
} else
|
|
llvm_unreachable("Cannot handle this ValVT.");
|
|
|
|
unsigned SizeInBytes = ValVT.getSizeInBits() >> 3;
|
|
unsigned Offset = State.AllocateStack(SizeInBytes, OrigAlign);
|
|
|
|
if (!Reg)
|
|
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
|
|
else
|
|
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
|
|
|
return false; // CC must always match
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Call Calling Convention Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static const unsigned O32IntRegsSize = 4;
|
|
|
|
static const unsigned O32IntRegs[] = {
|
|
Mips::A0, Mips::A1, Mips::A2, Mips::A3
|
|
};
|
|
|
|
// Return next O32 integer argument register.
|
|
static unsigned getNextIntArgReg(unsigned Reg) {
|
|
assert((Reg == Mips::A0) || (Reg == Mips::A2));
|
|
return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
|
|
}
|
|
|
|
// Write ByVal Arg to arg registers and stack.
|
|
static void
|
|
WriteByValArg(SDValue& ByValChain, SDValue Chain, DebugLoc dl,
|
|
SmallVector<std::pair<unsigned, SDValue>, 16>& RegsToPass,
|
|
SmallVector<SDValue, 8>& MemOpChains, int& LastFI,
|
|
MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
|
|
const CCValAssign &VA, const ISD::ArgFlagsTy& Flags,
|
|
MVT PtrType, bool isLittle) {
|
|
unsigned LocMemOffset = VA.getLocMemOffset();
|
|
unsigned Offset = 0;
|
|
uint32_t RemainingSize = Flags.getByValSize();
|
|
unsigned ByValAlign = Flags.getByValAlign();
|
|
|
|
// Copy the first 4 words of byval arg to registers A0 - A3.
|
|
// FIXME: Use a stricter alignment if it enables better optimization in passes
|
|
// run later.
|
|
for (; RemainingSize >= 4 && LocMemOffset < 4 * 4;
|
|
Offset += 4, RemainingSize -= 4, LocMemOffset += 4) {
|
|
SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
|
|
DAG.getConstant(Offset, MVT::i32));
|
|
SDValue LoadVal = DAG.getLoad(MVT::i32, dl, Chain, LoadPtr,
|
|
MachinePointerInfo(),
|
|
false, false, std::min(ByValAlign,
|
|
(unsigned )4));
|
|
MemOpChains.push_back(LoadVal.getValue(1));
|
|
unsigned DstReg = O32IntRegs[LocMemOffset / 4];
|
|
RegsToPass.push_back(std::make_pair(DstReg, LoadVal));
|
|
}
|
|
|
|
if (RemainingSize == 0)
|
|
return;
|
|
|
|
// If there still is a register available for argument passing, write the
|
|
// remaining part of the structure to it using subword loads and shifts.
|
|
if (LocMemOffset < 4 * 4) {
|
|
assert(RemainingSize <= 3 && RemainingSize >= 1 &&
|
|
"There must be one to three bytes remaining.");
|
|
unsigned LoadSize = (RemainingSize == 3 ? 2 : RemainingSize);
|
|
SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
|
|
DAG.getConstant(Offset, MVT::i32));
|
|
unsigned Alignment = std::min(ByValAlign, (unsigned )4);
|
|
SDValue LoadVal = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, Chain,
|
|
LoadPtr, MachinePointerInfo(),
|
|
MVT::getIntegerVT(LoadSize * 8), false,
|
|
false, Alignment);
|
|
MemOpChains.push_back(LoadVal.getValue(1));
|
|
|
|
// If target is big endian, shift it to the most significant half-word or
|
|
// byte.
|
|
if (!isLittle)
|
|
LoadVal = DAG.getNode(ISD::SHL, dl, MVT::i32, LoadVal,
|
|
DAG.getConstant(32 - LoadSize * 8, MVT::i32));
|
|
|
|
Offset += LoadSize;
|
|
RemainingSize -= LoadSize;
|
|
|
|
// Read second subword if necessary.
|
|
if (RemainingSize != 0) {
|
|
assert(RemainingSize == 1 && "There must be one byte remaining.");
|
|
LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
|
|
DAG.getConstant(Offset, MVT::i32));
|
|
unsigned Alignment = std::min(ByValAlign, (unsigned )2);
|
|
SDValue Subword = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, Chain,
|
|
LoadPtr, MachinePointerInfo(),
|
|
MVT::i8, false, false, Alignment);
|
|
MemOpChains.push_back(Subword.getValue(1));
|
|
// Insert the loaded byte to LoadVal.
|
|
// FIXME: Use INS if supported by target.
|
|
unsigned ShiftAmt = isLittle ? 16 : 8;
|
|
SDValue Shift = DAG.getNode(ISD::SHL, dl, MVT::i32, Subword,
|
|
DAG.getConstant(ShiftAmt, MVT::i32));
|
|
LoadVal = DAG.getNode(ISD::OR, dl, MVT::i32, LoadVal, Shift);
|
|
}
|
|
|
|
unsigned DstReg = O32IntRegs[LocMemOffset / 4];
|
|
RegsToPass.push_back(std::make_pair(DstReg, LoadVal));
|
|
return;
|
|
}
|
|
|
|
// Create a fixed object on stack at offset LocMemOffset and copy
|
|
// remaining part of byval arg to it using memcpy.
|
|
SDValue Src = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
|
|
DAG.getConstant(Offset, MVT::i32));
|
|
LastFI = MFI->CreateFixedObject(RemainingSize, LocMemOffset, true);
|
|
SDValue Dst = DAG.getFrameIndex(LastFI, PtrType);
|
|
ByValChain = DAG.getMemcpy(ByValChain, dl, Dst, Src,
|
|
DAG.getConstant(RemainingSize, MVT::i32),
|
|
std::min(ByValAlign, (unsigned)4),
|
|
/*isVolatile=*/false, /*AlwaysInline=*/false,
|
|
MachinePointerInfo(0), MachinePointerInfo(0));
|
|
}
|
|
|
|
/// LowerCall - functions arguments are copied from virtual regs to
|
|
/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
|
|
/// TODO: isTailCall.
|
|
SDValue
|
|
MipsTargetLowering::LowerCall(SDValue InChain, SDValue Callee,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
bool &isTailCall,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
DebugLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) const {
|
|
// MIPs target does not yet support tail call optimization.
|
|
isTailCall = false;
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
|
|
bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
|
|
MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
|
|
|
|
// Analyze operands of the call, assigning locations to each operand.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
|
|
getTargetMachine(), ArgLocs, *DAG.getContext());
|
|
|
|
if (Subtarget->isABI_O32())
|
|
CCInfo.AnalyzeCallOperands(Outs, CC_MipsO32);
|
|
else
|
|
CCInfo.AnalyzeCallOperands(Outs, CC_Mips);
|
|
|
|
// Get a count of how many bytes are to be pushed on the stack.
|
|
unsigned NextStackOffset = CCInfo.getNextStackOffset();
|
|
|
|
// Chain is the output chain of the last Load/Store or CopyToReg node.
|
|
// ByValChain is the output chain of the last Memcpy node created for copying
|
|
// byval arguments to the stack.
|
|
SDValue Chain, CallSeqStart, ByValChain;
|
|
SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
|
|
Chain = CallSeqStart = DAG.getCALLSEQ_START(InChain, NextStackOffsetVal);
|
|
ByValChain = InChain;
|
|
|
|
// If this is the first call, create a stack frame object that points to
|
|
// a location to which .cprestore saves $gp.
|
|
if (IsPIC && !MipsFI->getGPFI())
|
|
MipsFI->setGPFI(MFI->CreateFixedObject(4, 0, true));
|
|
|
|
// Get the frame index of the stack frame object that points to the location
|
|
// of dynamically allocated area on the stack.
|
|
int DynAllocFI = MipsFI->getDynAllocFI();
|
|
|
|
// Update size of the maximum argument space.
|
|
// For O32, a minimum of four words (16 bytes) of argument space is
|
|
// allocated.
|
|
if (Subtarget->isABI_O32())
|
|
NextStackOffset = std::max(NextStackOffset, (unsigned)16);
|
|
|
|
unsigned MaxCallFrameSize = MipsFI->getMaxCallFrameSize();
|
|
|
|
if (MaxCallFrameSize < NextStackOffset) {
|
|
MipsFI->setMaxCallFrameSize(NextStackOffset);
|
|
|
|
// Set the offsets relative to $sp of the $gp restore slot and dynamically
|
|
// allocated stack space. These offsets must be aligned to a boundary
|
|
// determined by the stack alignment of the ABI.
|
|
unsigned StackAlignment = TFL->getStackAlignment();
|
|
NextStackOffset = (NextStackOffset + StackAlignment - 1) /
|
|
StackAlignment * StackAlignment;
|
|
|
|
if (IsPIC)
|
|
MFI->setObjectOffset(MipsFI->getGPFI(), NextStackOffset);
|
|
|
|
MFI->setObjectOffset(DynAllocFI, NextStackOffset);
|
|
}
|
|
|
|
// With EABI is it possible to have 16 args on registers.
|
|
SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
|
|
SmallVector<SDValue, 8> MemOpChains;
|
|
|
|
int FirstFI = -MFI->getNumFixedObjects() - 1, LastFI = 0;
|
|
|
|
// Walk the register/memloc assignments, inserting copies/loads.
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
|
|
SDValue Arg = OutVals[i];
|
|
CCValAssign &VA = ArgLocs[i];
|
|
|
|
// Promote the value if needed.
|
|
switch (VA.getLocInfo()) {
|
|
default: llvm_unreachable("Unknown loc info!");
|
|
case CCValAssign::Full:
|
|
if (Subtarget->isABI_O32() && VA.isRegLoc()) {
|
|
if (VA.getValVT() == MVT::f32 && VA.getLocVT() == MVT::i32)
|
|
Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
|
|
if (VA.getValVT() == MVT::f64 && VA.getLocVT() == MVT::i32) {
|
|
SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
|
|
Arg, DAG.getConstant(0, MVT::i32));
|
|
SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
|
|
Arg, DAG.getConstant(1, MVT::i32));
|
|
if (!Subtarget->isLittle())
|
|
std::swap(Lo, Hi);
|
|
unsigned LocRegLo = VA.getLocReg();
|
|
unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
|
|
RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
|
|
RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
|
|
continue;
|
|
}
|
|
}
|
|
break;
|
|
case CCValAssign::SExt:
|
|
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
|
|
break;
|
|
case CCValAssign::ZExt:
|
|
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
|
|
break;
|
|
case CCValAssign::AExt:
|
|
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
|
|
break;
|
|
}
|
|
|
|
// Arguments that can be passed on register must be kept at
|
|
// RegsToPass vector
|
|
if (VA.isRegLoc()) {
|
|
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
|
|
continue;
|
|
}
|
|
|
|
// Register can't get to this point...
|
|
assert(VA.isMemLoc());
|
|
|
|
// ByVal Arg.
|
|
ISD::ArgFlagsTy Flags = Outs[i].Flags;
|
|
if (Flags.isByVal()) {
|
|
assert(Subtarget->isABI_O32() &&
|
|
"No support for ByVal args by ABIs other than O32 yet.");
|
|
assert(Flags.getByValSize() &&
|
|
"ByVal args of size 0 should have been ignored by front-end.");
|
|
WriteByValArg(ByValChain, Chain, dl, RegsToPass, MemOpChains, LastFI, MFI,
|
|
DAG, Arg, VA, Flags, getPointerTy(), Subtarget->isLittle());
|
|
continue;
|
|
}
|
|
|
|
// Create the frame index object for this incoming parameter
|
|
LastFI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8,
|
|
VA.getLocMemOffset(), true);
|
|
SDValue PtrOff = DAG.getFrameIndex(LastFI, getPointerTy());
|
|
|
|
// emit ISD::STORE whichs stores the
|
|
// parameter value to a stack Location
|
|
MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
|
|
MachinePointerInfo(),
|
|
false, false, 0));
|
|
}
|
|
|
|
// Extend range of indices of frame objects for outgoing arguments that were
|
|
// created during this function call. Skip this step if no such objects were
|
|
// created.
|
|
if (LastFI)
|
|
MipsFI->extendOutArgFIRange(FirstFI, LastFI);
|
|
|
|
// If a memcpy has been created to copy a byval arg to a stack, replace the
|
|
// chain input of CallSeqStart with ByValChain.
|
|
if (InChain != ByValChain)
|
|
DAG.UpdateNodeOperands(CallSeqStart.getNode(), ByValChain,
|
|
NextStackOffsetVal);
|
|
|
|
// Transform all store nodes into one single node because all store
|
|
// nodes are independent of each other.
|
|
if (!MemOpChains.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
|
|
&MemOpChains[0], MemOpChains.size());
|
|
|
|
// If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
|
|
// direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
|
|
// node so that legalize doesn't hack it.
|
|
unsigned char OpFlag = IsPIC ? MipsII::MO_GOT_CALL : MipsII::MO_NO_FLAG;
|
|
bool LoadSymAddr = false;
|
|
SDValue CalleeLo;
|
|
|
|
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
|
|
if (IsPIC && G->getGlobal()->hasInternalLinkage()) {
|
|
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
|
|
getPointerTy(), 0,MipsII:: MO_GOT);
|
|
CalleeLo = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(),
|
|
0, MipsII::MO_ABS_LO);
|
|
} else {
|
|
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
|
|
getPointerTy(), 0, OpFlag);
|
|
}
|
|
|
|
LoadSymAddr = true;
|
|
}
|
|
else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
|
|
Callee = DAG.getTargetExternalSymbol(S->getSymbol(),
|
|
getPointerTy(), OpFlag);
|
|
LoadSymAddr = true;
|
|
}
|
|
|
|
SDValue InFlag;
|
|
|
|
// Create nodes that load address of callee and copy it to T9
|
|
if (IsPIC) {
|
|
if (LoadSymAddr) {
|
|
// Load callee address
|
|
Callee = DAG.getNode(MipsISD::WrapperPIC, dl, MVT::i32, Callee);
|
|
SDValue LoadValue = DAG.getLoad(MVT::i32, dl, DAG.getEntryNode(), Callee,
|
|
MachinePointerInfo::getGOT(),
|
|
false, false, 0);
|
|
|
|
// Use GOT+LO if callee has internal linkage.
|
|
if (CalleeLo.getNode()) {
|
|
SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, CalleeLo);
|
|
Callee = DAG.getNode(ISD::ADD, dl, MVT::i32, LoadValue, Lo);
|
|
} else
|
|
Callee = LoadValue;
|
|
}
|
|
|
|
// copy to T9
|
|
Chain = DAG.getCopyToReg(Chain, dl, Mips::T9, Callee, SDValue(0, 0));
|
|
InFlag = Chain.getValue(1);
|
|
Callee = DAG.getRegister(Mips::T9, MVT::i32);
|
|
}
|
|
|
|
// Build a sequence of copy-to-reg nodes chained together with token
|
|
// chain and flag operands which copy the outgoing args into registers.
|
|
// The InFlag in necessary since all emitted instructions must be
|
|
// stuck together.
|
|
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
|
|
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
|
|
RegsToPass[i].second, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
// MipsJmpLink = #chain, #target_address, #opt_in_flags...
|
|
// = Chain, Callee, Reg#1, Reg#2, ...
|
|
//
|
|
// Returns a chain & a flag for retval copy to use.
|
|
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SmallVector<SDValue, 8> Ops;
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(Callee);
|
|
|
|
// Add argument registers to the end of the list so that they are
|
|
// known live into the call.
|
|
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
|
|
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
|
|
RegsToPass[i].second.getValueType()));
|
|
|
|
if (InFlag.getNode())
|
|
Ops.push_back(InFlag);
|
|
|
|
Chain = DAG.getNode(MipsISD::JmpLink, dl, NodeTys, &Ops[0], Ops.size());
|
|
InFlag = Chain.getValue(1);
|
|
|
|
// Create the CALLSEQ_END node.
|
|
Chain = DAG.getCALLSEQ_END(Chain,
|
|
DAG.getIntPtrConstant(NextStackOffset, true),
|
|
DAG.getIntPtrConstant(0, true), InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
|
|
// Handle result values, copying them out of physregs into vregs that we
|
|
// return.
|
|
return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
|
|
Ins, dl, DAG, InVals);
|
|
}
|
|
|
|
/// LowerCallResult - Lower the result values of a call into the
|
|
/// appropriate copies out of appropriate physical registers.
|
|
SDValue
|
|
MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
DebugLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) const {
|
|
// Assign locations to each value returned by this call.
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
|
|
getTargetMachine(), RVLocs, *DAG.getContext());
|
|
|
|
CCInfo.AnalyzeCallResult(Ins, RetCC_Mips);
|
|
|
|
// Copy all of the result registers out of their specified physreg.
|
|
for (unsigned i = 0; i != RVLocs.size(); ++i) {
|
|
Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
|
|
RVLocs[i].getValVT(), InFlag).getValue(1);
|
|
InFlag = Chain.getValue(2);
|
|
InVals.push_back(Chain.getValue(0));
|
|
}
|
|
|
|
return Chain;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Formal Arguments Calling Convention Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
static void ReadByValArg(MachineFunction &MF, SDValue Chain, DebugLoc dl,
|
|
std::vector<SDValue>& OutChains,
|
|
SelectionDAG &DAG, unsigned NumWords, SDValue FIN,
|
|
const CCValAssign &VA, const ISD::ArgFlagsTy& Flags) {
|
|
unsigned LocMem = VA.getLocMemOffset();
|
|
unsigned FirstWord = LocMem / 4;
|
|
|
|
// copy register A0 - A3 to frame object
|
|
for (unsigned i = 0; i < NumWords; ++i) {
|
|
unsigned CurWord = FirstWord + i;
|
|
if (CurWord >= O32IntRegsSize)
|
|
break;
|
|
|
|
unsigned SrcReg = O32IntRegs[CurWord];
|
|
unsigned Reg = AddLiveIn(MF, SrcReg, Mips::CPURegsRegisterClass);
|
|
SDValue StorePtr = DAG.getNode(ISD::ADD, dl, MVT::i32, FIN,
|
|
DAG.getConstant(i * 4, MVT::i32));
|
|
SDValue Store = DAG.getStore(Chain, dl, DAG.getRegister(Reg, MVT::i32),
|
|
StorePtr, MachinePointerInfo(), false,
|
|
false, 0);
|
|
OutChains.push_back(Store);
|
|
}
|
|
}
|
|
|
|
/// LowerFormalArguments - transform physical registers into virtual registers
|
|
/// and generate load operations for arguments places on the stack.
|
|
SDValue
|
|
MipsTargetLowering::LowerFormalArguments(SDValue Chain,
|
|
CallingConv::ID CallConv,
|
|
bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg>
|
|
&Ins,
|
|
DebugLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals)
|
|
const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
|
|
|
|
MipsFI->setVarArgsFrameIndex(0);
|
|
|
|
// Used with vargs to acumulate store chains.
|
|
std::vector<SDValue> OutChains;
|
|
|
|
// Assign locations to all of the incoming arguments.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
|
|
getTargetMachine(), ArgLocs, *DAG.getContext());
|
|
|
|
if (Subtarget->isABI_O32())
|
|
CCInfo.AnalyzeFormalArguments(Ins, CC_MipsO32);
|
|
else
|
|
CCInfo.AnalyzeFormalArguments(Ins, CC_Mips);
|
|
|
|
int LastFI = 0;// MipsFI->LastInArgFI is 0 at the entry of this function.
|
|
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
|
|
// Arguments stored on registers
|
|
if (VA.isRegLoc()) {
|
|
EVT RegVT = VA.getLocVT();
|
|
unsigned ArgReg = VA.getLocReg();
|
|
TargetRegisterClass *RC = 0;
|
|
|
|
if (RegVT == MVT::i32)
|
|
RC = Mips::CPURegsRegisterClass;
|
|
else if (RegVT == MVT::i64)
|
|
RC = Mips::CPU64RegsRegisterClass;
|
|
else if (RegVT == MVT::f32)
|
|
RC = Mips::FGR32RegisterClass;
|
|
else if (RegVT == MVT::f64)
|
|
RC = HasMips64 ? Mips::FGR64RegisterClass : Mips::AFGR64RegisterClass;
|
|
else
|
|
llvm_unreachable("RegVT not supported by FormalArguments Lowering");
|
|
|
|
// Transform the arguments stored on
|
|
// physical registers into virtual ones
|
|
unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgReg, RC);
|
|
SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
|
|
|
|
// If this is an 8 or 16-bit value, it has been passed promoted
|
|
// to 32 bits. Insert an assert[sz]ext to capture this, then
|
|
// truncate to the right size.
|
|
if (VA.getLocInfo() != CCValAssign::Full) {
|
|
unsigned Opcode = 0;
|
|
if (VA.getLocInfo() == CCValAssign::SExt)
|
|
Opcode = ISD::AssertSext;
|
|
else if (VA.getLocInfo() == CCValAssign::ZExt)
|
|
Opcode = ISD::AssertZext;
|
|
if (Opcode)
|
|
ArgValue = DAG.getNode(Opcode, dl, RegVT, ArgValue,
|
|
DAG.getValueType(VA.getValVT()));
|
|
ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
|
|
}
|
|
|
|
// Handle O32 ABI cases: i32->f32 and (i32,i32)->f64
|
|
if (Subtarget->isABI_O32()) {
|
|
if (RegVT == MVT::i32 && VA.getValVT() == MVT::f32)
|
|
ArgValue = DAG.getNode(ISD::BITCAST, dl, MVT::f32, ArgValue);
|
|
if (RegVT == MVT::i32 && VA.getValVT() == MVT::f64) {
|
|
unsigned Reg2 = AddLiveIn(DAG.getMachineFunction(),
|
|
getNextIntArgReg(ArgReg), RC);
|
|
SDValue ArgValue2 = DAG.getCopyFromReg(Chain, dl, Reg2, RegVT);
|
|
if (!Subtarget->isLittle())
|
|
std::swap(ArgValue, ArgValue2);
|
|
ArgValue = DAG.getNode(MipsISD::BuildPairF64, dl, MVT::f64,
|
|
ArgValue, ArgValue2);
|
|
}
|
|
}
|
|
|
|
InVals.push_back(ArgValue);
|
|
} else { // VA.isRegLoc()
|
|
|
|
// sanity check
|
|
assert(VA.isMemLoc());
|
|
|
|
ISD::ArgFlagsTy Flags = Ins[i].Flags;
|
|
|
|
if (Flags.isByVal()) {
|
|
assert(Subtarget->isABI_O32() &&
|
|
"No support for ByVal args by ABIs other than O32 yet.");
|
|
assert(Flags.getByValSize() &&
|
|
"ByVal args of size 0 should have been ignored by front-end.");
|
|
unsigned NumWords = (Flags.getByValSize() + 3) / 4;
|
|
LastFI = MFI->CreateFixedObject(NumWords * 4, VA.getLocMemOffset(),
|
|
true);
|
|
SDValue FIN = DAG.getFrameIndex(LastFI, getPointerTy());
|
|
InVals.push_back(FIN);
|
|
ReadByValArg(MF, Chain, dl, OutChains, DAG, NumWords, FIN, VA, Flags);
|
|
|
|
continue;
|
|
}
|
|
|
|
// The stack pointer offset is relative to the caller stack frame.
|
|
LastFI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8,
|
|
VA.getLocMemOffset(), true);
|
|
|
|
// Create load nodes to retrieve arguments from the stack
|
|
SDValue FIN = DAG.getFrameIndex(LastFI, getPointerTy());
|
|
InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
|
|
MachinePointerInfo::getFixedStack(LastFI),
|
|
false, false, 0));
|
|
}
|
|
}
|
|
|
|
// The mips ABIs for returning structs by value requires that we copy
|
|
// the sret argument into $v0 for the return. Save the argument into
|
|
// a virtual register so that we can access it from the return points.
|
|
if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
|
|
unsigned Reg = MipsFI->getSRetReturnReg();
|
|
if (!Reg) {
|
|
Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32));
|
|
MipsFI->setSRetReturnReg(Reg);
|
|
}
|
|
SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
|
|
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
|
|
}
|
|
|
|
if (isVarArg && Subtarget->isABI_O32()) {
|
|
// Record the frame index of the first variable argument
|
|
// which is a value necessary to VASTART.
|
|
unsigned NextStackOffset = CCInfo.getNextStackOffset();
|
|
assert(NextStackOffset % 4 == 0 &&
|
|
"NextStackOffset must be aligned to 4-byte boundaries.");
|
|
LastFI = MFI->CreateFixedObject(4, NextStackOffset, true);
|
|
MipsFI->setVarArgsFrameIndex(LastFI);
|
|
|
|
// If NextStackOffset is smaller than o32's 16-byte reserved argument area,
|
|
// copy the integer registers that have not been used for argument passing
|
|
// to the caller's stack frame.
|
|
for (; NextStackOffset < 16; NextStackOffset += 4) {
|
|
TargetRegisterClass *RC = Mips::CPURegsRegisterClass;
|
|
unsigned Idx = NextStackOffset / 4;
|
|
unsigned Reg = AddLiveIn(DAG.getMachineFunction(), O32IntRegs[Idx], RC);
|
|
SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, MVT::i32);
|
|
LastFI = MFI->CreateFixedObject(4, NextStackOffset, true);
|
|
SDValue PtrOff = DAG.getFrameIndex(LastFI, getPointerTy());
|
|
OutChains.push_back(DAG.getStore(Chain, dl, ArgValue, PtrOff,
|
|
MachinePointerInfo(),
|
|
false, false, 0));
|
|
}
|
|
}
|
|
|
|
MipsFI->setLastInArgFI(LastFI);
|
|
|
|
// All stores are grouped in one node to allow the matching between
|
|
// the size of Ins and InVals. This only happens when on varg functions
|
|
if (!OutChains.empty()) {
|
|
OutChains.push_back(Chain);
|
|
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
|
|
&OutChains[0], OutChains.size());
|
|
}
|
|
|
|
return Chain;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Return Value Calling Convention Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SDValue
|
|
MipsTargetLowering::LowerReturn(SDValue Chain,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
DebugLoc dl, SelectionDAG &DAG) const {
|
|
|
|
// CCValAssign - represent the assignment of
|
|
// the return value to a location
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
|
|
// CCState - Info about the registers and stack slot.
|
|
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
|
|
getTargetMachine(), RVLocs, *DAG.getContext());
|
|
|
|
// Analize return values.
|
|
CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
|
|
|
|
// If this is the first return lowered for this function, add
|
|
// the regs to the liveout set for the function.
|
|
if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
|
|
for (unsigned i = 0; i != RVLocs.size(); ++i)
|
|
if (RVLocs[i].isRegLoc())
|
|
DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
|
|
}
|
|
|
|
SDValue Flag;
|
|
|
|
// Copy the result values into the output registers.
|
|
for (unsigned i = 0; i != RVLocs.size(); ++i) {
|
|
CCValAssign &VA = RVLocs[i];
|
|
assert(VA.isRegLoc() && "Can only return in registers!");
|
|
|
|
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
|
|
OutVals[i], Flag);
|
|
|
|
// guarantee that all emitted copies are
|
|
// stuck together, avoiding something bad
|
|
Flag = Chain.getValue(1);
|
|
}
|
|
|
|
// The mips ABIs for returning structs by value requires that we copy
|
|
// the sret argument into $v0 for the return. We saved the argument into
|
|
// a virtual register in the entry block, so now we copy the value out
|
|
// and into $v0.
|
|
if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
|
|
unsigned Reg = MipsFI->getSRetReturnReg();
|
|
|
|
if (!Reg)
|
|
llvm_unreachable("sret virtual register not created in the entry block");
|
|
SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
|
|
|
|
Chain = DAG.getCopyToReg(Chain, dl, Mips::V0, Val, Flag);
|
|
Flag = Chain.getValue(1);
|
|
}
|
|
|
|
// Return on Mips is always a "jr $ra"
|
|
if (Flag.getNode())
|
|
return DAG.getNode(MipsISD::Ret, dl, MVT::Other,
|
|
Chain, DAG.getRegister(Mips::RA, MVT::i32), Flag);
|
|
else // Return Void
|
|
return DAG.getNode(MipsISD::Ret, dl, MVT::Other,
|
|
Chain, DAG.getRegister(Mips::RA, MVT::i32));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Mips Inline Assembly Support
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// getConstraintType - Given a constraint letter, return the type of
|
|
/// constraint it is for this target.
|
|
MipsTargetLowering::ConstraintType MipsTargetLowering::
|
|
getConstraintType(const std::string &Constraint) const
|
|
{
|
|
// Mips specific constrainy
|
|
// GCC config/mips/constraints.md
|
|
//
|
|
// 'd' : An address register. Equivalent to r
|
|
// unless generating MIPS16 code.
|
|
// 'y' : Equivalent to r; retained for
|
|
// backwards compatibility.
|
|
// 'f' : Floating Point registers.
|
|
if (Constraint.size() == 1) {
|
|
switch (Constraint[0]) {
|
|
default : break;
|
|
case 'd':
|
|
case 'y':
|
|
case 'f':
|
|
return C_RegisterClass;
|
|
break;
|
|
}
|
|
}
|
|
return TargetLowering::getConstraintType(Constraint);
|
|
}
|
|
|
|
/// Examine constraint type and operand type and determine a weight value.
|
|
/// This object must already have been set up with the operand type
|
|
/// and the current alternative constraint selected.
|
|
TargetLowering::ConstraintWeight
|
|
MipsTargetLowering::getSingleConstraintMatchWeight(
|
|
AsmOperandInfo &info, const char *constraint) const {
|
|
ConstraintWeight weight = CW_Invalid;
|
|
Value *CallOperandVal = info.CallOperandVal;
|
|
// If we don't have a value, we can't do a match,
|
|
// but allow it at the lowest weight.
|
|
if (CallOperandVal == NULL)
|
|
return CW_Default;
|
|
Type *type = CallOperandVal->getType();
|
|
// Look at the constraint type.
|
|
switch (*constraint) {
|
|
default:
|
|
weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
|
|
break;
|
|
case 'd':
|
|
case 'y':
|
|
if (type->isIntegerTy())
|
|
weight = CW_Register;
|
|
break;
|
|
case 'f':
|
|
if (type->isFloatTy())
|
|
weight = CW_Register;
|
|
break;
|
|
}
|
|
return weight;
|
|
}
|
|
|
|
/// Given a register class constraint, like 'r', if this corresponds directly
|
|
/// to an LLVM register class, return a register of 0 and the register class
|
|
/// pointer.
|
|
std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
|
|
getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const
|
|
{
|
|
if (Constraint.size() == 1) {
|
|
switch (Constraint[0]) {
|
|
case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
|
|
case 'y': // Same as 'r'. Exists for compatibility.
|
|
case 'r':
|
|
return std::make_pair(0U, Mips::CPURegsRegisterClass);
|
|
case 'f':
|
|
if (VT == MVT::f32)
|
|
return std::make_pair(0U, Mips::FGR32RegisterClass);
|
|
if (VT == MVT::f64)
|
|
if ((!Subtarget->isSingleFloat()) && (!Subtarget->isFP64bit()))
|
|
return std::make_pair(0U, Mips::AFGR64RegisterClass);
|
|
break;
|
|
}
|
|
}
|
|
return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
|
|
}
|
|
|
|
bool
|
|
MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
|
|
// The Mips target isn't yet aware of offsets.
|
|
return false;
|
|
}
|
|
|
|
bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
|
|
if (VT != MVT::f32 && VT != MVT::f64)
|
|
return false;
|
|
if (Imm.isNegZero())
|
|
return false;
|
|
return Imm.isZero();
|
|
}
|