mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-10 18:34:09 +00:00
5d7ab8503b
rdar://problem/8893967: JM/lencod miscompile at -arch armv7 -mthumb -O3 Added ResurrectKill to remove kill flags after we decide to reused a physical register. And (hopefully) ensure that we call it in all the right places. Sorry, I'm not checking in a unit test given that it's a miscompile I can't reproduce easily with a toy example. Failures in the rewriter depend on a series of heuristic decisions maked during one of the many upstream phases in codegen. This case would require coercing regalloc to generate a couple of rematerialzations in a way that causes the scavenger to reuse the same register at just the wrong point. The general way to test this is to implement kill flags verification. Then we could have a simple, robust compile-only unit test. That would be worth doing if the whole pass was not about to disappear. At this point we focus verification work on the next generation of regalloc. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124442 91177308-0d34-0410-b5e6-96231b3b80d8
2603 lines
100 KiB
C++
2603 lines
100 KiB
C++
//===-- llvm/CodeGen/Rewriter.cpp - Rewriter -----------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "virtregrewriter"
|
|
#include "VirtRegRewriter.h"
|
|
#include "VirtRegMap.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumDSE , "Number of dead stores elided");
|
|
STATISTIC(NumDSS , "Number of dead spill slots removed");
|
|
STATISTIC(NumCommutes, "Number of instructions commuted");
|
|
STATISTIC(NumDRM , "Number of re-materializable defs elided");
|
|
STATISTIC(NumStores , "Number of stores added");
|
|
STATISTIC(NumPSpills , "Number of physical register spills");
|
|
STATISTIC(NumOmitted , "Number of reloads omited");
|
|
STATISTIC(NumAvoided , "Number of reloads deemed unnecessary");
|
|
STATISTIC(NumCopified, "Number of available reloads turned into copies");
|
|
STATISTIC(NumReMats , "Number of re-materialization");
|
|
STATISTIC(NumLoads , "Number of loads added");
|
|
STATISTIC(NumReused , "Number of values reused");
|
|
STATISTIC(NumDCE , "Number of copies elided");
|
|
STATISTIC(NumSUnfold , "Number of stores unfolded");
|
|
STATISTIC(NumModRefUnfold, "Number of modref unfolded");
|
|
|
|
namespace {
|
|
enum RewriterName { local, trivial };
|
|
}
|
|
|
|
static cl::opt<RewriterName>
|
|
RewriterOpt("rewriter",
|
|
cl::desc("Rewriter to use (default=local)"),
|
|
cl::Prefix,
|
|
cl::values(clEnumVal(local, "local rewriter"),
|
|
clEnumVal(trivial, "trivial rewriter"),
|
|
clEnumValEnd),
|
|
cl::init(local));
|
|
|
|
static cl::opt<bool>
|
|
ScheduleSpills("schedule-spills",
|
|
cl::desc("Schedule spill code"),
|
|
cl::init(false));
|
|
|
|
VirtRegRewriter::~VirtRegRewriter() {}
|
|
|
|
/// substitutePhysReg - Replace virtual register in MachineOperand with a
|
|
/// physical register. Do the right thing with the sub-register index.
|
|
/// Note that operands may be added, so the MO reference is no longer valid.
|
|
static void substitutePhysReg(MachineOperand &MO, unsigned Reg,
|
|
const TargetRegisterInfo &TRI) {
|
|
if (MO.getSubReg()) {
|
|
MO.substPhysReg(Reg, TRI);
|
|
|
|
// Any kill flags apply to the full virtual register, so they also apply to
|
|
// the full physical register.
|
|
// We assume that partial defs have already been decorated with a super-reg
|
|
// <imp-def> operand by LiveIntervals.
|
|
MachineInstr &MI = *MO.getParent();
|
|
if (MO.isUse() && !MO.isUndef() &&
|
|
(MO.isKill() || MI.isRegTiedToDefOperand(&MO-&MI.getOperand(0))))
|
|
MI.addRegisterKilled(Reg, &TRI, /*AddIfNotFound=*/ true);
|
|
} else {
|
|
MO.setReg(Reg);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// This class is intended for use with the new spilling framework only. It
|
|
/// rewrites vreg def/uses to use the assigned preg, but does not insert any
|
|
/// spill code.
|
|
struct TrivialRewriter : public VirtRegRewriter {
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
|
|
LiveIntervals* LIs) {
|
|
DEBUG(dbgs() << "********** REWRITE MACHINE CODE **********\n");
|
|
DEBUG(dbgs() << "********** Function: "
|
|
<< MF.getFunction()->getName() << '\n');
|
|
DEBUG(dbgs() << "**** Machine Instrs"
|
|
<< "(NOTE! Does not include spills and reloads!) ****\n");
|
|
DEBUG(MF.dump());
|
|
|
|
MachineRegisterInfo *mri = &MF.getRegInfo();
|
|
const TargetRegisterInfo *tri = MF.getTarget().getRegisterInfo();
|
|
|
|
bool changed = false;
|
|
|
|
for (LiveIntervals::iterator liItr = LIs->begin(), liEnd = LIs->end();
|
|
liItr != liEnd; ++liItr) {
|
|
|
|
const LiveInterval *li = liItr->second;
|
|
unsigned reg = li->reg;
|
|
|
|
if (TargetRegisterInfo::isPhysicalRegister(reg)) {
|
|
if (!li->empty())
|
|
mri->setPhysRegUsed(reg);
|
|
}
|
|
else {
|
|
if (!VRM.hasPhys(reg))
|
|
continue;
|
|
unsigned pReg = VRM.getPhys(reg);
|
|
mri->setPhysRegUsed(pReg);
|
|
// Copy the register use-list before traversing it.
|
|
SmallVector<std::pair<MachineInstr*, unsigned>, 32> reglist;
|
|
for (MachineRegisterInfo::reg_iterator I = mri->reg_begin(reg),
|
|
E = mri->reg_end(); I != E; ++I)
|
|
reglist.push_back(std::make_pair(&*I, I.getOperandNo()));
|
|
for (unsigned N=0; N != reglist.size(); ++N)
|
|
substitutePhysReg(reglist[N].first->getOperand(reglist[N].second),
|
|
pReg, *tri);
|
|
changed |= !reglist.empty();
|
|
}
|
|
}
|
|
|
|
DEBUG(dbgs() << "**** Post Machine Instrs ****\n");
|
|
DEBUG(MF.dump());
|
|
|
|
return changed;
|
|
}
|
|
|
|
};
|
|
|
|
}
|
|
|
|
// ************************************************************************ //
|
|
|
|
namespace {
|
|
|
|
/// AvailableSpills - As the local rewriter is scanning and rewriting an MBB
|
|
/// from top down, keep track of which spill slots or remat are available in
|
|
/// each register.
|
|
///
|
|
/// Note that not all physregs are created equal here. In particular, some
|
|
/// physregs are reloads that we are allowed to clobber or ignore at any time.
|
|
/// Other physregs are values that the register allocated program is using
|
|
/// that we cannot CHANGE, but we can read if we like. We keep track of this
|
|
/// on a per-stack-slot / remat id basis as the low bit in the value of the
|
|
/// SpillSlotsAvailable entries. The predicate 'canClobberPhysReg()' checks
|
|
/// this bit and addAvailable sets it if.
|
|
class AvailableSpills {
|
|
const TargetRegisterInfo *TRI;
|
|
const TargetInstrInfo *TII;
|
|
|
|
// SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
|
|
// or remat'ed virtual register values that are still available, due to
|
|
// being loaded or stored to, but not invalidated yet.
|
|
std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
|
|
|
|
// PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
|
|
// indicating which stack slot values are currently held by a physreg. This
|
|
// is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
|
|
// physreg is modified.
|
|
std::multimap<unsigned, int> PhysRegsAvailable;
|
|
|
|
void disallowClobberPhysRegOnly(unsigned PhysReg);
|
|
|
|
void ClobberPhysRegOnly(unsigned PhysReg);
|
|
public:
|
|
AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii)
|
|
: TRI(tri), TII(tii) {
|
|
}
|
|
|
|
/// clear - Reset the state.
|
|
void clear() {
|
|
SpillSlotsOrReMatsAvailable.clear();
|
|
PhysRegsAvailable.clear();
|
|
}
|
|
|
|
const TargetRegisterInfo *getRegInfo() const { return TRI; }
|
|
|
|
/// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
|
|
/// available in a physical register, return that PhysReg, otherwise
|
|
/// return 0.
|
|
unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
|
|
std::map<int, unsigned>::const_iterator I =
|
|
SpillSlotsOrReMatsAvailable.find(Slot);
|
|
if (I != SpillSlotsOrReMatsAvailable.end()) {
|
|
return I->second >> 1; // Remove the CanClobber bit.
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// addAvailable - Mark that the specified stack slot / remat is available
|
|
/// in the specified physreg. If CanClobber is true, the physreg can be
|
|
/// modified at any time without changing the semantics of the program.
|
|
void addAvailable(int SlotOrReMat, unsigned Reg, bool CanClobber = true) {
|
|
// If this stack slot is thought to be available in some other physreg,
|
|
// remove its record.
|
|
ModifyStackSlotOrReMat(SlotOrReMat);
|
|
|
|
PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
|
|
SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) |
|
|
(unsigned)CanClobber;
|
|
|
|
if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
|
|
DEBUG(dbgs() << "Remembering RM#"
|
|
<< SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1);
|
|
else
|
|
DEBUG(dbgs() << "Remembering SS#" << SlotOrReMat);
|
|
DEBUG(dbgs() << " in physreg " << TRI->getName(Reg)
|
|
<< (CanClobber ? " canclobber" : "") << "\n");
|
|
}
|
|
|
|
/// canClobberPhysRegForSS - Return true if the spiller is allowed to change
|
|
/// the value of the specified stackslot register if it desires. The
|
|
/// specified stack slot must be available in a physreg for this query to
|
|
/// make sense.
|
|
bool canClobberPhysRegForSS(int SlotOrReMat) const {
|
|
assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
|
|
"Value not available!");
|
|
return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
|
|
}
|
|
|
|
/// canClobberPhysReg - Return true if the spiller is allowed to clobber the
|
|
/// physical register where values for some stack slot(s) might be
|
|
/// available.
|
|
bool canClobberPhysReg(unsigned PhysReg) const {
|
|
std::multimap<unsigned, int>::const_iterator I =
|
|
PhysRegsAvailable.lower_bound(PhysReg);
|
|
while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
|
|
int SlotOrReMat = I->second;
|
|
I++;
|
|
if (!canClobberPhysRegForSS(SlotOrReMat))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
|
|
/// stackslot register. The register is still available but is no longer
|
|
/// allowed to be modifed.
|
|
void disallowClobberPhysReg(unsigned PhysReg);
|
|
|
|
/// ClobberPhysReg - This is called when the specified physreg changes
|
|
/// value. We use this to invalidate any info about stuff that lives in
|
|
/// it and any of its aliases.
|
|
void ClobberPhysReg(unsigned PhysReg);
|
|
|
|
/// ModifyStackSlotOrReMat - This method is called when the value in a stack
|
|
/// slot changes. This removes information about which register the
|
|
/// previous value for this slot lives in (as the previous value is dead
|
|
/// now).
|
|
void ModifyStackSlotOrReMat(int SlotOrReMat);
|
|
|
|
/// AddAvailableRegsToLiveIn - Availability information is being kept coming
|
|
/// into the specified MBB. Add available physical registers as potential
|
|
/// live-in's. If they are reused in the MBB, they will be added to the
|
|
/// live-in set to make register scavenger and post-allocation scheduler.
|
|
void AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps);
|
|
};
|
|
|
|
}
|
|
|
|
// ************************************************************************ //
|
|
|
|
// Given a location where a reload of a spilled register or a remat of
|
|
// a constant is to be inserted, attempt to find a safe location to
|
|
// insert the load at an earlier point in the basic-block, to hide
|
|
// latency of the load and to avoid address-generation interlock
|
|
// issues.
|
|
static MachineBasicBlock::iterator
|
|
ComputeReloadLoc(MachineBasicBlock::iterator const InsertLoc,
|
|
MachineBasicBlock::iterator const Begin,
|
|
unsigned PhysReg,
|
|
const TargetRegisterInfo *TRI,
|
|
bool DoReMat,
|
|
int SSorRMId,
|
|
const TargetInstrInfo *TII,
|
|
const MachineFunction &MF)
|
|
{
|
|
if (!ScheduleSpills)
|
|
return InsertLoc;
|
|
|
|
// Spill backscheduling is of primary interest to addresses, so
|
|
// don't do anything if the register isn't in the register class
|
|
// used for pointers.
|
|
|
|
const TargetLowering *TL = MF.getTarget().getTargetLowering();
|
|
|
|
if (!TL->isTypeLegal(TL->getPointerTy()))
|
|
// Believe it or not, this is true on 16-bit targets like PIC16.
|
|
return InsertLoc;
|
|
|
|
const TargetRegisterClass *ptrRegClass =
|
|
TL->getRegClassFor(TL->getPointerTy());
|
|
if (!ptrRegClass->contains(PhysReg))
|
|
return InsertLoc;
|
|
|
|
// Scan upwards through the preceding instructions. If an instruction doesn't
|
|
// reference the stack slot or the register we're loading, we can
|
|
// backschedule the reload up past it.
|
|
MachineBasicBlock::iterator NewInsertLoc = InsertLoc;
|
|
while (NewInsertLoc != Begin) {
|
|
MachineBasicBlock::iterator Prev = prior(NewInsertLoc);
|
|
for (unsigned i = 0; i < Prev->getNumOperands(); ++i) {
|
|
MachineOperand &Op = Prev->getOperand(i);
|
|
if (!DoReMat && Op.isFI() && Op.getIndex() == SSorRMId)
|
|
goto stop;
|
|
}
|
|
if (Prev->findRegisterUseOperandIdx(PhysReg) != -1 ||
|
|
Prev->findRegisterDefOperand(PhysReg))
|
|
goto stop;
|
|
for (const unsigned *Alias = TRI->getAliasSet(PhysReg); *Alias; ++Alias)
|
|
if (Prev->findRegisterUseOperandIdx(*Alias) != -1 ||
|
|
Prev->findRegisterDefOperand(*Alias))
|
|
goto stop;
|
|
NewInsertLoc = Prev;
|
|
}
|
|
stop:;
|
|
|
|
// If we made it to the beginning of the block, turn around and move back
|
|
// down just past any existing reloads. They're likely to be reloads/remats
|
|
// for instructions earlier than what our current reload/remat is for, so
|
|
// they should be scheduled earlier.
|
|
if (NewInsertLoc == Begin) {
|
|
int FrameIdx;
|
|
while (InsertLoc != NewInsertLoc &&
|
|
(TII->isLoadFromStackSlot(NewInsertLoc, FrameIdx) ||
|
|
TII->isTriviallyReMaterializable(NewInsertLoc)))
|
|
++NewInsertLoc;
|
|
}
|
|
|
|
return NewInsertLoc;
|
|
}
|
|
|
|
namespace {
|
|
|
|
// ReusedOp - For each reused operand, we keep track of a bit of information,
|
|
// in case we need to rollback upon processing a new operand. See comments
|
|
// below.
|
|
struct ReusedOp {
|
|
// The MachineInstr operand that reused an available value.
|
|
unsigned Operand;
|
|
|
|
// StackSlotOrReMat - The spill slot or remat id of the value being reused.
|
|
unsigned StackSlotOrReMat;
|
|
|
|
// PhysRegReused - The physical register the value was available in.
|
|
unsigned PhysRegReused;
|
|
|
|
// AssignedPhysReg - The physreg that was assigned for use by the reload.
|
|
unsigned AssignedPhysReg;
|
|
|
|
// VirtReg - The virtual register itself.
|
|
unsigned VirtReg;
|
|
|
|
ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
|
|
unsigned vreg)
|
|
: Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
|
|
AssignedPhysReg(apr), VirtReg(vreg) {}
|
|
};
|
|
|
|
/// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
|
|
/// is reused instead of reloaded.
|
|
class ReuseInfo {
|
|
MachineInstr &MI;
|
|
std::vector<ReusedOp> Reuses;
|
|
BitVector PhysRegsClobbered;
|
|
public:
|
|
ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) {
|
|
PhysRegsClobbered.resize(tri->getNumRegs());
|
|
}
|
|
|
|
bool hasReuses() const {
|
|
return !Reuses.empty();
|
|
}
|
|
|
|
/// addReuse - If we choose to reuse a virtual register that is already
|
|
/// available instead of reloading it, remember that we did so.
|
|
void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
|
|
unsigned PhysRegReused, unsigned AssignedPhysReg,
|
|
unsigned VirtReg) {
|
|
// If the reload is to the assigned register anyway, no undo will be
|
|
// required.
|
|
if (PhysRegReused == AssignedPhysReg) return;
|
|
|
|
// Otherwise, remember this.
|
|
Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,
|
|
AssignedPhysReg, VirtReg));
|
|
}
|
|
|
|
void markClobbered(unsigned PhysReg) {
|
|
PhysRegsClobbered.set(PhysReg);
|
|
}
|
|
|
|
bool isClobbered(unsigned PhysReg) const {
|
|
return PhysRegsClobbered.test(PhysReg);
|
|
}
|
|
|
|
/// GetRegForReload - We are about to emit a reload into PhysReg. If there
|
|
/// is some other operand that is using the specified register, either pick
|
|
/// a new register to use, or evict the previous reload and use this reg.
|
|
unsigned GetRegForReload(const TargetRegisterClass *RC, unsigned PhysReg,
|
|
MachineFunction &MF, MachineInstr *MI,
|
|
AvailableSpills &Spills,
|
|
std::vector<MachineInstr*> &MaybeDeadStores,
|
|
SmallSet<unsigned, 8> &Rejected,
|
|
BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps,
|
|
VirtRegMap &VRM);
|
|
|
|
/// GetRegForReload - Helper for the above GetRegForReload(). Add a
|
|
/// 'Rejected' set to remember which registers have been considered and
|
|
/// rejected for the reload. This avoids infinite looping in case like
|
|
/// this:
|
|
/// t1 := op t2, t3
|
|
/// t2 <- assigned r0 for use by the reload but ended up reuse r1
|
|
/// t3 <- assigned r1 for use by the reload but ended up reuse r0
|
|
/// t1 <- desires r1
|
|
/// sees r1 is taken by t2, tries t2's reload register r0
|
|
/// sees r0 is taken by t3, tries t3's reload register r1
|
|
/// sees r1 is taken by t2, tries t2's reload register r0 ...
|
|
unsigned GetRegForReload(unsigned VirtReg, unsigned PhysReg, MachineInstr *MI,
|
|
AvailableSpills &Spills,
|
|
std::vector<MachineInstr*> &MaybeDeadStores,
|
|
BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps,
|
|
VirtRegMap &VRM) {
|
|
SmallSet<unsigned, 8> Rejected;
|
|
MachineFunction &MF = *MI->getParent()->getParent();
|
|
const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg);
|
|
return GetRegForReload(RC, PhysReg, MF, MI, Spills, MaybeDeadStores,
|
|
Rejected, RegKills, KillOps, VRM);
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
// ****************** //
|
|
// Utility Functions //
|
|
// ****************** //
|
|
|
|
/// findSinglePredSuccessor - Return via reference a vector of machine basic
|
|
/// blocks each of which is a successor of the specified BB and has no other
|
|
/// predecessor.
|
|
static void findSinglePredSuccessor(MachineBasicBlock *MBB,
|
|
SmallVectorImpl<MachineBasicBlock *> &Succs){
|
|
for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
|
|
SE = MBB->succ_end(); SI != SE; ++SI) {
|
|
MachineBasicBlock *SuccMBB = *SI;
|
|
if (SuccMBB->pred_size() == 1)
|
|
Succs.push_back(SuccMBB);
|
|
}
|
|
}
|
|
|
|
/// ResurrectConfirmedKill - Helper for ResurrectKill. This register is killed
|
|
/// but not re-defined and it's being reused. Remove the kill flag for the
|
|
/// register and unset the kill's marker and last kill operand.
|
|
static void ResurrectConfirmedKill(unsigned Reg, const TargetRegisterInfo* TRI,
|
|
BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps) {
|
|
DEBUG(dbgs() << "Resurrect " << TRI->getName(Reg) << "\n");
|
|
|
|
MachineOperand *KillOp = KillOps[Reg];
|
|
KillOp->setIsKill(false);
|
|
// KillOps[Reg] might be a def of a super-register.
|
|
unsigned KReg = KillOp->getReg();
|
|
if (!RegKills[KReg])
|
|
return;
|
|
|
|
assert(KillOps[KReg] == KillOp && "invalid superreg kill flags");
|
|
KillOps[KReg] = NULL;
|
|
RegKills.reset(KReg);
|
|
|
|
// If it's a def of a super-register. Its other sub-regsters are no
|
|
// longer killed as well.
|
|
for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
|
|
DEBUG(dbgs() << " Resurrect subreg " << TRI->getName(*SR) << "\n");
|
|
|
|
assert(KillOps[*SR] == KillOp && "invalid subreg kill flags");
|
|
KillOps[*SR] = NULL;
|
|
RegKills.reset(*SR);
|
|
}
|
|
}
|
|
|
|
/// ResurrectKill - Invalidate kill info associated with a previous MI. An
|
|
/// optimization may have decided that it's safe to reuse a previously killed
|
|
/// register. If we fail to erase the invalid kill flags, then the register
|
|
/// scavenger may later clobber the register used by this MI. Note that this
|
|
/// must be done even if this MI is being deleted! Consider:
|
|
///
|
|
/// USE $r1 (vreg1) <kill>
|
|
/// ...
|
|
/// $r1(vreg3) = COPY $r1 (vreg2)
|
|
///
|
|
/// RegAlloc has smartly assigned all three vregs to the same physreg. Initially
|
|
/// vreg1's only use is a kill. The rewriter doesn't know it should be live
|
|
/// until it rewrites vreg2. At that points it sees that the copy is dead and
|
|
/// deletes it. However, deleting the copy implicitly forwards liveness of $r1
|
|
/// (it's copy coalescing). We must resurrect $r1 by removing the kill flag at
|
|
/// vreg1 before deleting the copy.
|
|
static void ResurrectKill(MachineInstr &MI, unsigned Reg,
|
|
const TargetRegisterInfo* TRI, BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps) {
|
|
if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
|
|
ResurrectConfirmedKill(Reg, TRI, RegKills, KillOps);
|
|
return;
|
|
}
|
|
// No previous kill for this reg. Check for subreg kills as well.
|
|
// d4 =
|
|
// store d4, fi#0
|
|
// ...
|
|
// = s8<kill>
|
|
// ...
|
|
// = d4 <avoiding reload>
|
|
for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
|
|
unsigned SReg = *SR;
|
|
if (RegKills[SReg] && KillOps[SReg]->getParent() != &MI)
|
|
ResurrectConfirmedKill(SReg, TRI, RegKills, KillOps);
|
|
}
|
|
}
|
|
|
|
/// InvalidateKills - MI is going to be deleted. If any of its operands are
|
|
/// marked kill, then invalidate the information.
|
|
static void InvalidateKills(MachineInstr &MI,
|
|
const TargetRegisterInfo* TRI,
|
|
BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps,
|
|
SmallVector<unsigned, 2> *KillRegs = NULL) {
|
|
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI.getOperand(i);
|
|
if (!MO.isReg() || !MO.isUse() || !MO.isKill() || MO.isUndef())
|
|
continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (TargetRegisterInfo::isVirtualRegister(Reg))
|
|
continue;
|
|
if (KillRegs)
|
|
KillRegs->push_back(Reg);
|
|
assert(Reg < KillOps.size());
|
|
if (KillOps[Reg] == &MO) {
|
|
// This operand was the kill, now no longer.
|
|
KillOps[Reg] = NULL;
|
|
RegKills.reset(Reg);
|
|
for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
|
|
if (RegKills[*SR]) {
|
|
assert(KillOps[*SR] == &MO && "bad subreg kill flags");
|
|
KillOps[*SR] = NULL;
|
|
RegKills.reset(*SR);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
// This operand may have reused a previously killed reg. Keep it live in
|
|
// case it continues to be used after erasing this instruction.
|
|
ResurrectKill(MI, Reg, TRI, RegKills, KillOps);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// InvalidateRegDef - If the def operand of the specified def MI is now dead
|
|
/// (since its spill instruction is removed), mark it isDead. Also checks if
|
|
/// the def MI has other definition operands that are not dead. Returns it by
|
|
/// reference.
|
|
static bool InvalidateRegDef(MachineBasicBlock::iterator I,
|
|
MachineInstr &NewDef, unsigned Reg,
|
|
bool &HasLiveDef,
|
|
const TargetRegisterInfo *TRI) {
|
|
// Due to remat, it's possible this reg isn't being reused. That is,
|
|
// the def of this reg (by prev MI) is now dead.
|
|
MachineInstr *DefMI = I;
|
|
MachineOperand *DefOp = NULL;
|
|
for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = DefMI->getOperand(i);
|
|
if (!MO.isReg() || !MO.isDef() || !MO.isKill() || MO.isUndef())
|
|
continue;
|
|
if (MO.getReg() == Reg)
|
|
DefOp = &MO;
|
|
else if (!MO.isDead())
|
|
HasLiveDef = true;
|
|
}
|
|
if (!DefOp)
|
|
return false;
|
|
|
|
bool FoundUse = false, Done = false;
|
|
MachineBasicBlock::iterator E = &NewDef;
|
|
++I; ++E;
|
|
for (; !Done && I != E; ++I) {
|
|
MachineInstr *NMI = I;
|
|
for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
|
|
MachineOperand &MO = NMI->getOperand(j);
|
|
if (!MO.isReg() || MO.getReg() == 0 ||
|
|
(MO.getReg() != Reg && !TRI->isSubRegister(Reg, MO.getReg())))
|
|
continue;
|
|
if (MO.isUse())
|
|
FoundUse = true;
|
|
Done = true; // Stop after scanning all the operands of this MI.
|
|
}
|
|
}
|
|
if (!FoundUse) {
|
|
// Def is dead!
|
|
DefOp->setIsDead();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// UpdateKills - Track and update kill info. If a MI reads a register that is
|
|
/// marked kill, then it must be due to register reuse. Transfer the kill info
|
|
/// over.
|
|
static void UpdateKills(MachineInstr &MI, const TargetRegisterInfo* TRI,
|
|
BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps) {
|
|
// These do not affect kill info at all.
|
|
if (MI.isDebugValue())
|
|
return;
|
|
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI.getOperand(i);
|
|
if (!MO.isReg() || !MO.isUse() || MO.isUndef())
|
|
continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (Reg == 0)
|
|
continue;
|
|
|
|
// This operand may have reused a previously killed reg. Keep it live.
|
|
ResurrectKill(MI, Reg, TRI, RegKills, KillOps);
|
|
|
|
if (MO.isKill()) {
|
|
RegKills.set(Reg);
|
|
KillOps[Reg] = &MO;
|
|
for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
|
|
RegKills.set(*SR);
|
|
KillOps[*SR] = &MO;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = MI.getOperand(i);
|
|
if (!MO.isReg() || !MO.getReg() || !MO.isDef())
|
|
continue;
|
|
unsigned Reg = MO.getReg();
|
|
RegKills.reset(Reg);
|
|
KillOps[Reg] = NULL;
|
|
// It also defines (or partially define) aliases.
|
|
for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
|
|
RegKills.reset(*SR);
|
|
KillOps[*SR] = NULL;
|
|
}
|
|
for (const unsigned *SR = TRI->getSuperRegisters(Reg); *SR; ++SR) {
|
|
RegKills.reset(*SR);
|
|
KillOps[*SR] = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
|
|
///
|
|
static void ReMaterialize(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator &MII,
|
|
unsigned DestReg, unsigned Reg,
|
|
const TargetInstrInfo *TII,
|
|
const TargetRegisterInfo *TRI,
|
|
VirtRegMap &VRM) {
|
|
MachineInstr *ReMatDefMI = VRM.getReMaterializedMI(Reg);
|
|
#ifndef NDEBUG
|
|
const TargetInstrDesc &TID = ReMatDefMI->getDesc();
|
|
assert(TID.getNumDefs() == 1 &&
|
|
"Don't know how to remat instructions that define > 1 values!");
|
|
#endif
|
|
TII->reMaterialize(MBB, MII, DestReg, 0, ReMatDefMI, *TRI);
|
|
MachineInstr *NewMI = prior(MII);
|
|
for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = NewMI->getOperand(i);
|
|
if (!MO.isReg() || MO.getReg() == 0)
|
|
continue;
|
|
unsigned VirtReg = MO.getReg();
|
|
if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
|
|
continue;
|
|
assert(MO.isUse());
|
|
unsigned Phys = VRM.getPhys(VirtReg);
|
|
assert(Phys && "Virtual register is not assigned a register?");
|
|
substitutePhysReg(MO, Phys, *TRI);
|
|
}
|
|
++NumReMats;
|
|
}
|
|
|
|
/// findSuperReg - Find the SubReg's super-register of given register class
|
|
/// where its SubIdx sub-register is SubReg.
|
|
static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
|
|
unsigned SubIdx, const TargetRegisterInfo *TRI) {
|
|
for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
|
|
I != E; ++I) {
|
|
unsigned Reg = *I;
|
|
if (TRI->getSubReg(Reg, SubIdx) == SubReg)
|
|
return Reg;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// ******************************** //
|
|
// Available Spills Implementation //
|
|
// ******************************** //
|
|
|
|
/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
|
|
/// stackslot register. The register is still available but is no longer
|
|
/// allowed to be modifed.
|
|
void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
|
|
std::multimap<unsigned, int>::iterator I =
|
|
PhysRegsAvailable.lower_bound(PhysReg);
|
|
while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
|
|
int SlotOrReMat = I->second;
|
|
I++;
|
|
assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
|
|
"Bidirectional map mismatch!");
|
|
SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
|
|
DEBUG(dbgs() << "PhysReg " << TRI->getName(PhysReg)
|
|
<< " copied, it is available for use but can no longer be modified\n");
|
|
}
|
|
}
|
|
|
|
/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
|
|
/// stackslot register and its aliases. The register and its aliases may
|
|
/// still available but is no longer allowed to be modifed.
|
|
void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
|
|
for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
|
|
disallowClobberPhysRegOnly(*AS);
|
|
disallowClobberPhysRegOnly(PhysReg);
|
|
}
|
|
|
|
/// ClobberPhysRegOnly - This is called when the specified physreg changes
|
|
/// value. We use this to invalidate any info about stuff we thing lives in it.
|
|
void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
|
|
std::multimap<unsigned, int>::iterator I =
|
|
PhysRegsAvailable.lower_bound(PhysReg);
|
|
while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
|
|
int SlotOrReMat = I->second;
|
|
PhysRegsAvailable.erase(I++);
|
|
assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
|
|
"Bidirectional map mismatch!");
|
|
SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
|
|
DEBUG(dbgs() << "PhysReg " << TRI->getName(PhysReg)
|
|
<< " clobbered, invalidating ");
|
|
if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
|
|
DEBUG(dbgs() << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 <<"\n");
|
|
else
|
|
DEBUG(dbgs() << "SS#" << SlotOrReMat << "\n");
|
|
}
|
|
}
|
|
|
|
/// ClobberPhysReg - This is called when the specified physreg changes
|
|
/// value. We use this to invalidate any info about stuff we thing lives in
|
|
/// it and any of its aliases.
|
|
void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
|
|
for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
|
|
ClobberPhysRegOnly(*AS);
|
|
ClobberPhysRegOnly(PhysReg);
|
|
}
|
|
|
|
/// AddAvailableRegsToLiveIn - Availability information is being kept coming
|
|
/// into the specified MBB. Add available physical registers as potential
|
|
/// live-in's. If they are reused in the MBB, they will be added to the
|
|
/// live-in set to make register scavenger and post-allocation scheduler.
|
|
void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB,
|
|
BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps) {
|
|
std::set<unsigned> NotAvailable;
|
|
for (std::multimap<unsigned, int>::iterator
|
|
I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end();
|
|
I != E; ++I) {
|
|
unsigned Reg = I->first;
|
|
const TargetRegisterClass* RC = TRI->getMinimalPhysRegClass(Reg);
|
|
// FIXME: A temporary workaround. We can't reuse available value if it's
|
|
// not safe to move the def of the virtual register's class. e.g.
|
|
// X86::RFP* register classes. Do not add it as a live-in.
|
|
if (!TII->isSafeToMoveRegClassDefs(RC))
|
|
// This is no longer available.
|
|
NotAvailable.insert(Reg);
|
|
else {
|
|
MBB.addLiveIn(Reg);
|
|
if (RegKills[Reg])
|
|
ResurrectConfirmedKill(Reg, TRI, RegKills, KillOps);
|
|
}
|
|
|
|
// Skip over the same register.
|
|
std::multimap<unsigned, int>::iterator NI = llvm::next(I);
|
|
while (NI != E && NI->first == Reg) {
|
|
++I;
|
|
++NI;
|
|
}
|
|
}
|
|
|
|
for (std::set<unsigned>::iterator I = NotAvailable.begin(),
|
|
E = NotAvailable.end(); I != E; ++I) {
|
|
ClobberPhysReg(*I);
|
|
for (const unsigned *SubRegs = TRI->getSubRegisters(*I);
|
|
*SubRegs; ++SubRegs)
|
|
ClobberPhysReg(*SubRegs);
|
|
}
|
|
}
|
|
|
|
/// ModifyStackSlotOrReMat - This method is called when the value in a stack
|
|
/// slot changes. This removes information about which register the previous
|
|
/// value for this slot lives in (as the previous value is dead now).
|
|
void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
|
|
std::map<int, unsigned>::iterator It =
|
|
SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
|
|
if (It == SpillSlotsOrReMatsAvailable.end()) return;
|
|
unsigned Reg = It->second >> 1;
|
|
SpillSlotsOrReMatsAvailable.erase(It);
|
|
|
|
// This register may hold the value of multiple stack slots, only remove this
|
|
// stack slot from the set of values the register contains.
|
|
std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
|
|
for (; ; ++I) {
|
|
assert(I != PhysRegsAvailable.end() && I->first == Reg &&
|
|
"Map inverse broken!");
|
|
if (I->second == SlotOrReMat) break;
|
|
}
|
|
PhysRegsAvailable.erase(I);
|
|
}
|
|
|
|
// ************************** //
|
|
// Reuse Info Implementation //
|
|
// ************************** //
|
|
|
|
/// GetRegForReload - We are about to emit a reload into PhysReg. If there
|
|
/// is some other operand that is using the specified register, either pick
|
|
/// a new register to use, or evict the previous reload and use this reg.
|
|
unsigned ReuseInfo::GetRegForReload(const TargetRegisterClass *RC,
|
|
unsigned PhysReg,
|
|
MachineFunction &MF,
|
|
MachineInstr *MI, AvailableSpills &Spills,
|
|
std::vector<MachineInstr*> &MaybeDeadStores,
|
|
SmallSet<unsigned, 8> &Rejected,
|
|
BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps,
|
|
VirtRegMap &VRM) {
|
|
const TargetInstrInfo* TII = MF.getTarget().getInstrInfo();
|
|
const TargetRegisterInfo *TRI = Spills.getRegInfo();
|
|
|
|
if (Reuses.empty()) return PhysReg; // This is most often empty.
|
|
|
|
for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
|
|
ReusedOp &Op = Reuses[ro];
|
|
// If we find some other reuse that was supposed to use this register
|
|
// exactly for its reload, we can change this reload to use ITS reload
|
|
// register. That is, unless its reload register has already been
|
|
// considered and subsequently rejected because it has also been reused
|
|
// by another operand.
|
|
if (Op.PhysRegReused == PhysReg &&
|
|
Rejected.count(Op.AssignedPhysReg) == 0 &&
|
|
RC->contains(Op.AssignedPhysReg)) {
|
|
// Yup, use the reload register that we didn't use before.
|
|
unsigned NewReg = Op.AssignedPhysReg;
|
|
Rejected.insert(PhysReg);
|
|
return GetRegForReload(RC, NewReg, MF, MI, Spills, MaybeDeadStores,
|
|
Rejected, RegKills, KillOps, VRM);
|
|
} else {
|
|
// Otherwise, we might also have a problem if a previously reused
|
|
// value aliases the new register. If so, codegen the previous reload
|
|
// and use this one.
|
|
unsigned PRRU = Op.PhysRegReused;
|
|
if (TRI->regsOverlap(PRRU, PhysReg)) {
|
|
// Okay, we found out that an alias of a reused register
|
|
// was used. This isn't good because it means we have
|
|
// to undo a previous reuse.
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
const TargetRegisterClass *AliasRC =
|
|
MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
|
|
|
|
// Copy Op out of the vector and remove it, we're going to insert an
|
|
// explicit load for it.
|
|
ReusedOp NewOp = Op;
|
|
Reuses.erase(Reuses.begin()+ro);
|
|
|
|
// MI may be using only a sub-register of PhysRegUsed.
|
|
unsigned RealPhysRegUsed = MI->getOperand(NewOp.Operand).getReg();
|
|
unsigned SubIdx = 0;
|
|
assert(TargetRegisterInfo::isPhysicalRegister(RealPhysRegUsed) &&
|
|
"A reuse cannot be a virtual register");
|
|
if (PRRU != RealPhysRegUsed) {
|
|
// What was the sub-register index?
|
|
SubIdx = TRI->getSubRegIndex(PRRU, RealPhysRegUsed);
|
|
assert(SubIdx &&
|
|
"Operand physreg is not a sub-register of PhysRegUsed");
|
|
}
|
|
|
|
// Ok, we're going to try to reload the assigned physreg into the
|
|
// slot that we were supposed to in the first place. However, that
|
|
// register could hold a reuse. Check to see if it conflicts or
|
|
// would prefer us to use a different register.
|
|
unsigned NewPhysReg = GetRegForReload(RC, NewOp.AssignedPhysReg,
|
|
MF, MI, Spills, MaybeDeadStores,
|
|
Rejected, RegKills, KillOps, VRM);
|
|
|
|
bool DoReMat = NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT;
|
|
int SSorRMId = DoReMat
|
|
? VRM.getReMatId(NewOp.VirtReg) : (int) NewOp.StackSlotOrReMat;
|
|
|
|
// Back-schedule reloads and remats.
|
|
MachineBasicBlock::iterator InsertLoc =
|
|
ComputeReloadLoc(MI, MBB->begin(), PhysReg, TRI,
|
|
DoReMat, SSorRMId, TII, MF);
|
|
|
|
if (DoReMat) {
|
|
ReMaterialize(*MBB, InsertLoc, NewPhysReg, NewOp.VirtReg, TII,
|
|
TRI, VRM);
|
|
} else {
|
|
TII->loadRegFromStackSlot(*MBB, InsertLoc, NewPhysReg,
|
|
NewOp.StackSlotOrReMat, AliasRC, TRI);
|
|
MachineInstr *LoadMI = prior(InsertLoc);
|
|
VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
|
|
// Any stores to this stack slot are not dead anymore.
|
|
MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
|
|
++NumLoads;
|
|
}
|
|
Spills.ClobberPhysReg(NewPhysReg);
|
|
Spills.ClobberPhysReg(NewOp.PhysRegReused);
|
|
|
|
unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) :NewPhysReg;
|
|
MI->getOperand(NewOp.Operand).setReg(RReg);
|
|
MI->getOperand(NewOp.Operand).setSubReg(0);
|
|
|
|
Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg);
|
|
UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
|
|
DEBUG(dbgs() << '\t' << *prior(InsertLoc));
|
|
|
|
DEBUG(dbgs() << "Reuse undone!\n");
|
|
--NumReused;
|
|
|
|
// Finally, PhysReg is now available, go ahead and use it.
|
|
return PhysReg;
|
|
}
|
|
}
|
|
}
|
|
return PhysReg;
|
|
}
|
|
|
|
// ************************************************************************ //
|
|
|
|
/// FoldsStackSlotModRef - Return true if the specified MI folds the specified
|
|
/// stack slot mod/ref. It also checks if it's possible to unfold the
|
|
/// instruction by having it define a specified physical register instead.
|
|
static bool FoldsStackSlotModRef(MachineInstr &MI, int SS, unsigned PhysReg,
|
|
const TargetInstrInfo *TII,
|
|
const TargetRegisterInfo *TRI,
|
|
VirtRegMap &VRM) {
|
|
if (VRM.hasEmergencySpills(&MI) || VRM.isSpillPt(&MI))
|
|
return false;
|
|
|
|
bool Found = false;
|
|
VirtRegMap::MI2VirtMapTy::const_iterator I, End;
|
|
for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
|
|
unsigned VirtReg = I->second.first;
|
|
VirtRegMap::ModRef MR = I->second.second;
|
|
if (MR & VirtRegMap::isModRef)
|
|
if (VRM.getStackSlot(VirtReg) == SS) {
|
|
Found= TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), true, true) != 0;
|
|
break;
|
|
}
|
|
}
|
|
if (!Found)
|
|
return false;
|
|
|
|
// Does the instruction uses a register that overlaps the scratch register?
|
|
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI.getOperand(i);
|
|
if (!MO.isReg() || MO.getReg() == 0)
|
|
continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
|
|
if (!VRM.hasPhys(Reg))
|
|
continue;
|
|
Reg = VRM.getPhys(Reg);
|
|
}
|
|
if (TRI->regsOverlap(PhysReg, Reg))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// FindFreeRegister - Find a free register of a given register class by looking
|
|
/// at (at most) the last two machine instructions.
|
|
static unsigned FindFreeRegister(MachineBasicBlock::iterator MII,
|
|
MachineBasicBlock &MBB,
|
|
const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI,
|
|
BitVector &AllocatableRegs) {
|
|
BitVector Defs(TRI->getNumRegs());
|
|
BitVector Uses(TRI->getNumRegs());
|
|
SmallVector<unsigned, 4> LocalUses;
|
|
SmallVector<unsigned, 4> Kills;
|
|
|
|
// Take a look at 2 instructions at most.
|
|
unsigned Count = 0;
|
|
while (Count < 2) {
|
|
if (MII == MBB.begin())
|
|
break;
|
|
MachineInstr *PrevMI = prior(MII);
|
|
MII = PrevMI;
|
|
|
|
if (PrevMI->isDebugValue())
|
|
continue; // Skip over dbg_value instructions.
|
|
++Count;
|
|
|
|
for (unsigned i = 0, e = PrevMI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = PrevMI->getOperand(i);
|
|
if (!MO.isReg() || MO.getReg() == 0)
|
|
continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (MO.isDef()) {
|
|
Defs.set(Reg);
|
|
for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
|
|
Defs.set(*AS);
|
|
} else {
|
|
LocalUses.push_back(Reg);
|
|
if (MO.isKill() && AllocatableRegs[Reg])
|
|
Kills.push_back(Reg);
|
|
}
|
|
}
|
|
|
|
for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
|
|
unsigned Kill = Kills[i];
|
|
if (!Defs[Kill] && !Uses[Kill] &&
|
|
RC->contains(Kill))
|
|
return Kill;
|
|
}
|
|
for (unsigned i = 0, e = LocalUses.size(); i != e; ++i) {
|
|
unsigned Reg = LocalUses[i];
|
|
Uses.set(Reg);
|
|
for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
|
|
Uses.set(*AS);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static
|
|
void AssignPhysToVirtReg(MachineInstr *MI, unsigned VirtReg, unsigned PhysReg,
|
|
const TargetRegisterInfo &TRI) {
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (MO.isReg() && MO.getReg() == VirtReg)
|
|
substitutePhysReg(MO, PhysReg, TRI);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct RefSorter {
|
|
bool operator()(const std::pair<MachineInstr*, int> &A,
|
|
const std::pair<MachineInstr*, int> &B) {
|
|
return A.second < B.second;
|
|
}
|
|
};
|
|
|
|
// ***************************** //
|
|
// Local Spiller Implementation //
|
|
// ***************************** //
|
|
|
|
class LocalRewriter : public VirtRegRewriter {
|
|
MachineRegisterInfo *MRI;
|
|
const TargetRegisterInfo *TRI;
|
|
const TargetInstrInfo *TII;
|
|
VirtRegMap *VRM;
|
|
LiveIntervals *LIs;
|
|
BitVector AllocatableRegs;
|
|
DenseMap<MachineInstr*, unsigned> DistanceMap;
|
|
DenseMap<int, SmallVector<MachineInstr*,4> > Slot2DbgValues;
|
|
|
|
MachineBasicBlock *MBB; // Basic block currently being processed.
|
|
|
|
public:
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
|
|
LiveIntervals* LIs);
|
|
|
|
private:
|
|
void EraseInstr(MachineInstr *MI) {
|
|
VRM->RemoveMachineInstrFromMaps(MI);
|
|
LIs->RemoveMachineInstrFromMaps(MI);
|
|
MI->eraseFromParent();
|
|
}
|
|
|
|
bool OptimizeByUnfold2(unsigned VirtReg, int SS,
|
|
MachineBasicBlock::iterator &MII,
|
|
std::vector<MachineInstr*> &MaybeDeadStores,
|
|
AvailableSpills &Spills,
|
|
BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps);
|
|
|
|
bool OptimizeByUnfold(MachineBasicBlock::iterator &MII,
|
|
std::vector<MachineInstr*> &MaybeDeadStores,
|
|
AvailableSpills &Spills,
|
|
BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps);
|
|
|
|
bool CommuteToFoldReload(MachineBasicBlock::iterator &MII,
|
|
unsigned VirtReg, unsigned SrcReg, int SS,
|
|
AvailableSpills &Spills,
|
|
BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps,
|
|
const TargetRegisterInfo *TRI);
|
|
|
|
void SpillRegToStackSlot(MachineBasicBlock::iterator &MII,
|
|
int Idx, unsigned PhysReg, int StackSlot,
|
|
const TargetRegisterClass *RC,
|
|
bool isAvailable, MachineInstr *&LastStore,
|
|
AvailableSpills &Spills,
|
|
SmallSet<MachineInstr*, 4> &ReMatDefs,
|
|
BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps);
|
|
|
|
void TransferDeadness(unsigned Reg, BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps);
|
|
|
|
bool InsertEmergencySpills(MachineInstr *MI);
|
|
|
|
bool InsertRestores(MachineInstr *MI,
|
|
AvailableSpills &Spills,
|
|
BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps);
|
|
|
|
bool InsertSpills(MachineInstr *MI);
|
|
|
|
void ProcessUses(MachineInstr &MI, AvailableSpills &Spills,
|
|
std::vector<MachineInstr*> &MaybeDeadStores,
|
|
BitVector &RegKills,
|
|
ReuseInfo &ReusedOperands,
|
|
std::vector<MachineOperand*> &KillOps);
|
|
|
|
void RewriteMBB(LiveIntervals *LIs,
|
|
AvailableSpills &Spills, BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps);
|
|
};
|
|
}
|
|
|
|
bool LocalRewriter::runOnMachineFunction(MachineFunction &MF, VirtRegMap &vrm,
|
|
LiveIntervals* lis) {
|
|
MRI = &MF.getRegInfo();
|
|
TRI = MF.getTarget().getRegisterInfo();
|
|
TII = MF.getTarget().getInstrInfo();
|
|
VRM = &vrm;
|
|
LIs = lis;
|
|
AllocatableRegs = TRI->getAllocatableSet(MF);
|
|
DEBUG(dbgs() << "\n**** Local spiller rewriting function '"
|
|
<< MF.getFunction()->getName() << "':\n");
|
|
DEBUG(dbgs() << "**** Machine Instrs (NOTE! Does not include spills and"
|
|
" reloads!) ****\n");
|
|
DEBUG(MF.print(dbgs(), LIs->getSlotIndexes()));
|
|
|
|
// Spills - Keep track of which spilled values are available in physregs
|
|
// so that we can choose to reuse the physregs instead of emitting
|
|
// reloads. This is usually refreshed per basic block.
|
|
AvailableSpills Spills(TRI, TII);
|
|
|
|
// Keep track of kill information.
|
|
BitVector RegKills(TRI->getNumRegs());
|
|
std::vector<MachineOperand*> KillOps;
|
|
KillOps.resize(TRI->getNumRegs(), NULL);
|
|
|
|
// SingleEntrySuccs - Successor blocks which have a single predecessor.
|
|
SmallVector<MachineBasicBlock*, 4> SinglePredSuccs;
|
|
SmallPtrSet<MachineBasicBlock*,16> EarlyVisited;
|
|
|
|
// Traverse the basic blocks depth first.
|
|
MachineBasicBlock *Entry = MF.begin();
|
|
SmallPtrSet<MachineBasicBlock*,16> Visited;
|
|
for (df_ext_iterator<MachineBasicBlock*,
|
|
SmallPtrSet<MachineBasicBlock*,16> >
|
|
DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
|
|
DFI != E; ++DFI) {
|
|
MBB = *DFI;
|
|
if (!EarlyVisited.count(MBB))
|
|
RewriteMBB(LIs, Spills, RegKills, KillOps);
|
|
|
|
// If this MBB is the only predecessor of a successor. Keep the
|
|
// availability information and visit it next.
|
|
do {
|
|
// Keep visiting single predecessor successor as long as possible.
|
|
SinglePredSuccs.clear();
|
|
findSinglePredSuccessor(MBB, SinglePredSuccs);
|
|
if (SinglePredSuccs.empty())
|
|
MBB = 0;
|
|
else {
|
|
// FIXME: More than one successors, each of which has MBB has
|
|
// the only predecessor.
|
|
MBB = SinglePredSuccs[0];
|
|
if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) {
|
|
Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps);
|
|
RewriteMBB(LIs, Spills, RegKills, KillOps);
|
|
}
|
|
}
|
|
} while (MBB);
|
|
|
|
// Clear the availability info.
|
|
Spills.clear();
|
|
}
|
|
|
|
DEBUG(dbgs() << "**** Post Machine Instrs ****\n");
|
|
DEBUG(MF.print(dbgs(), LIs->getSlotIndexes()));
|
|
|
|
// Mark unused spill slots.
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
int SS = VRM->getLowSpillSlot();
|
|
if (SS != VirtRegMap::NO_STACK_SLOT) {
|
|
for (int e = VRM->getHighSpillSlot(); SS <= e; ++SS) {
|
|
SmallVector<MachineInstr*, 4> &DbgValues = Slot2DbgValues[SS];
|
|
if (!VRM->isSpillSlotUsed(SS)) {
|
|
MFI->RemoveStackObject(SS);
|
|
for (unsigned j = 0, ee = DbgValues.size(); j != ee; ++j) {
|
|
MachineInstr *DVMI = DbgValues[j];
|
|
DEBUG(dbgs() << "Removing debug info referencing FI#" << SS << '\n');
|
|
EraseInstr(DVMI);
|
|
}
|
|
++NumDSS;
|
|
}
|
|
DbgValues.clear();
|
|
}
|
|
}
|
|
Slot2DbgValues.clear();
|
|
|
|
return true;
|
|
}
|
|
|
|
/// OptimizeByUnfold2 - Unfold a series of load / store folding instructions if
|
|
/// a scratch register is available.
|
|
/// xorq %r12<kill>, %r13
|
|
/// addq %rax, -184(%rbp)
|
|
/// addq %r13, -184(%rbp)
|
|
/// ==>
|
|
/// xorq %r12<kill>, %r13
|
|
/// movq -184(%rbp), %r12
|
|
/// addq %rax, %r12
|
|
/// addq %r13, %r12
|
|
/// movq %r12, -184(%rbp)
|
|
bool LocalRewriter::
|
|
OptimizeByUnfold2(unsigned VirtReg, int SS,
|
|
MachineBasicBlock::iterator &MII,
|
|
std::vector<MachineInstr*> &MaybeDeadStores,
|
|
AvailableSpills &Spills,
|
|
BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps) {
|
|
|
|
MachineBasicBlock::iterator NextMII = llvm::next(MII);
|
|
// Skip over dbg_value instructions.
|
|
while (NextMII != MBB->end() && NextMII->isDebugValue())
|
|
NextMII = llvm::next(NextMII);
|
|
if (NextMII == MBB->end())
|
|
return false;
|
|
|
|
if (TII->getOpcodeAfterMemoryUnfold(MII->getOpcode(), true, true) == 0)
|
|
return false;
|
|
|
|
// Now let's see if the last couple of instructions happens to have freed up
|
|
// a register.
|
|
const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
|
|
unsigned PhysReg = FindFreeRegister(MII, *MBB, RC, TRI, AllocatableRegs);
|
|
if (!PhysReg)
|
|
return false;
|
|
|
|
MachineFunction &MF = *MBB->getParent();
|
|
TRI = MF.getTarget().getRegisterInfo();
|
|
MachineInstr &MI = *MII;
|
|
if (!FoldsStackSlotModRef(MI, SS, PhysReg, TII, TRI, *VRM))
|
|
return false;
|
|
|
|
// If the next instruction also folds the same SS modref and can be unfoled,
|
|
// then it's worthwhile to issue a load from SS into the free register and
|
|
// then unfold these instructions.
|
|
if (!FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, *VRM))
|
|
return false;
|
|
|
|
// Back-schedule reloads and remats.
|
|
ComputeReloadLoc(MII, MBB->begin(), PhysReg, TRI, false, SS, TII, MF);
|
|
|
|
// Load from SS to the spare physical register.
|
|
TII->loadRegFromStackSlot(*MBB, MII, PhysReg, SS, RC, TRI);
|
|
// This invalidates Phys.
|
|
Spills.ClobberPhysReg(PhysReg);
|
|
// Remember it's available.
|
|
Spills.addAvailable(SS, PhysReg);
|
|
MaybeDeadStores[SS] = NULL;
|
|
|
|
// Unfold current MI.
|
|
SmallVector<MachineInstr*, 4> NewMIs;
|
|
if (!TII->unfoldMemoryOperand(MF, &MI, VirtReg, false, false, NewMIs))
|
|
llvm_unreachable("Unable unfold the load / store folding instruction!");
|
|
assert(NewMIs.size() == 1);
|
|
AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg, *TRI);
|
|
VRM->transferRestorePts(&MI, NewMIs[0]);
|
|
MII = MBB->insert(MII, NewMIs[0]);
|
|
InvalidateKills(MI, TRI, RegKills, KillOps);
|
|
EraseInstr(&MI);
|
|
++NumModRefUnfold;
|
|
|
|
// Unfold next instructions that fold the same SS.
|
|
do {
|
|
MachineInstr &NextMI = *NextMII;
|
|
NextMII = llvm::next(NextMII);
|
|
NewMIs.clear();
|
|
if (!TII->unfoldMemoryOperand(MF, &NextMI, VirtReg, false, false, NewMIs))
|
|
llvm_unreachable("Unable unfold the load / store folding instruction!");
|
|
assert(NewMIs.size() == 1);
|
|
AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg, *TRI);
|
|
VRM->transferRestorePts(&NextMI, NewMIs[0]);
|
|
MBB->insert(NextMII, NewMIs[0]);
|
|
InvalidateKills(NextMI, TRI, RegKills, KillOps);
|
|
EraseInstr(&NextMI);
|
|
++NumModRefUnfold;
|
|
// Skip over dbg_value instructions.
|
|
while (NextMII != MBB->end() && NextMII->isDebugValue())
|
|
NextMII = llvm::next(NextMII);
|
|
if (NextMII == MBB->end())
|
|
break;
|
|
} while (FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, *VRM));
|
|
|
|
// Store the value back into SS.
|
|
TII->storeRegToStackSlot(*MBB, NextMII, PhysReg, true, SS, RC, TRI);
|
|
MachineInstr *StoreMI = prior(NextMII);
|
|
VRM->addSpillSlotUse(SS, StoreMI);
|
|
VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// OptimizeByUnfold - Turn a store folding instruction into a load folding
|
|
/// instruction. e.g.
|
|
/// xorl %edi, %eax
|
|
/// movl %eax, -32(%ebp)
|
|
/// movl -36(%ebp), %eax
|
|
/// orl %eax, -32(%ebp)
|
|
/// ==>
|
|
/// xorl %edi, %eax
|
|
/// orl -36(%ebp), %eax
|
|
/// mov %eax, -32(%ebp)
|
|
/// This enables unfolding optimization for a subsequent instruction which will
|
|
/// also eliminate the newly introduced store instruction.
|
|
bool LocalRewriter::
|
|
OptimizeByUnfold(MachineBasicBlock::iterator &MII,
|
|
std::vector<MachineInstr*> &MaybeDeadStores,
|
|
AvailableSpills &Spills,
|
|
BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps) {
|
|
MachineFunction &MF = *MBB->getParent();
|
|
MachineInstr &MI = *MII;
|
|
unsigned UnfoldedOpc = 0;
|
|
unsigned UnfoldPR = 0;
|
|
unsigned UnfoldVR = 0;
|
|
int FoldedSS = VirtRegMap::NO_STACK_SLOT;
|
|
VirtRegMap::MI2VirtMapTy::const_iterator I, End;
|
|
for (tie(I, End) = VRM->getFoldedVirts(&MI); I != End; ) {
|
|
// Only transform a MI that folds a single register.
|
|
if (UnfoldedOpc)
|
|
return false;
|
|
UnfoldVR = I->second.first;
|
|
VirtRegMap::ModRef MR = I->second.second;
|
|
// MI2VirtMap be can updated which invalidate the iterator.
|
|
// Increment the iterator first.
|
|
++I;
|
|
if (VRM->isAssignedReg(UnfoldVR))
|
|
continue;
|
|
// If this reference is not a use, any previous store is now dead.
|
|
// Otherwise, the store to this stack slot is not dead anymore.
|
|
FoldedSS = VRM->getStackSlot(UnfoldVR);
|
|
MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
|
|
if (DeadStore && (MR & VirtRegMap::isModRef)) {
|
|
unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
|
|
if (!PhysReg || !DeadStore->readsRegister(PhysReg))
|
|
continue;
|
|
UnfoldPR = PhysReg;
|
|
UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
|
|
false, true);
|
|
}
|
|
}
|
|
|
|
if (!UnfoldedOpc) {
|
|
if (!UnfoldVR)
|
|
return false;
|
|
|
|
// Look for other unfolding opportunities.
|
|
return OptimizeByUnfold2(UnfoldVR, FoldedSS, MII, MaybeDeadStores, Spills,
|
|
RegKills, KillOps);
|
|
}
|
|
|
|
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI.getOperand(i);
|
|
if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse())
|
|
continue;
|
|
unsigned VirtReg = MO.getReg();
|
|
if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
|
|
continue;
|
|
if (VRM->isAssignedReg(VirtReg)) {
|
|
unsigned PhysReg = VRM->getPhys(VirtReg);
|
|
if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
|
|
return false;
|
|
} else if (VRM->isReMaterialized(VirtReg))
|
|
continue;
|
|
int SS = VRM->getStackSlot(VirtReg);
|
|
unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
|
|
if (PhysReg) {
|
|
if (TRI->regsOverlap(PhysReg, UnfoldPR))
|
|
return false;
|
|
continue;
|
|
}
|
|
if (VRM->hasPhys(VirtReg)) {
|
|
PhysReg = VRM->getPhys(VirtReg);
|
|
if (!TRI->regsOverlap(PhysReg, UnfoldPR))
|
|
continue;
|
|
}
|
|
|
|
// Ok, we'll need to reload the value into a register which makes
|
|
// it impossible to perform the store unfolding optimization later.
|
|
// Let's see if it is possible to fold the load if the store is
|
|
// unfolded. This allows us to perform the store unfolding
|
|
// optimization.
|
|
SmallVector<MachineInstr*, 4> NewMIs;
|
|
if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
|
|
assert(NewMIs.size() == 1);
|
|
MachineInstr *NewMI = NewMIs.back();
|
|
MBB->insert(MII, NewMI);
|
|
NewMIs.clear();
|
|
int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
|
|
assert(Idx != -1);
|
|
SmallVector<unsigned, 1> Ops;
|
|
Ops.push_back(Idx);
|
|
MachineInstr *FoldedMI = TII->foldMemoryOperand(NewMI, Ops, SS);
|
|
NewMI->eraseFromParent();
|
|
if (FoldedMI) {
|
|
VRM->addSpillSlotUse(SS, FoldedMI);
|
|
if (!VRM->hasPhys(UnfoldVR))
|
|
VRM->assignVirt2Phys(UnfoldVR, UnfoldPR);
|
|
VRM->virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
|
|
MII = FoldedMI;
|
|
InvalidateKills(MI, TRI, RegKills, KillOps);
|
|
EraseInstr(&MI);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// CommuteChangesDestination - We are looking for r0 = op r1, r2 and
|
|
/// where SrcReg is r1 and it is tied to r0. Return true if after
|
|
/// commuting this instruction it will be r0 = op r2, r1.
|
|
static bool CommuteChangesDestination(MachineInstr *DefMI,
|
|
const TargetInstrDesc &TID,
|
|
unsigned SrcReg,
|
|
const TargetInstrInfo *TII,
|
|
unsigned &DstIdx) {
|
|
if (TID.getNumDefs() != 1 && TID.getNumOperands() != 3)
|
|
return false;
|
|
if (!DefMI->getOperand(1).isReg() ||
|
|
DefMI->getOperand(1).getReg() != SrcReg)
|
|
return false;
|
|
unsigned DefIdx;
|
|
if (!DefMI->isRegTiedToDefOperand(1, &DefIdx) || DefIdx != 0)
|
|
return false;
|
|
unsigned SrcIdx1, SrcIdx2;
|
|
if (!TII->findCommutedOpIndices(DefMI, SrcIdx1, SrcIdx2))
|
|
return false;
|
|
if (SrcIdx1 == 1 && SrcIdx2 == 2) {
|
|
DstIdx = 2;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// CommuteToFoldReload -
|
|
/// Look for
|
|
/// r1 = load fi#1
|
|
/// r1 = op r1, r2<kill>
|
|
/// store r1, fi#1
|
|
///
|
|
/// If op is commutable and r2 is killed, then we can xform these to
|
|
/// r2 = op r2, fi#1
|
|
/// store r2, fi#1
|
|
bool LocalRewriter::
|
|
CommuteToFoldReload(MachineBasicBlock::iterator &MII,
|
|
unsigned VirtReg, unsigned SrcReg, int SS,
|
|
AvailableSpills &Spills,
|
|
BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps,
|
|
const TargetRegisterInfo *TRI) {
|
|
if (MII == MBB->begin() || !MII->killsRegister(SrcReg))
|
|
return false;
|
|
|
|
MachineInstr &MI = *MII;
|
|
MachineBasicBlock::iterator DefMII = prior(MII);
|
|
MachineInstr *DefMI = DefMII;
|
|
const TargetInstrDesc &TID = DefMI->getDesc();
|
|
unsigned NewDstIdx;
|
|
if (DefMII != MBB->begin() &&
|
|
TID.isCommutable() &&
|
|
CommuteChangesDestination(DefMI, TID, SrcReg, TII, NewDstIdx)) {
|
|
MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
|
|
unsigned NewReg = NewDstMO.getReg();
|
|
if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
|
|
return false;
|
|
MachineInstr *ReloadMI = prior(DefMII);
|
|
int FrameIdx;
|
|
unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx);
|
|
if (DestReg != SrcReg || FrameIdx != SS)
|
|
return false;
|
|
int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false);
|
|
if (UseIdx == -1)
|
|
return false;
|
|
unsigned DefIdx;
|
|
if (!MI.isRegTiedToDefOperand(UseIdx, &DefIdx))
|
|
return false;
|
|
assert(DefMI->getOperand(DefIdx).isReg() &&
|
|
DefMI->getOperand(DefIdx).getReg() == SrcReg);
|
|
|
|
// Now commute def instruction.
|
|
MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true);
|
|
if (!CommutedMI)
|
|
return false;
|
|
MBB->insert(MII, CommutedMI);
|
|
SmallVector<unsigned, 1> Ops;
|
|
Ops.push_back(NewDstIdx);
|
|
MachineInstr *FoldedMI = TII->foldMemoryOperand(CommutedMI, Ops, SS);
|
|
// Not needed since foldMemoryOperand returns new MI.
|
|
CommutedMI->eraseFromParent();
|
|
if (!FoldedMI)
|
|
return false;
|
|
|
|
VRM->addSpillSlotUse(SS, FoldedMI);
|
|
VRM->virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
|
|
// Insert new def MI and spill MI.
|
|
const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
|
|
TII->storeRegToStackSlot(*MBB, &MI, NewReg, true, SS, RC, TRI);
|
|
MII = prior(MII);
|
|
MachineInstr *StoreMI = MII;
|
|
VRM->addSpillSlotUse(SS, StoreMI);
|
|
VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
|
|
MII = FoldedMI; // Update MII to backtrack.
|
|
|
|
// Delete all 3 old instructions.
|
|
InvalidateKills(*ReloadMI, TRI, RegKills, KillOps);
|
|
EraseInstr(ReloadMI);
|
|
InvalidateKills(*DefMI, TRI, RegKills, KillOps);
|
|
EraseInstr(DefMI);
|
|
InvalidateKills(MI, TRI, RegKills, KillOps);
|
|
EraseInstr(&MI);
|
|
|
|
// If NewReg was previously holding value of some SS, it's now clobbered.
|
|
// This has to be done now because it's a physical register. When this
|
|
// instruction is re-visited, it's ignored.
|
|
Spills.ClobberPhysReg(NewReg);
|
|
|
|
++NumCommutes;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
|
|
/// the last store to the same slot is now dead. If so, remove the last store.
|
|
void LocalRewriter::
|
|
SpillRegToStackSlot(MachineBasicBlock::iterator &MII,
|
|
int Idx, unsigned PhysReg, int StackSlot,
|
|
const TargetRegisterClass *RC,
|
|
bool isAvailable, MachineInstr *&LastStore,
|
|
AvailableSpills &Spills,
|
|
SmallSet<MachineInstr*, 4> &ReMatDefs,
|
|
BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps) {
|
|
|
|
MachineBasicBlock::iterator oldNextMII = llvm::next(MII);
|
|
TII->storeRegToStackSlot(*MBB, llvm::next(MII), PhysReg, true, StackSlot, RC,
|
|
TRI);
|
|
MachineInstr *StoreMI = prior(oldNextMII);
|
|
VRM->addSpillSlotUse(StackSlot, StoreMI);
|
|
DEBUG(dbgs() << "Store:\t" << *StoreMI);
|
|
|
|
// If there is a dead store to this stack slot, nuke it now.
|
|
if (LastStore) {
|
|
DEBUG(dbgs() << "Removed dead store:\t" << *LastStore);
|
|
++NumDSE;
|
|
SmallVector<unsigned, 2> KillRegs;
|
|
InvalidateKills(*LastStore, TRI, RegKills, KillOps, &KillRegs);
|
|
MachineBasicBlock::iterator PrevMII = LastStore;
|
|
bool CheckDef = PrevMII != MBB->begin();
|
|
if (CheckDef)
|
|
--PrevMII;
|
|
EraseInstr(LastStore);
|
|
if (CheckDef) {
|
|
// Look at defs of killed registers on the store. Mark the defs
|
|
// as dead since the store has been deleted and they aren't
|
|
// being reused.
|
|
for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
|
|
bool HasOtherDef = false;
|
|
if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef, TRI)) {
|
|
MachineInstr *DeadDef = PrevMII;
|
|
if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
|
|
// FIXME: This assumes a remat def does not have side effects.
|
|
EraseInstr(DeadDef);
|
|
++NumDRM;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Allow for multi-instruction spill sequences, as on PPC Altivec. Presume
|
|
// the last of multiple instructions is the actual store.
|
|
LastStore = prior(oldNextMII);
|
|
|
|
// If the stack slot value was previously available in some other
|
|
// register, change it now. Otherwise, make the register available,
|
|
// in PhysReg.
|
|
Spills.ModifyStackSlotOrReMat(StackSlot);
|
|
Spills.ClobberPhysReg(PhysReg);
|
|
Spills.addAvailable(StackSlot, PhysReg, isAvailable);
|
|
++NumStores;
|
|
}
|
|
|
|
/// isSafeToDelete - Return true if this instruction doesn't produce any side
|
|
/// effect and all of its defs are dead.
|
|
static bool isSafeToDelete(MachineInstr &MI) {
|
|
const TargetInstrDesc &TID = MI.getDesc();
|
|
if (TID.mayLoad() || TID.mayStore() || TID.isCall() || TID.isTerminator() ||
|
|
TID.isCall() || TID.isBarrier() || TID.isReturn() ||
|
|
MI.isLabel() || MI.isDebugValue() ||
|
|
MI.hasUnmodeledSideEffects())
|
|
return false;
|
|
|
|
// Technically speaking inline asm without side effects and no defs can still
|
|
// be deleted. But there is so much bad inline asm code out there, we should
|
|
// let them be.
|
|
if (MI.isInlineAsm())
|
|
return false;
|
|
|
|
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI.getOperand(i);
|
|
if (!MO.isReg() || !MO.getReg())
|
|
continue;
|
|
if (MO.isDef() && !MO.isDead())
|
|
return false;
|
|
if (MO.isUse() && MO.isKill())
|
|
// FIXME: We can't remove kill markers or else the scavenger will assert.
|
|
// An alternative is to add a ADD pseudo instruction to replace kill
|
|
// markers.
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// TransferDeadness - A identity copy definition is dead and it's being
|
|
/// removed. Find the last def or use and mark it as dead / kill.
|
|
void LocalRewriter::
|
|
TransferDeadness(unsigned Reg, BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps) {
|
|
SmallPtrSet<MachineInstr*, 4> Seens;
|
|
SmallVector<std::pair<MachineInstr*, int>,8> Refs;
|
|
for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(Reg),
|
|
RE = MRI->reg_end(); RI != RE; ++RI) {
|
|
MachineInstr *UDMI = &*RI;
|
|
if (UDMI->isDebugValue() || UDMI->getParent() != MBB)
|
|
continue;
|
|
DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
|
|
if (DI == DistanceMap.end())
|
|
continue;
|
|
if (Seens.insert(UDMI))
|
|
Refs.push_back(std::make_pair(UDMI, DI->second));
|
|
}
|
|
|
|
if (Refs.empty())
|
|
return;
|
|
std::sort(Refs.begin(), Refs.end(), RefSorter());
|
|
|
|
while (!Refs.empty()) {
|
|
MachineInstr *LastUDMI = Refs.back().first;
|
|
Refs.pop_back();
|
|
|
|
MachineOperand *LastUD = NULL;
|
|
for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = LastUDMI->getOperand(i);
|
|
if (!MO.isReg() || MO.getReg() != Reg)
|
|
continue;
|
|
if (!LastUD || (LastUD->isUse() && MO.isDef()))
|
|
LastUD = &MO;
|
|
if (LastUDMI->isRegTiedToDefOperand(i))
|
|
break;
|
|
}
|
|
if (LastUD->isDef()) {
|
|
// If the instruction has no side effect, delete it and propagate
|
|
// backward further. Otherwise, mark is dead and we are done.
|
|
if (!isSafeToDelete(*LastUDMI)) {
|
|
LastUD->setIsDead();
|
|
break;
|
|
}
|
|
EraseInstr(LastUDMI);
|
|
} else {
|
|
LastUD->setIsKill();
|
|
RegKills.set(Reg);
|
|
KillOps[Reg] = LastUD;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// InsertEmergencySpills - Insert emergency spills before MI if requested by
|
|
/// VRM. Return true if spills were inserted.
|
|
bool LocalRewriter::InsertEmergencySpills(MachineInstr *MI) {
|
|
if (!VRM->hasEmergencySpills(MI))
|
|
return false;
|
|
MachineBasicBlock::iterator MII = MI;
|
|
SmallSet<int, 4> UsedSS;
|
|
std::vector<unsigned> &EmSpills = VRM->getEmergencySpills(MI);
|
|
for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
|
|
unsigned PhysReg = EmSpills[i];
|
|
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysReg);
|
|
assert(RC && "Unable to determine register class!");
|
|
int SS = VRM->getEmergencySpillSlot(RC);
|
|
if (UsedSS.count(SS))
|
|
llvm_unreachable("Need to spill more than one physical registers!");
|
|
UsedSS.insert(SS);
|
|
TII->storeRegToStackSlot(*MBB, MII, PhysReg, true, SS, RC, TRI);
|
|
MachineInstr *StoreMI = prior(MII);
|
|
VRM->addSpillSlotUse(SS, StoreMI);
|
|
|
|
// Back-schedule reloads and remats.
|
|
MachineBasicBlock::iterator InsertLoc =
|
|
ComputeReloadLoc(llvm::next(MII), MBB->begin(), PhysReg, TRI, false, SS,
|
|
TII, *MBB->getParent());
|
|
|
|
TII->loadRegFromStackSlot(*MBB, InsertLoc, PhysReg, SS, RC, TRI);
|
|
|
|
MachineInstr *LoadMI = prior(InsertLoc);
|
|
VRM->addSpillSlotUse(SS, LoadMI);
|
|
++NumPSpills;
|
|
DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size()));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// InsertRestores - Restore registers before MI is requested by VRM. Return
|
|
/// true is any instructions were inserted.
|
|
bool LocalRewriter::InsertRestores(MachineInstr *MI,
|
|
AvailableSpills &Spills,
|
|
BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps) {
|
|
if (!VRM->isRestorePt(MI))
|
|
return false;
|
|
MachineBasicBlock::iterator MII = MI;
|
|
std::vector<unsigned> &RestoreRegs = VRM->getRestorePtRestores(MI);
|
|
for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
|
|
unsigned VirtReg = RestoreRegs[e-i-1]; // Reverse order.
|
|
if (!VRM->getPreSplitReg(VirtReg))
|
|
continue; // Split interval spilled again.
|
|
unsigned Phys = VRM->getPhys(VirtReg);
|
|
MRI->setPhysRegUsed(Phys);
|
|
|
|
// Check if the value being restored if available. If so, it must be
|
|
// from a predecessor BB that fallthrough into this BB. We do not
|
|
// expect:
|
|
// BB1:
|
|
// r1 = load fi#1
|
|
// ...
|
|
// = r1<kill>
|
|
// ... # r1 not clobbered
|
|
// ...
|
|
// = load fi#1
|
|
bool DoReMat = VRM->isReMaterialized(VirtReg);
|
|
int SSorRMId = DoReMat
|
|
? VRM->getReMatId(VirtReg) : VRM->getStackSlot(VirtReg);
|
|
unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
|
|
if (InReg == Phys) {
|
|
// If the value is already available in the expected register, save
|
|
// a reload / remat.
|
|
if (SSorRMId)
|
|
DEBUG(dbgs() << "Reusing RM#"
|
|
<< SSorRMId-VirtRegMap::MAX_STACK_SLOT-1);
|
|
else
|
|
DEBUG(dbgs() << "Reusing SS#" << SSorRMId);
|
|
DEBUG(dbgs() << " from physreg "
|
|
<< TRI->getName(InReg) << " for vreg"
|
|
<< VirtReg <<" instead of reloading into physreg "
|
|
<< TRI->getName(Phys) << '\n');
|
|
|
|
// Reusing a physreg may resurrect it. But we expect ProcessUses to update
|
|
// the kill flags for the current instruction after processing it.
|
|
|
|
++NumOmitted;
|
|
continue;
|
|
} else if (InReg && InReg != Phys) {
|
|
if (SSorRMId)
|
|
DEBUG(dbgs() << "Reusing RM#"
|
|
<< SSorRMId-VirtRegMap::MAX_STACK_SLOT-1);
|
|
else
|
|
DEBUG(dbgs() << "Reusing SS#" << SSorRMId);
|
|
DEBUG(dbgs() << " from physreg "
|
|
<< TRI->getName(InReg) << " for vreg"
|
|
<< VirtReg <<" by copying it into physreg "
|
|
<< TRI->getName(Phys) << '\n');
|
|
|
|
// If the reloaded / remat value is available in another register,
|
|
// copy it to the desired register.
|
|
|
|
// Back-schedule reloads and remats.
|
|
MachineBasicBlock::iterator InsertLoc =
|
|
ComputeReloadLoc(MII, MBB->begin(), Phys, TRI, DoReMat, SSorRMId, TII,
|
|
*MBB->getParent());
|
|
MachineInstr *CopyMI = BuildMI(*MBB, InsertLoc, MI->getDebugLoc(),
|
|
TII->get(TargetOpcode::COPY), Phys)
|
|
.addReg(InReg, RegState::Kill);
|
|
|
|
// This invalidates Phys.
|
|
Spills.ClobberPhysReg(Phys);
|
|
// Remember it's available.
|
|
Spills.addAvailable(SSorRMId, Phys);
|
|
|
|
CopyMI->setAsmPrinterFlag(MachineInstr::ReloadReuse);
|
|
UpdateKills(*CopyMI, TRI, RegKills, KillOps);
|
|
|
|
DEBUG(dbgs() << '\t' << *CopyMI);
|
|
++NumCopified;
|
|
continue;
|
|
}
|
|
|
|
// Back-schedule reloads and remats.
|
|
MachineBasicBlock::iterator InsertLoc =
|
|
ComputeReloadLoc(MII, MBB->begin(), Phys, TRI, DoReMat, SSorRMId, TII,
|
|
*MBB->getParent());
|
|
|
|
if (VRM->isReMaterialized(VirtReg)) {
|
|
ReMaterialize(*MBB, InsertLoc, Phys, VirtReg, TII, TRI, *VRM);
|
|
} else {
|
|
const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
|
|
TII->loadRegFromStackSlot(*MBB, InsertLoc, Phys, SSorRMId, RC, TRI);
|
|
MachineInstr *LoadMI = prior(InsertLoc);
|
|
VRM->addSpillSlotUse(SSorRMId, LoadMI);
|
|
++NumLoads;
|
|
DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size()));
|
|
}
|
|
|
|
// This invalidates Phys.
|
|
Spills.ClobberPhysReg(Phys);
|
|
// Remember it's available.
|
|
Spills.addAvailable(SSorRMId, Phys);
|
|
|
|
UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
|
|
DEBUG(dbgs() << '\t' << *prior(MII));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// InsertSpills - Insert spills after MI if requested by VRM. Return
|
|
/// true if spills were inserted.
|
|
bool LocalRewriter::InsertSpills(MachineInstr *MI) {
|
|
if (!VRM->isSpillPt(MI))
|
|
return false;
|
|
MachineBasicBlock::iterator MII = MI;
|
|
std::vector<std::pair<unsigned,bool> > &SpillRegs =
|
|
VRM->getSpillPtSpills(MI);
|
|
for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
|
|
unsigned VirtReg = SpillRegs[i].first;
|
|
bool isKill = SpillRegs[i].second;
|
|
if (!VRM->getPreSplitReg(VirtReg))
|
|
continue; // Split interval spilled again.
|
|
const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
|
|
unsigned Phys = VRM->getPhys(VirtReg);
|
|
int StackSlot = VRM->getStackSlot(VirtReg);
|
|
MachineBasicBlock::iterator oldNextMII = llvm::next(MII);
|
|
TII->storeRegToStackSlot(*MBB, llvm::next(MII), Phys, isKill, StackSlot,
|
|
RC, TRI);
|
|
MachineInstr *StoreMI = prior(oldNextMII);
|
|
VRM->addSpillSlotUse(StackSlot, StoreMI);
|
|
DEBUG(dbgs() << "Store:\t" << *StoreMI);
|
|
VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/// ProcessUses - Process all of MI's spilled operands and all available
|
|
/// operands.
|
|
void LocalRewriter::ProcessUses(MachineInstr &MI, AvailableSpills &Spills,
|
|
std::vector<MachineInstr*> &MaybeDeadStores,
|
|
BitVector &RegKills,
|
|
ReuseInfo &ReusedOperands,
|
|
std::vector<MachineOperand*> &KillOps) {
|
|
// Clear kill info.
|
|
SmallSet<unsigned, 2> KilledMIRegs;
|
|
SmallVector<unsigned, 4> VirtUseOps;
|
|
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI.getOperand(i);
|
|
if (!MO.isReg() || MO.getReg() == 0)
|
|
continue; // Ignore non-register operands.
|
|
|
|
unsigned VirtReg = MO.getReg();
|
|
|
|
if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
|
|
// Ignore physregs for spilling, but remember that it is used by this
|
|
// function.
|
|
MRI->setPhysRegUsed(VirtReg);
|
|
continue;
|
|
}
|
|
|
|
// We want to process implicit virtual register uses first.
|
|
if (MO.isImplicit())
|
|
// If the virtual register is implicitly defined, emit a implicit_def
|
|
// before so scavenger knows it's "defined".
|
|
// FIXME: This is a horrible hack done the by register allocator to
|
|
// remat a definition with virtual register operand.
|
|
VirtUseOps.insert(VirtUseOps.begin(), i);
|
|
else
|
|
VirtUseOps.push_back(i);
|
|
|
|
// A partial def causes problems because the same operand both reads and
|
|
// writes the register. This rewriter is designed to rewrite uses and defs
|
|
// separately, so a partial def would already have been rewritten to a
|
|
// physreg by the time we get to processing defs.
|
|
// Add an implicit use operand to model the partial def.
|
|
if (MO.isDef() && MO.getSubReg() && MI.readsVirtualRegister(VirtReg) &&
|
|
MI.findRegisterUseOperandIdx(VirtReg) == -1) {
|
|
VirtUseOps.insert(VirtUseOps.begin(), MI.getNumOperands());
|
|
MI.addOperand(MachineOperand::CreateReg(VirtReg,
|
|
false, // isDef
|
|
true)); // isImplicit
|
|
DEBUG(dbgs() << "Partial redef: " << MI);
|
|
}
|
|
}
|
|
|
|
// Process all of the spilled uses and all non spilled reg references.
|
|
SmallVector<int, 2> PotentialDeadStoreSlots;
|
|
KilledMIRegs.clear();
|
|
for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
|
|
unsigned i = VirtUseOps[j];
|
|
unsigned VirtReg = MI.getOperand(i).getReg();
|
|
assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
|
|
"Not a virtual register?");
|
|
|
|
unsigned SubIdx = MI.getOperand(i).getSubReg();
|
|
if (VRM->isAssignedReg(VirtReg)) {
|
|
// This virtual register was assigned a physreg!
|
|
unsigned Phys = VRM->getPhys(VirtReg);
|
|
MRI->setPhysRegUsed(Phys);
|
|
if (MI.getOperand(i).isDef())
|
|
ReusedOperands.markClobbered(Phys);
|
|
substitutePhysReg(MI.getOperand(i), Phys, *TRI);
|
|
if (VRM->isImplicitlyDefined(VirtReg))
|
|
// FIXME: Is this needed?
|
|
BuildMI(*MBB, &MI, MI.getDebugLoc(),
|
|
TII->get(TargetOpcode::IMPLICIT_DEF), Phys);
|
|
continue;
|
|
}
|
|
|
|
// This virtual register is now known to be a spilled value.
|
|
if (!MI.getOperand(i).isUse())
|
|
continue; // Handle defs in the loop below (handle use&def here though)
|
|
|
|
bool AvoidReload = MI.getOperand(i).isUndef();
|
|
// Check if it is defined by an implicit def. It should not be spilled.
|
|
// Note, this is for correctness reason. e.g.
|
|
// 8 %reg1024<def> = IMPLICIT_DEF
|
|
// 12 %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
|
|
// The live range [12, 14) are not part of the r1024 live interval since
|
|
// it's defined by an implicit def. It will not conflicts with live
|
|
// interval of r1025. Now suppose both registers are spilled, you can
|
|
// easily see a situation where both registers are reloaded before
|
|
// the INSERT_SUBREG and both target registers that would overlap.
|
|
bool DoReMat = VRM->isReMaterialized(VirtReg);
|
|
int SSorRMId = DoReMat
|
|
? VRM->getReMatId(VirtReg) : VRM->getStackSlot(VirtReg);
|
|
int ReuseSlot = SSorRMId;
|
|
|
|
// Check to see if this stack slot is available.
|
|
unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
|
|
|
|
// If this is a sub-register use, make sure the reuse register is in the
|
|
// right register class. For example, for x86 not all of the 32-bit
|
|
// registers have accessible sub-registers.
|
|
// Similarly so for EXTRACT_SUBREG. Consider this:
|
|
// EDI = op
|
|
// MOV32_mr fi#1, EDI
|
|
// ...
|
|
// = EXTRACT_SUBREG fi#1
|
|
// fi#1 is available in EDI, but it cannot be reused because it's not in
|
|
// the right register file.
|
|
if (PhysReg && !AvoidReload && SubIdx) {
|
|
const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
|
|
if (!RC->contains(PhysReg))
|
|
PhysReg = 0;
|
|
}
|
|
|
|
if (PhysReg && !AvoidReload) {
|
|
// This spilled operand might be part of a two-address operand. If this
|
|
// is the case, then changing it will necessarily require changing the
|
|
// def part of the instruction as well. However, in some cases, we
|
|
// aren't allowed to modify the reused register. If none of these cases
|
|
// apply, reuse it.
|
|
bool CanReuse = true;
|
|
bool isTied = MI.isRegTiedToDefOperand(i);
|
|
if (isTied) {
|
|
// Okay, we have a two address operand. We can reuse this physreg as
|
|
// long as we are allowed to clobber the value and there isn't an
|
|
// earlier def that has already clobbered the physreg.
|
|
CanReuse = !ReusedOperands.isClobbered(PhysReg) &&
|
|
Spills.canClobberPhysReg(PhysReg);
|
|
}
|
|
// If this is an asm, and a PhysReg alias is used elsewhere as an
|
|
// earlyclobber operand, we can't also use it as an input.
|
|
if (MI.isInlineAsm()) {
|
|
for (unsigned k = 0, e = MI.getNumOperands(); k != e; ++k) {
|
|
MachineOperand &MOk = MI.getOperand(k);
|
|
if (MOk.isReg() && MOk.isEarlyClobber() &&
|
|
TRI->regsOverlap(MOk.getReg(), PhysReg)) {
|
|
CanReuse = false;
|
|
DEBUG(dbgs() << "Not reusing physreg " << TRI->getName(PhysReg)
|
|
<< " for vreg" << VirtReg << ": " << MOk << '\n');
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (CanReuse) {
|
|
// If this stack slot value is already available, reuse it!
|
|
if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
|
|
DEBUG(dbgs() << "Reusing RM#"
|
|
<< ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
|
|
else
|
|
DEBUG(dbgs() << "Reusing SS#" << ReuseSlot);
|
|
DEBUG(dbgs() << " from physreg "
|
|
<< TRI->getName(PhysReg) << " for vreg"
|
|
<< VirtReg <<" instead of reloading into physreg "
|
|
<< TRI->getName(VRM->getPhys(VirtReg)) << '\n');
|
|
unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
|
|
MI.getOperand(i).setReg(RReg);
|
|
MI.getOperand(i).setSubReg(0);
|
|
|
|
// Reusing a physreg may resurrect it. But we expect ProcessUses to
|
|
// update the kill flags for the current instr after processing it.
|
|
|
|
// The only technical detail we have is that we don't know that
|
|
// PhysReg won't be clobbered by a reloaded stack slot that occurs
|
|
// later in the instruction. In particular, consider 'op V1, V2'.
|
|
// If V1 is available in physreg R0, we would choose to reuse it
|
|
// here, instead of reloading it into the register the allocator
|
|
// indicated (say R1). However, V2 might have to be reloaded
|
|
// later, and it might indicate that it needs to live in R0. When
|
|
// this occurs, we need to have information available that
|
|
// indicates it is safe to use R1 for the reload instead of R0.
|
|
//
|
|
// To further complicate matters, we might conflict with an alias,
|
|
// or R0 and R1 might not be compatible with each other. In this
|
|
// case, we actually insert a reload for V1 in R1, ensuring that
|
|
// we can get at R0 or its alias.
|
|
ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
|
|
VRM->getPhys(VirtReg), VirtReg);
|
|
if (isTied)
|
|
// Only mark it clobbered if this is a use&def operand.
|
|
ReusedOperands.markClobbered(PhysReg);
|
|
++NumReused;
|
|
|
|
if (MI.getOperand(i).isKill() &&
|
|
ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
|
|
|
|
// The store of this spilled value is potentially dead, but we
|
|
// won't know for certain until we've confirmed that the re-use
|
|
// above is valid, which means waiting until the other operands
|
|
// are processed. For now we just track the spill slot, we'll
|
|
// remove it after the other operands are processed if valid.
|
|
|
|
PotentialDeadStoreSlots.push_back(ReuseSlot);
|
|
}
|
|
|
|
// Mark is isKill if it's there no other uses of the same virtual
|
|
// register and it's not a two-address operand. IsKill will be
|
|
// unset if reg is reused.
|
|
if (!isTied && KilledMIRegs.count(VirtReg) == 0) {
|
|
MI.getOperand(i).setIsKill();
|
|
KilledMIRegs.insert(VirtReg);
|
|
}
|
|
continue;
|
|
} // CanReuse
|
|
|
|
// Otherwise we have a situation where we have a two-address instruction
|
|
// whose mod/ref operand needs to be reloaded. This reload is already
|
|
// available in some register "PhysReg", but if we used PhysReg as the
|
|
// operand to our 2-addr instruction, the instruction would modify
|
|
// PhysReg. This isn't cool if something later uses PhysReg and expects
|
|
// to get its initial value.
|
|
//
|
|
// To avoid this problem, and to avoid doing a load right after a store,
|
|
// we emit a copy from PhysReg into the designated register for this
|
|
// operand.
|
|
//
|
|
// This case also applies to an earlyclobber'd PhysReg.
|
|
unsigned DesignatedReg = VRM->getPhys(VirtReg);
|
|
assert(DesignatedReg && "Must map virtreg to physreg!");
|
|
|
|
// Note that, if we reused a register for a previous operand, the
|
|
// register we want to reload into might not actually be
|
|
// available. If this occurs, use the register indicated by the
|
|
// reuser.
|
|
if (ReusedOperands.hasReuses())
|
|
DesignatedReg = ReusedOperands.
|
|
GetRegForReload(VirtReg, DesignatedReg, &MI, Spills,
|
|
MaybeDeadStores, RegKills, KillOps, *VRM);
|
|
|
|
// If the mapped designated register is actually the physreg we have
|
|
// incoming, we don't need to inserted a dead copy.
|
|
if (DesignatedReg == PhysReg) {
|
|
// If this stack slot value is already available, reuse it!
|
|
if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
|
|
DEBUG(dbgs() << "Reusing RM#"
|
|
<< ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
|
|
else
|
|
DEBUG(dbgs() << "Reusing SS#" << ReuseSlot);
|
|
DEBUG(dbgs() << " from physreg " << TRI->getName(PhysReg)
|
|
<< " for vreg" << VirtReg
|
|
<< " instead of reloading into same physreg.\n");
|
|
unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
|
|
MI.getOperand(i).setReg(RReg);
|
|
MI.getOperand(i).setSubReg(0);
|
|
ReusedOperands.markClobbered(RReg);
|
|
++NumReused;
|
|
continue;
|
|
}
|
|
|
|
MRI->setPhysRegUsed(DesignatedReg);
|
|
ReusedOperands.markClobbered(DesignatedReg);
|
|
|
|
// Back-schedule reloads and remats.
|
|
MachineBasicBlock::iterator InsertLoc =
|
|
ComputeReloadLoc(&MI, MBB->begin(), PhysReg, TRI, DoReMat,
|
|
SSorRMId, TII, *MBB->getParent());
|
|
MachineInstr *CopyMI = BuildMI(*MBB, InsertLoc, MI.getDebugLoc(),
|
|
TII->get(TargetOpcode::COPY),
|
|
DesignatedReg).addReg(PhysReg);
|
|
CopyMI->setAsmPrinterFlag(MachineInstr::ReloadReuse);
|
|
UpdateKills(*CopyMI, TRI, RegKills, KillOps);
|
|
|
|
// This invalidates DesignatedReg.
|
|
Spills.ClobberPhysReg(DesignatedReg);
|
|
|
|
Spills.addAvailable(ReuseSlot, DesignatedReg);
|
|
unsigned RReg =
|
|
SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
|
|
MI.getOperand(i).setReg(RReg);
|
|
MI.getOperand(i).setSubReg(0);
|
|
DEBUG(dbgs() << '\t' << *prior(InsertLoc));
|
|
++NumReused;
|
|
continue;
|
|
} // if (PhysReg)
|
|
|
|
// Otherwise, reload it and remember that we have it.
|
|
PhysReg = VRM->getPhys(VirtReg);
|
|
assert(PhysReg && "Must map virtreg to physreg!");
|
|
|
|
// Note that, if we reused a register for a previous operand, the
|
|
// register we want to reload into might not actually be
|
|
// available. If this occurs, use the register indicated by the
|
|
// reuser.
|
|
if (ReusedOperands.hasReuses())
|
|
PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
|
|
Spills, MaybeDeadStores, RegKills, KillOps, *VRM);
|
|
|
|
MRI->setPhysRegUsed(PhysReg);
|
|
ReusedOperands.markClobbered(PhysReg);
|
|
if (AvoidReload)
|
|
++NumAvoided;
|
|
else {
|
|
// Back-schedule reloads and remats.
|
|
MachineBasicBlock::iterator InsertLoc =
|
|
ComputeReloadLoc(MI, MBB->begin(), PhysReg, TRI, DoReMat,
|
|
SSorRMId, TII, *MBB->getParent());
|
|
|
|
if (DoReMat) {
|
|
ReMaterialize(*MBB, InsertLoc, PhysReg, VirtReg, TII, TRI, *VRM);
|
|
} else {
|
|
const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
|
|
TII->loadRegFromStackSlot(*MBB, InsertLoc, PhysReg, SSorRMId, RC,TRI);
|
|
MachineInstr *LoadMI = prior(InsertLoc);
|
|
VRM->addSpillSlotUse(SSorRMId, LoadMI);
|
|
++NumLoads;
|
|
DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size()));
|
|
}
|
|
// This invalidates PhysReg.
|
|
Spills.ClobberPhysReg(PhysReg);
|
|
|
|
// Any stores to this stack slot are not dead anymore.
|
|
if (!DoReMat)
|
|
MaybeDeadStores[SSorRMId] = NULL;
|
|
Spills.addAvailable(SSorRMId, PhysReg);
|
|
// Assumes this is the last use. IsKill will be unset if reg is reused
|
|
// unless it's a two-address operand.
|
|
if (!MI.isRegTiedToDefOperand(i) &&
|
|
KilledMIRegs.count(VirtReg) == 0) {
|
|
MI.getOperand(i).setIsKill();
|
|
KilledMIRegs.insert(VirtReg);
|
|
}
|
|
|
|
UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
|
|
DEBUG(dbgs() << '\t' << *prior(InsertLoc));
|
|
}
|
|
unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
|
|
MI.getOperand(i).setReg(RReg);
|
|
MI.getOperand(i).setSubReg(0);
|
|
}
|
|
|
|
// Ok - now we can remove stores that have been confirmed dead.
|
|
for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) {
|
|
// This was the last use and the spilled value is still available
|
|
// for reuse. That means the spill was unnecessary!
|
|
int PDSSlot = PotentialDeadStoreSlots[j];
|
|
MachineInstr* DeadStore = MaybeDeadStores[PDSSlot];
|
|
if (DeadStore) {
|
|
DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore);
|
|
InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
|
|
EraseInstr(DeadStore);
|
|
MaybeDeadStores[PDSSlot] = NULL;
|
|
++NumDSE;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// rewriteMBB - Keep track of which spills are available even after the
|
|
/// register allocator is done with them. If possible, avoid reloading vregs.
|
|
void
|
|
LocalRewriter::RewriteMBB(LiveIntervals *LIs,
|
|
AvailableSpills &Spills, BitVector &RegKills,
|
|
std::vector<MachineOperand*> &KillOps) {
|
|
|
|
DEBUG(dbgs() << "\n**** Local spiller rewriting MBB '"
|
|
<< MBB->getName() << "':\n");
|
|
|
|
MachineFunction &MF = *MBB->getParent();
|
|
|
|
// MaybeDeadStores - When we need to write a value back into a stack slot,
|
|
// keep track of the inserted store. If the stack slot value is never read
|
|
// (because the value was used from some available register, for example), and
|
|
// subsequently stored to, the original store is dead. This map keeps track
|
|
// of inserted stores that are not used. If we see a subsequent store to the
|
|
// same stack slot, the original store is deleted.
|
|
std::vector<MachineInstr*> MaybeDeadStores;
|
|
MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
|
|
|
|
// ReMatDefs - These are rematerializable def MIs which are not deleted.
|
|
SmallSet<MachineInstr*, 4> ReMatDefs;
|
|
|
|
// Keep track of the registers we have already spilled in case there are
|
|
// multiple defs of the same register in MI.
|
|
SmallSet<unsigned, 8> SpilledMIRegs;
|
|
|
|
RegKills.reset();
|
|
KillOps.clear();
|
|
KillOps.resize(TRI->getNumRegs(), NULL);
|
|
|
|
DistanceMap.clear();
|
|
for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
|
|
MII != E; ) {
|
|
MachineBasicBlock::iterator NextMII = llvm::next(MII);
|
|
|
|
if (OptimizeByUnfold(MII, MaybeDeadStores, Spills, RegKills, KillOps))
|
|
NextMII = llvm::next(MII);
|
|
|
|
if (InsertEmergencySpills(MII))
|
|
NextMII = llvm::next(MII);
|
|
|
|
InsertRestores(MII, Spills, RegKills, KillOps);
|
|
|
|
if (InsertSpills(MII))
|
|
NextMII = llvm::next(MII);
|
|
|
|
bool Erased = false;
|
|
bool BackTracked = false;
|
|
MachineInstr &MI = *MII;
|
|
|
|
// Remember DbgValue's which reference stack slots.
|
|
if (MI.isDebugValue() && MI.getOperand(0).isFI())
|
|
Slot2DbgValues[MI.getOperand(0).getIndex()].push_back(&MI);
|
|
|
|
/// ReusedOperands - Keep track of operand reuse in case we need to undo
|
|
/// reuse.
|
|
ReuseInfo ReusedOperands(MI, TRI);
|
|
|
|
ProcessUses(MI, Spills, MaybeDeadStores, RegKills, ReusedOperands, KillOps);
|
|
|
|
DEBUG(dbgs() << '\t' << MI);
|
|
|
|
|
|
// If we have folded references to memory operands, make sure we clear all
|
|
// physical registers that may contain the value of the spilled virtual
|
|
// register
|
|
|
|
// Copy the folded virts to a small vector, we may change MI2VirtMap.
|
|
SmallVector<std::pair<unsigned, VirtRegMap::ModRef>, 4> FoldedVirts;
|
|
// C++0x FTW!
|
|
for (std::pair<VirtRegMap::MI2VirtMapTy::const_iterator,
|
|
VirtRegMap::MI2VirtMapTy::const_iterator> FVRange =
|
|
VRM->getFoldedVirts(&MI);
|
|
FVRange.first != FVRange.second; ++FVRange.first)
|
|
FoldedVirts.push_back(FVRange.first->second);
|
|
|
|
SmallSet<int, 2> FoldedSS;
|
|
for (unsigned FVI = 0, FVE = FoldedVirts.size(); FVI != FVE; ++FVI) {
|
|
unsigned VirtReg = FoldedVirts[FVI].first;
|
|
VirtRegMap::ModRef MR = FoldedVirts[FVI].second;
|
|
DEBUG(dbgs() << "Folded vreg: " << VirtReg << " MR: " << MR);
|
|
|
|
int SS = VRM->getStackSlot(VirtReg);
|
|
if (SS == VirtRegMap::NO_STACK_SLOT)
|
|
continue;
|
|
FoldedSS.insert(SS);
|
|
DEBUG(dbgs() << " - StackSlot: " << SS << "\n");
|
|
|
|
// If this folded instruction is just a use, check to see if it's a
|
|
// straight load from the virt reg slot.
|
|
if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
|
|
int FrameIdx;
|
|
unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
|
|
if (DestReg && FrameIdx == SS) {
|
|
// If this spill slot is available, turn it into a copy (or nothing)
|
|
// instead of leaving it as a load!
|
|
if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
|
|
DEBUG(dbgs() << "Promoted Load To Copy: " << MI);
|
|
if (DestReg != InReg) {
|
|
MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg);
|
|
MachineInstr *CopyMI = BuildMI(*MBB, &MI, MI.getDebugLoc(),
|
|
TII->get(TargetOpcode::COPY))
|
|
.addReg(DestReg, RegState::Define, DefMO->getSubReg())
|
|
.addReg(InReg, RegState::Kill);
|
|
// Revisit the copy so we make sure to notice the effects of the
|
|
// operation on the destreg (either needing to RA it if it's
|
|
// virtual or needing to clobber any values if it's physical).
|
|
NextMII = CopyMI;
|
|
NextMII->setAsmPrinterFlag(MachineInstr::ReloadReuse);
|
|
BackTracked = true;
|
|
} else {
|
|
DEBUG(dbgs() << "Removing now-noop copy: " << MI);
|
|
// InvalidateKills resurrects any prior kill of the copy's source
|
|
// allowing the source reg to be reused in place of the copy.
|
|
Spills.disallowClobberPhysReg(InReg);
|
|
}
|
|
|
|
InvalidateKills(MI, TRI, RegKills, KillOps);
|
|
EraseInstr(&MI);
|
|
Erased = true;
|
|
goto ProcessNextInst;
|
|
}
|
|
} else {
|
|
unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
|
|
SmallVector<MachineInstr*, 4> NewMIs;
|
|
if (PhysReg &&
|
|
TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)){
|
|
MBB->insert(MII, NewMIs[0]);
|
|
InvalidateKills(MI, TRI, RegKills, KillOps);
|
|
EraseInstr(&MI);
|
|
Erased = true;
|
|
--NextMII; // backtrack to the unfolded instruction.
|
|
BackTracked = true;
|
|
goto ProcessNextInst;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If this reference is not a use, any previous store is now dead.
|
|
// Otherwise, the store to this stack slot is not dead anymore.
|
|
MachineInstr* DeadStore = MaybeDeadStores[SS];
|
|
if (DeadStore) {
|
|
bool isDead = !(MR & VirtRegMap::isRef);
|
|
MachineInstr *NewStore = NULL;
|
|
if (MR & VirtRegMap::isModRef) {
|
|
unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
|
|
SmallVector<MachineInstr*, 4> NewMIs;
|
|
// We can reuse this physreg as long as we are allowed to clobber
|
|
// the value and there isn't an earlier def that has already clobbered
|
|
// the physreg.
|
|
if (PhysReg &&
|
|
!ReusedOperands.isClobbered(PhysReg) &&
|
|
Spills.canClobberPhysReg(PhysReg) &&
|
|
!TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
|
|
MachineOperand *KillOpnd =
|
|
DeadStore->findRegisterUseOperand(PhysReg, true);
|
|
// Note, if the store is storing a sub-register, it's possible the
|
|
// super-register is needed below.
|
|
if (KillOpnd && !KillOpnd->getSubReg() &&
|
|
TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
|
|
MBB->insert(MII, NewMIs[0]);
|
|
NewStore = NewMIs[1];
|
|
MBB->insert(MII, NewStore);
|
|
VRM->addSpillSlotUse(SS, NewStore);
|
|
InvalidateKills(MI, TRI, RegKills, KillOps);
|
|
EraseInstr(&MI);
|
|
Erased = true;
|
|
--NextMII;
|
|
--NextMII; // backtrack to the unfolded instruction.
|
|
BackTracked = true;
|
|
isDead = true;
|
|
++NumSUnfold;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (isDead) { // Previous store is dead.
|
|
// If we get here, the store is dead, nuke it now.
|
|
DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore);
|
|
InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
|
|
EraseInstr(DeadStore);
|
|
if (!NewStore)
|
|
++NumDSE;
|
|
}
|
|
|
|
MaybeDeadStores[SS] = NULL;
|
|
if (NewStore) {
|
|
// Treat this store as a spill merged into a copy. That makes the
|
|
// stack slot value available.
|
|
VRM->virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
|
|
goto ProcessNextInst;
|
|
}
|
|
}
|
|
|
|
// If the spill slot value is available, and this is a new definition of
|
|
// the value, the value is not available anymore.
|
|
if (MR & VirtRegMap::isMod) {
|
|
// Notice that the value in this stack slot has been modified.
|
|
Spills.ModifyStackSlotOrReMat(SS);
|
|
|
|
// If this is *just* a mod of the value, check to see if this is just a
|
|
// store to the spill slot (i.e. the spill got merged into the copy). If
|
|
// so, realize that the vreg is available now, and add the store to the
|
|
// MaybeDeadStore info.
|
|
int StackSlot;
|
|
if (!(MR & VirtRegMap::isRef)) {
|
|
if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
|
|
assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
|
|
"Src hasn't been allocated yet?");
|
|
|
|
if (CommuteToFoldReload(MII, VirtReg, SrcReg, StackSlot,
|
|
Spills, RegKills, KillOps, TRI)) {
|
|
NextMII = llvm::next(MII);
|
|
BackTracked = true;
|
|
goto ProcessNextInst;
|
|
}
|
|
|
|
// Okay, this is certainly a store of SrcReg to [StackSlot]. Mark
|
|
// this as a potentially dead store in case there is a subsequent
|
|
// store into the stack slot without a read from it.
|
|
MaybeDeadStores[StackSlot] = &MI;
|
|
|
|
// If the stack slot value was previously available in some other
|
|
// register, change it now. Otherwise, make the register
|
|
// available in PhysReg.
|
|
Spills.addAvailable(StackSlot, SrcReg, MI.killsRegister(SrcReg));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Process all of the spilled defs.
|
|
SpilledMIRegs.clear();
|
|
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI.getOperand(i);
|
|
if (!(MO.isReg() && MO.getReg() && MO.isDef()))
|
|
continue;
|
|
|
|
unsigned VirtReg = MO.getReg();
|
|
if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
|
|
// Check to see if this is a noop copy. If so, eliminate the
|
|
// instruction before considering the dest reg to be changed.
|
|
// Also check if it's copying from an "undef", if so, we can't
|
|
// eliminate this or else the undef marker is lost and it will
|
|
// confuses the scavenger. This is extremely rare.
|
|
if (MI.isIdentityCopy() && !MI.getOperand(1).isUndef() &&
|
|
MI.getNumOperands() == 2) {
|
|
++NumDCE;
|
|
DEBUG(dbgs() << "Removing now-noop copy: " << MI);
|
|
SmallVector<unsigned, 2> KillRegs;
|
|
InvalidateKills(MI, TRI, RegKills, KillOps, &KillRegs);
|
|
if (MO.isDead() && !KillRegs.empty()) {
|
|
// Source register or an implicit super/sub-register use is killed.
|
|
assert(TRI->regsOverlap(KillRegs[0], MI.getOperand(0).getReg()));
|
|
// Last def is now dead.
|
|
TransferDeadness(MI.getOperand(1).getReg(), RegKills, KillOps);
|
|
}
|
|
EraseInstr(&MI);
|
|
Erased = true;
|
|
Spills.disallowClobberPhysReg(VirtReg);
|
|
goto ProcessNextInst;
|
|
}
|
|
|
|
// If it's not a no-op copy, it clobbers the value in the destreg.
|
|
Spills.ClobberPhysReg(VirtReg);
|
|
ReusedOperands.markClobbered(VirtReg);
|
|
|
|
// Check to see if this instruction is a load from a stack slot into
|
|
// a register. If so, this provides the stack slot value in the reg.
|
|
int FrameIdx;
|
|
if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
|
|
assert(DestReg == VirtReg && "Unknown load situation!");
|
|
|
|
// If it is a folded reference, then it's not safe to clobber.
|
|
bool Folded = FoldedSS.count(FrameIdx);
|
|
// Otherwise, if it wasn't available, remember that it is now!
|
|
Spills.addAvailable(FrameIdx, DestReg, !Folded);
|
|
goto ProcessNextInst;
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
unsigned SubIdx = MO.getSubReg();
|
|
bool DoReMat = VRM->isReMaterialized(VirtReg);
|
|
if (DoReMat)
|
|
ReMatDefs.insert(&MI);
|
|
|
|
// The only vregs left are stack slot definitions.
|
|
int StackSlot = VRM->getStackSlot(VirtReg);
|
|
const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
|
|
|
|
// If this def is part of a two-address operand, make sure to execute
|
|
// the store from the correct physical register.
|
|
unsigned PhysReg;
|
|
unsigned TiedOp;
|
|
if (MI.isRegTiedToUseOperand(i, &TiedOp)) {
|
|
PhysReg = MI.getOperand(TiedOp).getReg();
|
|
if (SubIdx) {
|
|
unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
|
|
assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
|
|
"Can't find corresponding super-register!");
|
|
PhysReg = SuperReg;
|
|
}
|
|
} else {
|
|
PhysReg = VRM->getPhys(VirtReg);
|
|
if (ReusedOperands.isClobbered(PhysReg)) {
|
|
// Another def has taken the assigned physreg. It must have been a
|
|
// use&def which got it due to reuse. Undo the reuse!
|
|
PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
|
|
Spills, MaybeDeadStores, RegKills, KillOps, *VRM);
|
|
}
|
|
}
|
|
|
|
assert(PhysReg && "VR not assigned a physical register?");
|
|
MRI->setPhysRegUsed(PhysReg);
|
|
unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
|
|
ReusedOperands.markClobbered(RReg);
|
|
MI.getOperand(i).setReg(RReg);
|
|
MI.getOperand(i).setSubReg(0);
|
|
|
|
if (!MO.isDead() && SpilledMIRegs.insert(VirtReg)) {
|
|
MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
|
|
SpillRegToStackSlot(MII, -1, PhysReg, StackSlot, RC, true,
|
|
LastStore, Spills, ReMatDefs, RegKills, KillOps);
|
|
NextMII = llvm::next(MII);
|
|
|
|
// Check to see if this is a noop copy. If so, eliminate the
|
|
// instruction before considering the dest reg to be changed.
|
|
if (MI.isIdentityCopy()) {
|
|
++NumDCE;
|
|
DEBUG(dbgs() << "Removing now-noop copy: " << MI);
|
|
InvalidateKills(MI, TRI, RegKills, KillOps);
|
|
EraseInstr(&MI);
|
|
Erased = true;
|
|
UpdateKills(*LastStore, TRI, RegKills, KillOps);
|
|
goto ProcessNextInst;
|
|
}
|
|
}
|
|
}
|
|
ProcessNextInst:
|
|
// Delete dead instructions without side effects.
|
|
if (!Erased && !BackTracked && isSafeToDelete(MI)) {
|
|
InvalidateKills(MI, TRI, RegKills, KillOps);
|
|
EraseInstr(&MI);
|
|
Erased = true;
|
|
}
|
|
if (!Erased)
|
|
DistanceMap.insert(std::make_pair(&MI, DistanceMap.size()));
|
|
if (!Erased && !BackTracked) {
|
|
for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II)
|
|
UpdateKills(*II, TRI, RegKills, KillOps);
|
|
}
|
|
MII = NextMII;
|
|
}
|
|
|
|
}
|
|
|
|
llvm::VirtRegRewriter* llvm::createVirtRegRewriter() {
|
|
switch (RewriterOpt) {
|
|
default: llvm_unreachable("Unreachable!");
|
|
case local:
|
|
return new LocalRewriter();
|
|
case trivial:
|
|
return new TrivialRewriter();
|
|
}
|
|
}
|