llvm-6502/utils/TableGen/NeonEmitter.cpp
Bob Wilson b78558c0e1 80-column fixes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121395 91177308-0d34-0410-b5e6-96231b3b80d8
2010-12-09 18:43:35 +00:00

1422 lines
40 KiB
C++

//===- NeonEmitter.cpp - Generate arm_neon.h for use with clang -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend is responsible for emitting arm_neon.h, which includes
// a declaration and definition of each function specified by the ARM NEON
// compiler interface. See ARM document DUI0348B.
//
// Each NEON instruction is implemented in terms of 1 or more functions which
// are suffixed with the element type of the input vectors. Functions may be
// implemented in terms of generic vector operations such as +, *, -, etc. or
// by calling a __builtin_-prefixed function which will be handled by clang's
// CodeGen library.
//
// Additional validation code can be generated by this file when runHeader() is
// called, rather than the normal run() entry point.
//
//===----------------------------------------------------------------------===//
#include "NeonEmitter.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include <string>
using namespace llvm;
/// ParseTypes - break down a string such as "fQf" into a vector of StringRefs,
/// which each StringRef representing a single type declared in the string.
/// for "fQf" we would end up with 2 StringRefs, "f", and "Qf", representing
/// 2xfloat and 4xfloat respectively.
static void ParseTypes(Record *r, std::string &s,
SmallVectorImpl<StringRef> &TV) {
const char *data = s.data();
int len = 0;
for (unsigned i = 0, e = s.size(); i != e; ++i, ++len) {
if (data[len] == 'P' || data[len] == 'Q' || data[len] == 'U')
continue;
switch (data[len]) {
case 'c':
case 's':
case 'i':
case 'l':
case 'h':
case 'f':
break;
default:
throw TGError(r->getLoc(),
"Unexpected letter: " + std::string(data + len, 1));
break;
}
TV.push_back(StringRef(data, len + 1));
data += len + 1;
len = -1;
}
}
/// Widen - Convert a type code into the next wider type. char -> short,
/// short -> int, etc.
static char Widen(const char t) {
switch (t) {
case 'c':
return 's';
case 's':
return 'i';
case 'i':
return 'l';
default: throw "unhandled type in widen!";
}
return '\0';
}
/// Narrow - Convert a type code into the next smaller type. short -> char,
/// float -> half float, etc.
static char Narrow(const char t) {
switch (t) {
case 's':
return 'c';
case 'i':
return 's';
case 'l':
return 'i';
case 'f':
return 'h';
default: throw "unhandled type in narrow!";
}
return '\0';
}
/// For a particular StringRef, return the base type code, and whether it has
/// the quad-vector, polynomial, or unsigned modifiers set.
static char ClassifyType(StringRef ty, bool &quad, bool &poly, bool &usgn) {
unsigned off = 0;
// remember quad.
if (ty[off] == 'Q') {
quad = true;
++off;
}
// remember poly.
if (ty[off] == 'P') {
poly = true;
++off;
}
// remember unsigned.
if (ty[off] == 'U') {
usgn = true;
++off;
}
// base type to get the type string for.
return ty[off];
}
/// ModType - Transform a type code and its modifiers based on a mod code. The
/// mod code definitions may be found at the top of arm_neon.td.
static char ModType(const char mod, char type, bool &quad, bool &poly,
bool &usgn, bool &scal, bool &cnst, bool &pntr) {
switch (mod) {
case 't':
if (poly) {
poly = false;
usgn = true;
}
break;
case 'u':
usgn = true;
poly = false;
if (type == 'f')
type = 'i';
break;
case 'x':
usgn = false;
poly = false;
if (type == 'f')
type = 'i';
break;
case 'f':
if (type == 'h')
quad = true;
type = 'f';
usgn = false;
break;
case 'g':
quad = false;
break;
case 'w':
type = Widen(type);
quad = true;
break;
case 'n':
type = Widen(type);
break;
case 'i':
type = 'i';
scal = true;
break;
case 'l':
type = 'l';
scal = true;
usgn = true;
break;
case 's':
case 'a':
scal = true;
break;
case 'k':
quad = true;
break;
case 'c':
cnst = true;
case 'p':
pntr = true;
scal = true;
break;
case 'h':
type = Narrow(type);
if (type == 'h')
quad = false;
break;
case 'e':
type = Narrow(type);
usgn = true;
break;
default:
break;
}
return type;
}
/// TypeString - for a modifier and type, generate the name of the typedef for
/// that type. QUc -> uint8x8_t.
static std::string TypeString(const char mod, StringRef typestr) {
bool quad = false;
bool poly = false;
bool usgn = false;
bool scal = false;
bool cnst = false;
bool pntr = false;
if (mod == 'v')
return "void";
if (mod == 'i')
return "int";
// base type to get the type string for.
char type = ClassifyType(typestr, quad, poly, usgn);
// Based on the modifying character, change the type and width if necessary.
type = ModType(mod, type, quad, poly, usgn, scal, cnst, pntr);
SmallString<128> s;
if (usgn)
s.push_back('u');
switch (type) {
case 'c':
s += poly ? "poly8" : "int8";
if (scal)
break;
s += quad ? "x16" : "x8";
break;
case 's':
s += poly ? "poly16" : "int16";
if (scal)
break;
s += quad ? "x8" : "x4";
break;
case 'i':
s += "int32";
if (scal)
break;
s += quad ? "x4" : "x2";
break;
case 'l':
s += "int64";
if (scal)
break;
s += quad ? "x2" : "x1";
break;
case 'h':
s += "float16";
if (scal)
break;
s += quad ? "x8" : "x4";
break;
case 'f':
s += "float32";
if (scal)
break;
s += quad ? "x4" : "x2";
break;
default:
throw "unhandled type!";
break;
}
if (mod == '2')
s += "x2";
if (mod == '3')
s += "x3";
if (mod == '4')
s += "x4";
// Append _t, finishing the type string typedef type.
s += "_t";
if (cnst)
s += " const";
if (pntr)
s += " *";
return s.str();
}
/// BuiltinTypeString - for a modifier and type, generate the clang
/// BuiltinsARM.def prototype code for the function. See the top of clang's
/// Builtins.def for a description of the type strings.
static std::string BuiltinTypeString(const char mod, StringRef typestr,
ClassKind ck, bool ret) {
bool quad = false;
bool poly = false;
bool usgn = false;
bool scal = false;
bool cnst = false;
bool pntr = false;
if (mod == 'v')
return "v"; // void
if (mod == 'i')
return "i"; // int
// base type to get the type string for.
char type = ClassifyType(typestr, quad, poly, usgn);
// Based on the modifying character, change the type and width if necessary.
type = ModType(mod, type, quad, poly, usgn, scal, cnst, pntr);
// All pointers are void* pointers. Change type to 'v' now.
if (pntr) {
usgn = false;
poly = false;
type = 'v';
}
// Treat half-float ('h') types as unsigned short ('s') types.
if (type == 'h') {
type = 's';
usgn = true;
}
usgn = usgn | poly | ((ck == ClassI || ck == ClassW) && scal && type != 'f');
if (scal) {
SmallString<128> s;
if (usgn)
s.push_back('U');
else if (type == 'c')
s.push_back('S'); // make chars explicitly signed
if (type == 'l') // 64-bit long
s += "LLi";
else
s.push_back(type);
if (cnst)
s.push_back('C');
if (pntr)
s.push_back('*');
return s.str();
}
// Since the return value must be one type, return a vector type of the
// appropriate width which we will bitcast. An exception is made for
// returning structs of 2, 3, or 4 vectors which are returned in a sret-like
// fashion, storing them to a pointer arg.
if (ret) {
if (mod >= '2' && mod <= '4')
return "vv*"; // void result with void* first argument
if (mod == 'f' || (ck != ClassB && type == 'f'))
return quad ? "V4f" : "V2f";
if (ck != ClassB && type == 's')
return quad ? "V8s" : "V4s";
if (ck != ClassB && type == 'i')
return quad ? "V4i" : "V2i";
if (ck != ClassB && type == 'l')
return quad ? "V2LLi" : "V1LLi";
return quad ? "V16Sc" : "V8Sc";
}
// Non-return array types are passed as individual vectors.
if (mod == '2')
return quad ? "V16ScV16Sc" : "V8ScV8Sc";
if (mod == '3')
return quad ? "V16ScV16ScV16Sc" : "V8ScV8ScV8Sc";
if (mod == '4')
return quad ? "V16ScV16ScV16ScV16Sc" : "V8ScV8ScV8ScV8Sc";
if (mod == 'f' || (ck != ClassB && type == 'f'))
return quad ? "V4f" : "V2f";
if (ck != ClassB && type == 's')
return quad ? "V8s" : "V4s";
if (ck != ClassB && type == 'i')
return quad ? "V4i" : "V2i";
if (ck != ClassB && type == 'l')
return quad ? "V2LLi" : "V1LLi";
return quad ? "V16Sc" : "V8Sc";
}
/// MangleName - Append a type or width suffix to a base neon function name,
/// and insert a 'q' in the appropriate location if the operation works on
/// 128b rather than 64b. E.g. turn "vst2_lane" into "vst2q_lane_f32", etc.
static std::string MangleName(const std::string &name, StringRef typestr,
ClassKind ck) {
if (name == "vcvt_f32_f16")
return name;
bool quad = false;
bool poly = false;
bool usgn = false;
char type = ClassifyType(typestr, quad, poly, usgn);
std::string s = name;
switch (type) {
case 'c':
switch (ck) {
case ClassS: s += poly ? "_p8" : usgn ? "_u8" : "_s8"; break;
case ClassI: s += "_i8"; break;
case ClassW: s += "_8"; break;
default: break;
}
break;
case 's':
switch (ck) {
case ClassS: s += poly ? "_p16" : usgn ? "_u16" : "_s16"; break;
case ClassI: s += "_i16"; break;
case ClassW: s += "_16"; break;
default: break;
}
break;
case 'i':
switch (ck) {
case ClassS: s += usgn ? "_u32" : "_s32"; break;
case ClassI: s += "_i32"; break;
case ClassW: s += "_32"; break;
default: break;
}
break;
case 'l':
switch (ck) {
case ClassS: s += usgn ? "_u64" : "_s64"; break;
case ClassI: s += "_i64"; break;
case ClassW: s += "_64"; break;
default: break;
}
break;
case 'h':
switch (ck) {
case ClassS:
case ClassI: s += "_f16"; break;
case ClassW: s += "_16"; break;
default: break;
}
break;
case 'f':
switch (ck) {
case ClassS:
case ClassI: s += "_f32"; break;
case ClassW: s += "_32"; break;
default: break;
}
break;
default:
throw "unhandled type!";
break;
}
if (ck == ClassB)
s += "_v";
// Insert a 'q' before the first '_' character so that it ends up before
// _lane or _n on vector-scalar operations.
if (quad) {
size_t pos = s.find('_');
s = s.insert(pos, "q");
}
return s;
}
// Generate the string "(argtype a, argtype b, ...)"
static std::string GenArgs(const std::string &proto, StringRef typestr) {
bool define = proto.find('i') != std::string::npos;
char arg = 'a';
std::string s;
s += "(";
for (unsigned i = 1, e = proto.size(); i != e; ++i, ++arg) {
if (define) {
// Immediate macro arguments are used directly instead of being assigned
// to local temporaries; prepend an underscore prefix to make their
// names consistent with the local temporaries.
if (proto[i] == 'i')
s += "__";
} else {
s += TypeString(proto[i], typestr) + " __";
}
s.push_back(arg);
if ((i + 1) < e)
s += ", ";
}
s += ")";
return s;
}
// Macro arguments are not type-checked like inline function arguments, so
// assign them to local temporaries to get the right type checking.
static std::string GenMacroLocals(const std::string &proto, StringRef typestr) {
char arg = 'a';
std::string s;
for (unsigned i = 1, e = proto.size(); i != e; ++i, ++arg) {
// Do not create a temporary for an immediate argument.
// That would defeat the whole point of using a macro!
if (proto[i] == 'i') continue;
s += TypeString(proto[i], typestr) + " __";
s.push_back(arg);
s += " = (";
s.push_back(arg);
s += "); ";
}
s += "\\\n ";
return s;
}
// Use the vmovl builtin to sign-extend or zero-extend a vector.
static std::string Extend(StringRef typestr, const std::string &a) {
std::string s;
s = MangleName("vmovl", typestr, ClassS);
s += "(" + a + ")";
return s;
}
static std::string Duplicate(unsigned nElts, StringRef typestr,
const std::string &a) {
std::string s;
s = "(" + TypeString('d', typestr) + "){ ";
for (unsigned i = 0; i != nElts; ++i) {
s += a;
if ((i + 1) < nElts)
s += ", ";
}
s += " }";
return s;
}
static std::string SplatLane(unsigned nElts, const std::string &vec,
const std::string &lane) {
std::string s = "__builtin_shufflevector(" + vec + ", " + vec;
for (unsigned i = 0; i < nElts; ++i)
s += ", " + lane;
s += ")";
return s;
}
static unsigned GetNumElements(StringRef typestr, bool &quad) {
quad = false;
bool dummy = false;
char type = ClassifyType(typestr, quad, dummy, dummy);
unsigned nElts = 0;
switch (type) {
case 'c': nElts = 8; break;
case 's': nElts = 4; break;
case 'i': nElts = 2; break;
case 'l': nElts = 1; break;
case 'h': nElts = 4; break;
case 'f': nElts = 2; break;
default:
throw "unhandled type!";
break;
}
if (quad) nElts <<= 1;
return nElts;
}
// Generate the definition for this intrinsic, e.g. "a + b" for OpAdd.
static std::string GenOpString(OpKind op, const std::string &proto,
StringRef typestr) {
bool quad;
unsigned nElts = GetNumElements(typestr, quad);
// If this builtin takes an immediate argument, we need to #define it rather
// than use a standard declaration, so that SemaChecking can range check
// the immediate passed by the user.
bool define = proto.find('i') != std::string::npos;
std::string ts = TypeString(proto[0], typestr);
std::string s;
if (op == OpHi || op == OpLo) {
s = "union { " + ts + " r; double d; } u; u.d = ";
} else if (!define) {
s = "return ";
}
switch(op) {
case OpAdd:
s += "__a + __b;";
break;
case OpAddl:
s += Extend(typestr, "__a") + " + " + Extend(typestr, "__b") + ";";
break;
case OpAddw:
s += "__a + " + Extend(typestr, "__b") + ";";
break;
case OpSub:
s += "__a - __b;";
break;
case OpSubl:
s += Extend(typestr, "__a") + " - " + Extend(typestr, "__b") + ";";
break;
case OpSubw:
s += "__a - " + Extend(typestr, "__b") + ";";
break;
case OpMulN:
s += "__a * " + Duplicate(nElts, typestr, "__b") + ";";
break;
case OpMulLane:
s += "__a * " + SplatLane(nElts, "__b", "__c") + ";";
break;
case OpMul:
s += "__a * __b;";
break;
case OpMullN:
s += Extend(typestr, "__a") + " * " +
Extend(typestr, Duplicate(nElts << (int)quad, typestr, "__b")) + ";";
break;
case OpMullLane:
s += Extend(typestr, "__a") + " * " +
Extend(typestr, SplatLane(nElts, "__b", "__c")) + ";";
break;
case OpMull:
s += Extend(typestr, "__a") + " * " + Extend(typestr, "__b") + ";";
break;
case OpMlaN:
s += "__a + (__b * " + Duplicate(nElts, typestr, "__c") + ");";
break;
case OpMlaLane:
s += "__a + (__b * " + SplatLane(nElts, "__c", "__d") + ");";
break;
case OpMla:
s += "__a + (__b * __c);";
break;
case OpMlalN:
s += "__a + (" + Extend(typestr, "__b") + " * " +
Extend(typestr, Duplicate(nElts, typestr, "__c")) + ");";
break;
case OpMlalLane:
s += "__a + (" + Extend(typestr, "__b") + " * " +
Extend(typestr, SplatLane(nElts, "__c", "__d")) + ");";
break;
case OpMlal:
s += "__a + (" + Extend(typestr, "__b") + " * " +
Extend(typestr, "__c") + ");";
break;
case OpMlsN:
s += "__a - (__b * " + Duplicate(nElts, typestr, "__c") + ");";
break;
case OpMlsLane:
s += "__a - (__b * " + SplatLane(nElts, "__c", "__d") + ");";
break;
case OpMls:
s += "__a - (__b * __c);";
break;
case OpMlslN:
s += "__a - (" + Extend(typestr, "__b") + " * " +
Extend(typestr, Duplicate(nElts, typestr, "__c")) + ");";
break;
case OpMlslLane:
s += "__a - (" + Extend(typestr, "__b") + " * " +
Extend(typestr, SplatLane(nElts, "__c", "__d")) + ");";
break;
case OpMlsl:
s += "__a - (" + Extend(typestr, "__b") + " * " +
Extend(typestr, "__c") + ");";
break;
case OpQDMullLane:
s += MangleName("vqdmull", typestr, ClassS) + "(__a, " +
SplatLane(nElts, "__b", "__c") + ");";
break;
case OpQDMlalLane:
s += MangleName("vqdmlal", typestr, ClassS) + "(__a, " +
SplatLane(nElts, "__b", "__c") + ");";
break;
case OpQDMlslLane:
s += MangleName("vqdmlsl", typestr, ClassS) + "(__a, " +
SplatLane(nElts, "__b", "__c") + ");";
break;
case OpQDMulhLane:
s += MangleName("vqdmulh", typestr, ClassS) + "(__a, " +
SplatLane(nElts, "__b", "__c") + ");";
break;
case OpQRDMulhLane:
s += MangleName("vqrdmulh", typestr, ClassS) + "(__a, " +
SplatLane(nElts, "__b", "__c") + ");";
break;
case OpEq:
s += "(" + ts + ")(__a == __b);";
break;
case OpGe:
s += "(" + ts + ")(__a >= __b);";
break;
case OpLe:
s += "(" + ts + ")(__a <= __b);";
break;
case OpGt:
s += "(" + ts + ")(__a > __b);";
break;
case OpLt:
s += "(" + ts + ")(__a < __b);";
break;
case OpNeg:
s += " -__a;";
break;
case OpNot:
s += " ~__a;";
break;
case OpAnd:
s += "__a & __b;";
break;
case OpOr:
s += "__a | __b;";
break;
case OpXor:
s += "__a ^ __b;";
break;
case OpAndNot:
s += "__a & ~__b;";
break;
case OpOrNot:
s += "__a | ~__b;";
break;
case OpCast:
s += "(" + ts + ")__a;";
break;
case OpConcat:
s += "(" + ts + ")__builtin_shufflevector((int64x1_t)__a";
s += ", (int64x1_t)__b, 0, 1);";
break;
case OpHi:
s += "(((float64x2_t)__a)[1]);";
break;
case OpLo:
s += "(((float64x2_t)__a)[0]);";
break;
case OpDup:
s += Duplicate(nElts, typestr, "__a") + ";";
break;
case OpDupLane:
s += SplatLane(nElts, "__a", "__b") + ";";
break;
case OpSelect:
// ((0 & 1) | (~0 & 2))
s += "(" + ts + ")";
ts = TypeString(proto[1], typestr);
s += "((__a & (" + ts + ")__b) | ";
s += "(~__a & (" + ts + ")__c));";
break;
case OpRev16:
s += "__builtin_shufflevector(__a, __a";
for (unsigned i = 2; i <= nElts; i += 2)
for (unsigned j = 0; j != 2; ++j)
s += ", " + utostr(i - j - 1);
s += ");";
break;
case OpRev32: {
unsigned WordElts = nElts >> (1 + (int)quad);
s += "__builtin_shufflevector(__a, __a";
for (unsigned i = WordElts; i <= nElts; i += WordElts)
for (unsigned j = 0; j != WordElts; ++j)
s += ", " + utostr(i - j - 1);
s += ");";
break;
}
case OpRev64: {
unsigned DblWordElts = nElts >> (int)quad;
s += "__builtin_shufflevector(__a, __a";
for (unsigned i = DblWordElts; i <= nElts; i += DblWordElts)
for (unsigned j = 0; j != DblWordElts; ++j)
s += ", " + utostr(i - j - 1);
s += ");";
break;
}
case OpAbdl: {
std::string abd = MangleName("vabd", typestr, ClassS) + "(__a, __b)";
if (typestr[0] != 'U') {
// vabd results are always unsigned and must be zero-extended.
std::string utype = "U" + typestr.str();
s += "(" + TypeString(proto[0], typestr) + ")";
abd = "(" + TypeString('d', utype) + ")" + abd;
s += Extend(utype, abd) + ";";
} else {
s += Extend(typestr, abd) + ";";
}
break;
}
case OpAba:
s += "__a + " + MangleName("vabd", typestr, ClassS) + "(__b, __c);";
break;
case OpAbal: {
s += "__a + ";
std::string abd = MangleName("vabd", typestr, ClassS) + "(__b, __c)";
if (typestr[0] != 'U') {
// vabd results are always unsigned and must be zero-extended.
std::string utype = "U" + typestr.str();
s += "(" + TypeString(proto[0], typestr) + ")";
abd = "(" + TypeString('d', utype) + ")" + abd;
s += Extend(utype, abd) + ";";
} else {
s += Extend(typestr, abd) + ";";
}
break;
}
default:
throw "unknown OpKind!";
break;
}
if (op == OpHi || op == OpLo) {
if (!define)
s += " return";
s += " u.r;";
}
return s;
}
static unsigned GetNeonEnum(const std::string &proto, StringRef typestr) {
unsigned mod = proto[0];
unsigned ret = 0;
if (mod == 'v' || mod == 'f')
mod = proto[1];
bool quad = false;
bool poly = false;
bool usgn = false;
bool scal = false;
bool cnst = false;
bool pntr = false;
// Base type to get the type string for.
char type = ClassifyType(typestr, quad, poly, usgn);
// Based on the modifying character, change the type and width if necessary.
type = ModType(mod, type, quad, poly, usgn, scal, cnst, pntr);
if (usgn)
ret |= 0x08;
if (quad && proto[1] != 'g')
ret |= 0x10;
switch (type) {
case 'c':
ret |= poly ? 5 : 0;
break;
case 's':
ret |= poly ? 6 : 1;
break;
case 'i':
ret |= 2;
break;
case 'l':
ret |= 3;
break;
case 'h':
ret |= 7;
break;
case 'f':
ret |= 4;
break;
default:
throw "unhandled type!";
break;
}
return ret;
}
// Generate the definition for this intrinsic, e.g. __builtin_neon_cls(a)
static std::string GenBuiltin(const std::string &name, const std::string &proto,
StringRef typestr, ClassKind ck) {
std::string s;
// If this builtin returns a struct 2, 3, or 4 vectors, pass it as an implicit
// sret-like argument.
bool sret = (proto[0] >= '2' && proto[0] <= '4');
// If this builtin takes an immediate argument, we need to #define it rather
// than use a standard declaration, so that SemaChecking can range check
// the immediate passed by the user.
bool define = proto.find('i') != std::string::npos;
// Check if the prototype has a scalar operand with the type of the vector
// elements. If not, bitcasting the args will take care of arg checking.
// The actual signedness etc. will be taken care of with special enums.
if (proto.find('s') == std::string::npos)
ck = ClassB;
if (proto[0] != 'v') {
std::string ts = TypeString(proto[0], typestr);
if (define) {
if (sret)
s += ts + " r; ";
else
s += "(" + ts + ")";
} else if (sret) {
s += ts + " r; ";
} else {
s += "return (" + ts + ")";
}
}
bool splat = proto.find('a') != std::string::npos;
s += "__builtin_neon_";
if (splat) {
// Call the non-splat builtin: chop off the "_n" suffix from the name.
std::string vname(name, 0, name.size()-2);
s += MangleName(vname, typestr, ck);
} else {
s += MangleName(name, typestr, ck);
}
s += "(";
// Pass the address of the return variable as the first argument to sret-like
// builtins.
if (sret)
s += "&r, ";
char arg = 'a';
for (unsigned i = 1, e = proto.size(); i != e; ++i, ++arg) {
std::string args = std::string(&arg, 1);
// Use the local temporaries instead of the macro arguments.
args = "__" + args;
bool argQuad = false;
bool argPoly = false;
bool argUsgn = false;
bool argScalar = false;
bool dummy = false;
char argType = ClassifyType(typestr, argQuad, argPoly, argUsgn);
argType = ModType(proto[i], argType, argQuad, argPoly, argUsgn, argScalar,
dummy, dummy);
// Handle multiple-vector values specially, emitting each subvector as an
// argument to the __builtin.
if (proto[i] >= '2' && proto[i] <= '4') {
// Check if an explicit cast is needed.
if (argType != 'c' || argPoly || argUsgn)
args = (argQuad ? "(int8x16_t)" : "(int8x8_t)") + args;
for (unsigned vi = 0, ve = proto[i] - '0'; vi != ve; ++vi) {
s += args + ".val[" + utostr(vi) + "]";
if ((vi + 1) < ve)
s += ", ";
}
if ((i + 1) < e)
s += ", ";
continue;
}
if (splat && (i + 1) == e)
args = Duplicate(GetNumElements(typestr, argQuad), typestr, args);
// Check if an explicit cast is needed.
if ((splat || !argScalar) &&
((ck == ClassB && argType != 'c') || argPoly || argUsgn)) {
std::string argTypeStr = "c";
if (ck != ClassB)
argTypeStr = argType;
if (argQuad)
argTypeStr = "Q" + argTypeStr;
args = "(" + TypeString('d', argTypeStr) + ")" + args;
}
s += args;
if ((i + 1) < e)
s += ", ";
}
// Extra constant integer to hold type class enum for this function, e.g. s8
if (ck == ClassB)
s += ", " + utostr(GetNeonEnum(proto, typestr));
s += ");";
if (proto[0] != 'v' && sret) {
if (define)
s += " r;";
else
s += " return r;";
}
return s;
}
static std::string GenBuiltinDef(const std::string &name,
const std::string &proto,
StringRef typestr, ClassKind ck) {
std::string s("BUILTIN(__builtin_neon_");
// If all types are the same size, bitcasting the args will take care
// of arg checking. The actual signedness etc. will be taken care of with
// special enums.
if (proto.find('s') == std::string::npos)
ck = ClassB;
s += MangleName(name, typestr, ck);
s += ", \"";
for (unsigned i = 0, e = proto.size(); i != e; ++i)
s += BuiltinTypeString(proto[i], typestr, ck, i == 0);
// Extra constant integer to hold type class enum for this function, e.g. s8
if (ck == ClassB)
s += "i";
s += "\", \"n\")";
return s;
}
static std::string GenIntrinsic(const std::string &name,
const std::string &proto,
StringRef outTypeStr, StringRef inTypeStr,
OpKind kind, ClassKind classKind) {
assert(!proto.empty() && "");
bool define = proto.find('i') != std::string::npos;
std::string s;
// static always inline + return type
if (define)
s += "#define ";
else
s += "__ai " + TypeString(proto[0], outTypeStr) + " ";
// Function name with type suffix
std::string mangledName = MangleName(name, outTypeStr, ClassS);
if (outTypeStr != inTypeStr) {
// If the input type is different (e.g., for vreinterpret), append a suffix
// for the input type. String off a "Q" (quad) prefix so that MangleName
// does not insert another "q" in the name.
unsigned typeStrOff = (inTypeStr[0] == 'Q' ? 1 : 0);
StringRef inTypeNoQuad = inTypeStr.substr(typeStrOff);
mangledName = MangleName(mangledName, inTypeNoQuad, ClassS);
}
s += mangledName;
// Function arguments
s += GenArgs(proto, inTypeStr);
// Definition.
if (define) {
s += " __extension__ ({ \\\n ";
s += GenMacroLocals(proto, inTypeStr);
} else {
s += " { \\\n ";
}
if (kind != OpNone)
s += GenOpString(kind, proto, outTypeStr);
else
s += GenBuiltin(name, proto, outTypeStr, classKind);
if (define)
s += " })";
else
s += " }";
s += "\n";
return s;
}
/// run - Read the records in arm_neon.td and output arm_neon.h. arm_neon.h
/// is comprised of type definitions and function declarations.
void NeonEmitter::run(raw_ostream &OS) {
OS <<
"/*===---- arm_neon.h - ARM Neon intrinsics ------------------------------"
"---===\n"
" *\n"
" * Permission is hereby granted, free of charge, to any person obtaining "
"a copy\n"
" * of this software and associated documentation files (the \"Software\"),"
" to deal\n"
" * in the Software without restriction, including without limitation the "
"rights\n"
" * to use, copy, modify, merge, publish, distribute, sublicense, "
"and/or sell\n"
" * copies of the Software, and to permit persons to whom the Software is\n"
" * furnished to do so, subject to the following conditions:\n"
" *\n"
" * The above copyright notice and this permission notice shall be "
"included in\n"
" * all copies or substantial portions of the Software.\n"
" *\n"
" * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, "
"EXPRESS OR\n"
" * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF "
"MERCHANTABILITY,\n"
" * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT "
"SHALL THE\n"
" * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR "
"OTHER\n"
" * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, "
"ARISING FROM,\n"
" * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER "
"DEALINGS IN\n"
" * THE SOFTWARE.\n"
" *\n"
" *===--------------------------------------------------------------------"
"---===\n"
" */\n\n";
OS << "#ifndef __ARM_NEON_H\n";
OS << "#define __ARM_NEON_H\n\n";
OS << "#ifndef __ARM_NEON__\n";
OS << "#error \"NEON support not enabled\"\n";
OS << "#endif\n\n";
OS << "#include <stdint.h>\n\n";
// Emit NEON-specific scalar typedefs.
OS << "typedef float float32_t;\n";
OS << "typedef int8_t poly8_t;\n";
OS << "typedef int16_t poly16_t;\n";
OS << "typedef uint16_t float16_t;\n";
// Emit Neon vector typedefs.
std::string TypedefTypes("cQcsQsiQilQlUcQUcUsQUsUiQUiUlQUlhQhfQfPcQPcPsQPs");
SmallVector<StringRef, 24> TDTypeVec;
ParseTypes(0, TypedefTypes, TDTypeVec);
// Emit vector typedefs.
for (unsigned i = 0, e = TDTypeVec.size(); i != e; ++i) {
bool dummy, quad = false, poly = false;
(void) ClassifyType(TDTypeVec[i], quad, poly, dummy);
if (poly)
OS << "typedef __attribute__((neon_polyvector_type(";
else
OS << "typedef __attribute__((neon_vector_type(";
unsigned nElts = GetNumElements(TDTypeVec[i], quad);
OS << utostr(nElts) << "))) ";
if (nElts < 10)
OS << " ";
OS << TypeString('s', TDTypeVec[i]);
OS << " " << TypeString('d', TDTypeVec[i]) << ";\n";
}
OS << "\n";
OS << "typedef __attribute__((__vector_size__(8))) "
"double float64x1_t;\n";
OS << "typedef __attribute__((__vector_size__(16))) "
"double float64x2_t;\n";
OS << "\n";
// Emit struct typedefs.
for (unsigned vi = 2; vi != 5; ++vi) {
for (unsigned i = 0, e = TDTypeVec.size(); i != e; ++i) {
std::string ts = TypeString('d', TDTypeVec[i]);
std::string vs = TypeString('0' + vi, TDTypeVec[i]);
OS << "typedef struct " << vs << " {\n";
OS << " " << ts << " val";
OS << "[" << utostr(vi) << "]";
OS << ";\n} ";
OS << vs << ";\n\n";
}
}
OS << "#define __ai static __attribute__((__always_inline__))\n\n";
std::vector<Record*> RV = Records.getAllDerivedDefinitions("Inst");
// Emit vmovl and vabd intrinsics first so they can be used by other
// intrinsics. (Some of the saturating multiply instructions are also
// used to implement the corresponding "_lane" variants, but tablegen
// sorts the records into alphabetical order so that the "_lane" variants
// come after the intrinsics they use.)
emitIntrinsic(OS, Records.getDef("VMOVL"));
emitIntrinsic(OS, Records.getDef("VABD"));
for (unsigned i = 0, e = RV.size(); i != e; ++i) {
Record *R = RV[i];
if (R->getName() != "VMOVL" && R->getName() != "VABD")
emitIntrinsic(OS, R);
}
OS << "#undef __ai\n\n";
OS << "#endif /* __ARM_NEON_H */\n";
}
/// emitIntrinsic - Write out the arm_neon.h header file definitions for the
/// intrinsics specified by record R.
void NeonEmitter::emitIntrinsic(raw_ostream &OS, Record *R) {
std::string name = R->getValueAsString("Name");
std::string Proto = R->getValueAsString("Prototype");
std::string Types = R->getValueAsString("Types");
SmallVector<StringRef, 16> TypeVec;
ParseTypes(R, Types, TypeVec);
OpKind kind = OpMap[R->getValueAsDef("Operand")->getName()];
ClassKind classKind = ClassNone;
if (R->getSuperClasses().size() >= 2)
classKind = ClassMap[R->getSuperClasses()[1]];
if (classKind == ClassNone && kind == OpNone)
throw TGError(R->getLoc(), "Builtin has no class kind");
for (unsigned ti = 0, te = TypeVec.size(); ti != te; ++ti) {
if (kind == OpReinterpret) {
bool outQuad = false;
bool dummy = false;
(void)ClassifyType(TypeVec[ti], outQuad, dummy, dummy);
for (unsigned srcti = 0, srcte = TypeVec.size();
srcti != srcte; ++srcti) {
bool inQuad = false;
(void)ClassifyType(TypeVec[srcti], inQuad, dummy, dummy);
if (srcti == ti || inQuad != outQuad)
continue;
OS << GenIntrinsic(name, Proto, TypeVec[ti], TypeVec[srcti],
OpCast, ClassS);
}
} else {
OS << GenIntrinsic(name, Proto, TypeVec[ti], TypeVec[ti],
kind, classKind);
}
}
OS << "\n";
}
static unsigned RangeFromType(StringRef typestr) {
// base type to get the type string for.
bool quad = false, dummy = false;
char type = ClassifyType(typestr, quad, dummy, dummy);
switch (type) {
case 'c':
return (8 << (int)quad) - 1;
case 'h':
case 's':
return (4 << (int)quad) - 1;
case 'f':
case 'i':
return (2 << (int)quad) - 1;
case 'l':
return (1 << (int)quad) - 1;
default:
throw "unhandled type!";
break;
}
assert(0 && "unreachable");
return 0;
}
/// runHeader - Emit a file with sections defining:
/// 1. the NEON section of BuiltinsARM.def.
/// 2. the SemaChecking code for the type overload checking.
/// 3. the SemaChecking code for validation of intrinsic immedate arguments.
void NeonEmitter::runHeader(raw_ostream &OS) {
std::vector<Record*> RV = Records.getAllDerivedDefinitions("Inst");
StringMap<OpKind> EmittedMap;
// Generate BuiltinsARM.def for NEON
OS << "#ifdef GET_NEON_BUILTINS\n";
for (unsigned i = 0, e = RV.size(); i != e; ++i) {
Record *R = RV[i];
OpKind k = OpMap[R->getValueAsDef("Operand")->getName()];
if (k != OpNone)
continue;
std::string Proto = R->getValueAsString("Prototype");
// Functions with 'a' (the splat code) in the type prototype should not get
// their own builtin as they use the non-splat variant.
if (Proto.find('a') != std::string::npos)
continue;
std::string Types = R->getValueAsString("Types");
SmallVector<StringRef, 16> TypeVec;
ParseTypes(R, Types, TypeVec);
if (R->getSuperClasses().size() < 2)
throw TGError(R->getLoc(), "Builtin has no class kind");
std::string name = R->getValueAsString("Name");
ClassKind ck = ClassMap[R->getSuperClasses()[1]];
for (unsigned ti = 0, te = TypeVec.size(); ti != te; ++ti) {
// Generate the BuiltinsARM.def declaration for this builtin, ensuring
// that each unique BUILTIN() macro appears only once in the output
// stream.
std::string bd = GenBuiltinDef(name, Proto, TypeVec[ti], ck);
if (EmittedMap.count(bd))
continue;
EmittedMap[bd] = OpNone;
OS << bd << "\n";
}
}
OS << "#endif\n\n";
// Generate the overloaded type checking code for SemaChecking.cpp
OS << "#ifdef GET_NEON_OVERLOAD_CHECK\n";
for (unsigned i = 0, e = RV.size(); i != e; ++i) {
Record *R = RV[i];
OpKind k = OpMap[R->getValueAsDef("Operand")->getName()];
if (k != OpNone)
continue;
std::string Proto = R->getValueAsString("Prototype");
std::string Types = R->getValueAsString("Types");
std::string name = R->getValueAsString("Name");
// Functions with 'a' (the splat code) in the type prototype should not get
// their own builtin as they use the non-splat variant.
if (Proto.find('a') != std::string::npos)
continue;
// Functions which have a scalar argument cannot be overloaded, no need to
// check them if we are emitting the type checking code.
if (Proto.find('s') != std::string::npos)
continue;
SmallVector<StringRef, 16> TypeVec;
ParseTypes(R, Types, TypeVec);
if (R->getSuperClasses().size() < 2)
throw TGError(R->getLoc(), "Builtin has no class kind");
int si = -1, qi = -1;
unsigned mask = 0, qmask = 0;
for (unsigned ti = 0, te = TypeVec.size(); ti != te; ++ti) {
// Generate the switch case(s) for this builtin for the type validation.
bool quad = false, poly = false, usgn = false;
(void) ClassifyType(TypeVec[ti], quad, poly, usgn);
if (quad) {
qi = ti;
qmask |= 1 << GetNeonEnum(Proto, TypeVec[ti]);
} else {
si = ti;
mask |= 1 << GetNeonEnum(Proto, TypeVec[ti]);
}
}
if (mask)
OS << "case ARM::BI__builtin_neon_"
<< MangleName(name, TypeVec[si], ClassB)
<< ": mask = " << "0x" << utohexstr(mask) << "; break;\n";
if (qmask)
OS << "case ARM::BI__builtin_neon_"
<< MangleName(name, TypeVec[qi], ClassB)
<< ": mask = " << "0x" << utohexstr(qmask) << "; break;\n";
}
OS << "#endif\n\n";
// Generate the intrinsic range checking code for shift/lane immediates.
OS << "#ifdef GET_NEON_IMMEDIATE_CHECK\n";
for (unsigned i = 0, e = RV.size(); i != e; ++i) {
Record *R = RV[i];
OpKind k = OpMap[R->getValueAsDef("Operand")->getName()];
if (k != OpNone)
continue;
std::string name = R->getValueAsString("Name");
std::string Proto = R->getValueAsString("Prototype");
std::string Types = R->getValueAsString("Types");
// Functions with 'a' (the splat code) in the type prototype should not get
// their own builtin as they use the non-splat variant.
if (Proto.find('a') != std::string::npos)
continue;
// Functions which do not have an immediate do not need to have range
// checking code emitted.
if (Proto.find('i') == std::string::npos)
continue;
SmallVector<StringRef, 16> TypeVec;
ParseTypes(R, Types, TypeVec);
if (R->getSuperClasses().size() < 2)
throw TGError(R->getLoc(), "Builtin has no class kind");
ClassKind ck = ClassMap[R->getSuperClasses()[1]];
for (unsigned ti = 0, te = TypeVec.size(); ti != te; ++ti) {
std::string namestr, shiftstr, rangestr;
// Builtins which are overloaded by type will need to have their upper
// bound computed at Sema time based on the type constant.
if (Proto.find('s') == std::string::npos) {
ck = ClassB;
if (R->getValueAsBit("isShift")) {
shiftstr = ", true";
// Right shifts have an 'r' in the name, left shifts do not.
if (name.find('r') != std::string::npos)
rangestr = "l = 1; ";
}
rangestr += "u = RFT(TV" + shiftstr + ")";
} else {
rangestr = "u = " + utostr(RangeFromType(TypeVec[ti]));
}
// Make sure cases appear only once by uniquing them in a string map.
namestr = MangleName(name, TypeVec[ti], ck);
if (EmittedMap.count(namestr))
continue;
EmittedMap[namestr] = OpNone;
// Calculate the index of the immediate that should be range checked.
unsigned immidx = 0;
// Builtins that return a struct of multiple vectors have an extra
// leading arg for the struct return.
if (Proto[0] >= '2' && Proto[0] <= '4')
++immidx;
// Add one to the index for each argument until we reach the immediate
// to be checked. Structs of vectors are passed as multiple arguments.
for (unsigned ii = 1, ie = Proto.size(); ii != ie; ++ii) {
switch (Proto[ii]) {
default: immidx += 1; break;
case '2': immidx += 2; break;
case '3': immidx += 3; break;
case '4': immidx += 4; break;
case 'i': ie = ii + 1; break;
}
}
OS << "case ARM::BI__builtin_neon_" << MangleName(name, TypeVec[ti], ck)
<< ": i = " << immidx << "; " << rangestr << "; break;\n";
}
}
OS << "#endif\n\n";
}