mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-27 13:30:05 +00:00
93f70fc291
interpreter mode" when it's not. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68937 91177308-0d34-0410-b5e6-96231b3b80d8
543 lines
18 KiB
C++
543 lines
18 KiB
C++
//===-- ExternalFunctions.cpp - Implement External Functions --------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains both code to deal with invoking "external" functions, but
|
|
// also contains code that implements "exported" external functions.
|
|
//
|
|
// There are currently two mechanisms for handling external functions in the
|
|
// Interpreter. The first is to implement lle_* wrapper functions that are
|
|
// specific to well-known library functions which manually translate the
|
|
// arguments from GenericValues and make the call. If such a wrapper does
|
|
// not exist, and libffi is available, then the Interpreter will attempt to
|
|
// invoke the function using libffi, after finding its address.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Interpreter.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Config/config.h" // Detect libffi
|
|
#include "llvm/Support/Streams.h"
|
|
#include "llvm/System/DynamicLibrary.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Support/ManagedStatic.h"
|
|
#include <csignal>
|
|
#include <cstdio>
|
|
#include <map>
|
|
#include <cmath>
|
|
#include <cstring>
|
|
|
|
#ifdef HAVE_FFI_CALL
|
|
#ifdef HAVE_FFI_H
|
|
#include <ffi.h>
|
|
#define USE_LIBFFI
|
|
#elif HAVE_FFI_FFI_H
|
|
#include <ffi/ffi.h>
|
|
#define USE_LIBFFI
|
|
#endif
|
|
#endif
|
|
|
|
using namespace llvm;
|
|
|
|
typedef GenericValue (*ExFunc)(const FunctionType *,
|
|
const std::vector<GenericValue> &);
|
|
static ManagedStatic<std::map<const Function *, ExFunc> > ExportedFunctions;
|
|
static std::map<std::string, ExFunc> FuncNames;
|
|
|
|
#ifdef USE_LIBFFI
|
|
typedef void (*RawFunc)(void);
|
|
static ManagedStatic<std::map<const Function *, RawFunc> > RawFunctions;
|
|
#endif
|
|
|
|
static Interpreter *TheInterpreter;
|
|
|
|
static char getTypeID(const Type *Ty) {
|
|
switch (Ty->getTypeID()) {
|
|
case Type::VoidTyID: return 'V';
|
|
case Type::IntegerTyID:
|
|
switch (cast<IntegerType>(Ty)->getBitWidth()) {
|
|
case 1: return 'o';
|
|
case 8: return 'B';
|
|
case 16: return 'S';
|
|
case 32: return 'I';
|
|
case 64: return 'L';
|
|
default: return 'N';
|
|
}
|
|
case Type::FloatTyID: return 'F';
|
|
case Type::DoubleTyID: return 'D';
|
|
case Type::PointerTyID: return 'P';
|
|
case Type::FunctionTyID:return 'M';
|
|
case Type::StructTyID: return 'T';
|
|
case Type::ArrayTyID: return 'A';
|
|
case Type::OpaqueTyID: return 'O';
|
|
default: return 'U';
|
|
}
|
|
}
|
|
|
|
// Try to find address of external function given a Function object.
|
|
// Please note, that interpreter doesn't know how to assemble a
|
|
// real call in general case (this is JIT job), that's why it assumes,
|
|
// that all external functions has the same (and pretty "general") signature.
|
|
// The typical example of such functions are "lle_X_" ones.
|
|
static ExFunc lookupFunction(const Function *F) {
|
|
// Function not found, look it up... start by figuring out what the
|
|
// composite function name should be.
|
|
std::string ExtName = "lle_";
|
|
const FunctionType *FT = F->getFunctionType();
|
|
for (unsigned i = 0, e = FT->getNumContainedTypes(); i != e; ++i)
|
|
ExtName += getTypeID(FT->getContainedType(i));
|
|
ExtName += "_" + F->getName();
|
|
|
|
ExFunc FnPtr = FuncNames[ExtName];
|
|
if (FnPtr == 0)
|
|
FnPtr = FuncNames["lle_X_"+F->getName()];
|
|
if (FnPtr == 0) // Try calling a generic function... if it exists...
|
|
FnPtr = (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol(
|
|
("lle_X_"+F->getName()).c_str());
|
|
if (FnPtr != 0)
|
|
ExportedFunctions->insert(std::make_pair(F, FnPtr)); // Cache for later
|
|
return FnPtr;
|
|
}
|
|
|
|
#ifdef USE_LIBFFI
|
|
static ffi_type *ffiTypeFor(const Type *Ty) {
|
|
switch (Ty->getTypeID()) {
|
|
case Type::VoidTyID: return &ffi_type_void;
|
|
case Type::IntegerTyID:
|
|
switch (cast<IntegerType>(Ty)->getBitWidth()) {
|
|
case 8: return &ffi_type_sint8;
|
|
case 16: return &ffi_type_sint16;
|
|
case 32: return &ffi_type_sint32;
|
|
case 64: return &ffi_type_sint64;
|
|
}
|
|
case Type::FloatTyID: return &ffi_type_float;
|
|
case Type::DoubleTyID: return &ffi_type_double;
|
|
case Type::PointerTyID: return &ffi_type_pointer;
|
|
default: break;
|
|
}
|
|
// TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
|
|
cerr << "Type could not be mapped for use with libffi.\n";
|
|
abort();
|
|
return NULL;
|
|
}
|
|
|
|
static void *ffiValueFor(const Type *Ty, const GenericValue &AV,
|
|
void *ArgDataPtr) {
|
|
switch (Ty->getTypeID()) {
|
|
case Type::IntegerTyID:
|
|
switch (cast<IntegerType>(Ty)->getBitWidth()) {
|
|
case 8: {
|
|
int8_t *I8Ptr = (int8_t *) ArgDataPtr;
|
|
*I8Ptr = (int8_t) AV.IntVal.getZExtValue();
|
|
return ArgDataPtr;
|
|
}
|
|
case 16: {
|
|
int16_t *I16Ptr = (int16_t *) ArgDataPtr;
|
|
*I16Ptr = (int16_t) AV.IntVal.getZExtValue();
|
|
return ArgDataPtr;
|
|
}
|
|
case 32: {
|
|
int32_t *I32Ptr = (int32_t *) ArgDataPtr;
|
|
*I32Ptr = (int32_t) AV.IntVal.getZExtValue();
|
|
return ArgDataPtr;
|
|
}
|
|
case 64: {
|
|
int64_t *I64Ptr = (int64_t *) ArgDataPtr;
|
|
*I64Ptr = (int64_t) AV.IntVal.getZExtValue();
|
|
return ArgDataPtr;
|
|
}
|
|
}
|
|
case Type::FloatTyID: {
|
|
float *FloatPtr = (float *) ArgDataPtr;
|
|
*FloatPtr = AV.DoubleVal;
|
|
return ArgDataPtr;
|
|
}
|
|
case Type::DoubleTyID: {
|
|
double *DoublePtr = (double *) ArgDataPtr;
|
|
*DoublePtr = AV.DoubleVal;
|
|
return ArgDataPtr;
|
|
}
|
|
case Type::PointerTyID: {
|
|
void **PtrPtr = (void **) ArgDataPtr;
|
|
*PtrPtr = GVTOP(AV);
|
|
return ArgDataPtr;
|
|
}
|
|
default: break;
|
|
}
|
|
// TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
|
|
cerr << "Type value could not be mapped for use with libffi.\n";
|
|
abort();
|
|
return NULL;
|
|
}
|
|
|
|
static bool ffiInvoke(RawFunc Fn, Function *F,
|
|
const std::vector<GenericValue> &ArgVals,
|
|
const TargetData *TD, GenericValue &Result) {
|
|
ffi_cif cif;
|
|
const FunctionType *FTy = F->getFunctionType();
|
|
const unsigned NumArgs = F->arg_size();
|
|
|
|
// TODO: We don't have type information about the remaining arguments, because
|
|
// this information is never passed into ExecutionEngine::runFunction().
|
|
if (ArgVals.size() > NumArgs && F->isVarArg()) {
|
|
cerr << "Calling external var arg function '" << F->getName()
|
|
<< "' is not supported by the Interpreter.\n";
|
|
abort();
|
|
}
|
|
|
|
unsigned ArgBytes = 0;
|
|
|
|
std::vector<ffi_type*> args(NumArgs);
|
|
for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
|
|
A != E; ++A) {
|
|
const unsigned ArgNo = A->getArgNo();
|
|
const Type *ArgTy = FTy->getParamType(ArgNo);
|
|
args[ArgNo] = ffiTypeFor(ArgTy);
|
|
ArgBytes += TD->getTypeStoreSize(ArgTy);
|
|
}
|
|
|
|
uint8_t *ArgData = (uint8_t*) alloca(ArgBytes);
|
|
uint8_t *ArgDataPtr = ArgData;
|
|
std::vector<void*> values(NumArgs);
|
|
for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
|
|
A != E; ++A) {
|
|
const unsigned ArgNo = A->getArgNo();
|
|
const Type *ArgTy = FTy->getParamType(ArgNo);
|
|
values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr);
|
|
ArgDataPtr += TD->getTypeStoreSize(ArgTy);
|
|
}
|
|
|
|
const Type *RetTy = FTy->getReturnType();
|
|
ffi_type *rtype = ffiTypeFor(RetTy);
|
|
|
|
if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, &args[0]) == FFI_OK) {
|
|
void *ret = NULL;
|
|
if (RetTy->getTypeID() != Type::VoidTyID)
|
|
ret = alloca(TD->getTypeStoreSize(RetTy));
|
|
ffi_call(&cif, Fn, ret, &values[0]);
|
|
switch (RetTy->getTypeID()) {
|
|
case Type::IntegerTyID:
|
|
switch (cast<IntegerType>(RetTy)->getBitWidth()) {
|
|
case 8: Result.IntVal = APInt(8 , *(int8_t *) ret); break;
|
|
case 16: Result.IntVal = APInt(16, *(int16_t*) ret); break;
|
|
case 32: Result.IntVal = APInt(32, *(int32_t*) ret); break;
|
|
case 64: Result.IntVal = APInt(64, *(int64_t*) ret); break;
|
|
}
|
|
break;
|
|
case Type::FloatTyID: Result.FloatVal = *(float *) ret; break;
|
|
case Type::DoubleTyID: Result.DoubleVal = *(double*) ret; break;
|
|
case Type::PointerTyID: Result.PointerVal = *(void **) ret; break;
|
|
default: break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
#endif // USE_LIBFFI
|
|
|
|
GenericValue Interpreter::callExternalFunction(Function *F,
|
|
const std::vector<GenericValue> &ArgVals) {
|
|
TheInterpreter = this;
|
|
|
|
// Do a lookup to see if the function is in our cache... this should just be a
|
|
// deferred annotation!
|
|
std::map<const Function *, ExFunc>::iterator FI = ExportedFunctions->find(F);
|
|
if (ExFunc Fn = (FI == ExportedFunctions->end()) ? lookupFunction(F)
|
|
: FI->second)
|
|
return Fn(F->getFunctionType(), ArgVals);
|
|
|
|
#ifdef USE_LIBFFI
|
|
std::map<const Function *, RawFunc>::iterator RF = RawFunctions->find(F);
|
|
RawFunc RawFn;
|
|
if (RF == RawFunctions->end()) {
|
|
RawFn = (RawFunc)(intptr_t)
|
|
sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName());
|
|
if (RawFn != 0)
|
|
RawFunctions->insert(std::make_pair(F, RawFn)); // Cache for later
|
|
} else {
|
|
RawFn = RF->second;
|
|
}
|
|
|
|
GenericValue Result;
|
|
if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getTargetData(), Result))
|
|
return Result;
|
|
#endif // USE_LIBFFI
|
|
|
|
cerr << "Tried to execute an unknown external function: "
|
|
<< F->getType()->getDescription() << " " << F->getName() << "\n";
|
|
if (F->getName() != "__main")
|
|
abort();
|
|
return GenericValue();
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Functions "exported" to the running application...
|
|
//
|
|
extern "C" { // Don't add C++ manglings to llvm mangling :)
|
|
|
|
// void atexit(Function*)
|
|
GenericValue lle_X_atexit(const FunctionType *FT,
|
|
const std::vector<GenericValue> &Args) {
|
|
assert(Args.size() == 1);
|
|
TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0]));
|
|
GenericValue GV;
|
|
GV.IntVal = 0;
|
|
return GV;
|
|
}
|
|
|
|
// void exit(int)
|
|
GenericValue lle_X_exit(const FunctionType *FT,
|
|
const std::vector<GenericValue> &Args) {
|
|
TheInterpreter->exitCalled(Args[0]);
|
|
return GenericValue();
|
|
}
|
|
|
|
// void abort(void)
|
|
GenericValue lle_X_abort(const FunctionType *FT,
|
|
const std::vector<GenericValue> &Args) {
|
|
raise (SIGABRT);
|
|
return GenericValue();
|
|
}
|
|
|
|
// int sprintf(char *, const char *, ...) - a very rough implementation to make
|
|
// output useful.
|
|
GenericValue lle_X_sprintf(const FunctionType *FT,
|
|
const std::vector<GenericValue> &Args) {
|
|
char *OutputBuffer = (char *)GVTOP(Args[0]);
|
|
const char *FmtStr = (const char *)GVTOP(Args[1]);
|
|
unsigned ArgNo = 2;
|
|
|
|
// printf should return # chars printed. This is completely incorrect, but
|
|
// close enough for now.
|
|
GenericValue GV;
|
|
GV.IntVal = APInt(32, strlen(FmtStr));
|
|
while (1) {
|
|
switch (*FmtStr) {
|
|
case 0: return GV; // Null terminator...
|
|
default: // Normal nonspecial character
|
|
sprintf(OutputBuffer++, "%c", *FmtStr++);
|
|
break;
|
|
case '\\': { // Handle escape codes
|
|
sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1));
|
|
FmtStr += 2; OutputBuffer += 2;
|
|
break;
|
|
}
|
|
case '%': { // Handle format specifiers
|
|
char FmtBuf[100] = "", Buffer[1000] = "";
|
|
char *FB = FmtBuf;
|
|
*FB++ = *FmtStr++;
|
|
char Last = *FB++ = *FmtStr++;
|
|
unsigned HowLong = 0;
|
|
while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' &&
|
|
Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' &&
|
|
Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' &&
|
|
Last != 'p' && Last != 's' && Last != '%') {
|
|
if (Last == 'l' || Last == 'L') HowLong++; // Keep track of l's
|
|
Last = *FB++ = *FmtStr++;
|
|
}
|
|
*FB = 0;
|
|
|
|
switch (Last) {
|
|
case '%':
|
|
strcpy(Buffer, "%"); break;
|
|
case 'c':
|
|
sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
|
|
break;
|
|
case 'd': case 'i':
|
|
case 'u': case 'o':
|
|
case 'x': case 'X':
|
|
if (HowLong >= 1) {
|
|
if (HowLong == 1 &&
|
|
TheInterpreter->getTargetData()->getPointerSizeInBits() == 64 &&
|
|
sizeof(long) < sizeof(int64_t)) {
|
|
// Make sure we use %lld with a 64 bit argument because we might be
|
|
// compiling LLI on a 32 bit compiler.
|
|
unsigned Size = strlen(FmtBuf);
|
|
FmtBuf[Size] = FmtBuf[Size-1];
|
|
FmtBuf[Size+1] = 0;
|
|
FmtBuf[Size-1] = 'l';
|
|
}
|
|
sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue());
|
|
} else
|
|
sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
|
|
break;
|
|
case 'e': case 'E': case 'g': case 'G': case 'f':
|
|
sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break;
|
|
case 'p':
|
|
sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break;
|
|
case 's':
|
|
sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break;
|
|
default: cerr << "<unknown printf code '" << *FmtStr << "'!>";
|
|
ArgNo++; break;
|
|
}
|
|
strcpy(OutputBuffer, Buffer);
|
|
OutputBuffer += strlen(Buffer);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
return GV;
|
|
}
|
|
|
|
// int printf(const char *, ...) - a very rough implementation to make output
|
|
// useful.
|
|
GenericValue lle_X_printf(const FunctionType *FT,
|
|
const std::vector<GenericValue> &Args) {
|
|
char Buffer[10000];
|
|
std::vector<GenericValue> NewArgs;
|
|
NewArgs.push_back(PTOGV((void*)&Buffer[0]));
|
|
NewArgs.insert(NewArgs.end(), Args.begin(), Args.end());
|
|
GenericValue GV = lle_X_sprintf(FT, NewArgs);
|
|
cout << Buffer;
|
|
return GV;
|
|
}
|
|
|
|
static void ByteswapSCANFResults(const char *Fmt, void *Arg0, void *Arg1,
|
|
void *Arg2, void *Arg3, void *Arg4, void *Arg5,
|
|
void *Arg6, void *Arg7, void *Arg8) {
|
|
void *Args[] = { Arg0, Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, 0 };
|
|
|
|
// Loop over the format string, munging read values as appropriate (performs
|
|
// byteswaps as necessary).
|
|
unsigned ArgNo = 0;
|
|
while (*Fmt) {
|
|
if (*Fmt++ == '%') {
|
|
// Read any flag characters that may be present...
|
|
bool Suppress = false;
|
|
bool Half = false;
|
|
bool Long = false;
|
|
bool LongLong = false; // long long or long double
|
|
|
|
while (1) {
|
|
switch (*Fmt++) {
|
|
case '*': Suppress = true; break;
|
|
case 'a': /*Allocate = true;*/ break; // We don't need to track this
|
|
case 'h': Half = true; break;
|
|
case 'l': Long = true; break;
|
|
case 'q':
|
|
case 'L': LongLong = true; break;
|
|
default:
|
|
if (Fmt[-1] > '9' || Fmt[-1] < '0') // Ignore field width specs
|
|
goto Out;
|
|
}
|
|
}
|
|
Out:
|
|
|
|
// Read the conversion character
|
|
if (!Suppress && Fmt[-1] != '%') { // Nothing to do?
|
|
unsigned Size = 0;
|
|
const Type *Ty = 0;
|
|
|
|
switch (Fmt[-1]) {
|
|
case 'i': case 'o': case 'u': case 'x': case 'X': case 'n': case 'p':
|
|
case 'd':
|
|
if (Long || LongLong) {
|
|
Size = 8; Ty = Type::Int64Ty;
|
|
} else if (Half) {
|
|
Size = 4; Ty = Type::Int16Ty;
|
|
} else {
|
|
Size = 4; Ty = Type::Int32Ty;
|
|
}
|
|
break;
|
|
|
|
case 'e': case 'g': case 'E':
|
|
case 'f':
|
|
if (Long || LongLong) {
|
|
Size = 8; Ty = Type::DoubleTy;
|
|
} else {
|
|
Size = 4; Ty = Type::FloatTy;
|
|
}
|
|
break;
|
|
|
|
case 's': case 'c': case '[': // No byteswap needed
|
|
Size = 1;
|
|
Ty = Type::Int8Ty;
|
|
break;
|
|
|
|
default: break;
|
|
}
|
|
|
|
if (Size) {
|
|
GenericValue GV;
|
|
void *Arg = Args[ArgNo++];
|
|
memcpy(&GV, Arg, Size);
|
|
TheInterpreter->StoreValueToMemory(GV, (GenericValue*)Arg, Ty);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// int sscanf(const char *format, ...);
|
|
GenericValue lle_X_sscanf(const FunctionType *FT,
|
|
const std::vector<GenericValue> &args) {
|
|
assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!");
|
|
|
|
char *Args[10];
|
|
for (unsigned i = 0; i < args.size(); ++i)
|
|
Args[i] = (char*)GVTOP(args[i]);
|
|
|
|
GenericValue GV;
|
|
GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4],
|
|
Args[5], Args[6], Args[7], Args[8], Args[9]));
|
|
ByteswapSCANFResults(Args[1], Args[2], Args[3], Args[4],
|
|
Args[5], Args[6], Args[7], Args[8], Args[9], 0);
|
|
return GV;
|
|
}
|
|
|
|
// int scanf(const char *format, ...);
|
|
GenericValue lle_X_scanf(const FunctionType *FT,
|
|
const std::vector<GenericValue> &args) {
|
|
assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!");
|
|
|
|
char *Args[10];
|
|
for (unsigned i = 0; i < args.size(); ++i)
|
|
Args[i] = (char*)GVTOP(args[i]);
|
|
|
|
GenericValue GV;
|
|
GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4],
|
|
Args[5], Args[6], Args[7], Args[8], Args[9]));
|
|
ByteswapSCANFResults(Args[0], Args[1], Args[2], Args[3], Args[4],
|
|
Args[5], Args[6], Args[7], Args[8], Args[9]);
|
|
return GV;
|
|
}
|
|
|
|
// int fprintf(FILE *, const char *, ...) - a very rough implementation to make
|
|
// output useful.
|
|
GenericValue lle_X_fprintf(const FunctionType *FT,
|
|
const std::vector<GenericValue> &Args) {
|
|
assert(Args.size() >= 2);
|
|
char Buffer[10000];
|
|
std::vector<GenericValue> NewArgs;
|
|
NewArgs.push_back(PTOGV(Buffer));
|
|
NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end());
|
|
GenericValue GV = lle_X_sprintf(FT, NewArgs);
|
|
|
|
fputs(Buffer, (FILE *) GVTOP(Args[0]));
|
|
return GV;
|
|
}
|
|
|
|
} // End extern "C"
|
|
|
|
|
|
void Interpreter::initializeExternalFunctions() {
|
|
FuncNames["lle_X_atexit"] = lle_X_atexit;
|
|
FuncNames["lle_X_exit"] = lle_X_exit;
|
|
FuncNames["lle_X_abort"] = lle_X_abort;
|
|
|
|
FuncNames["lle_X_printf"] = lle_X_printf;
|
|
FuncNames["lle_X_sprintf"] = lle_X_sprintf;
|
|
FuncNames["lle_X_sscanf"] = lle_X_sscanf;
|
|
FuncNames["lle_X_scanf"] = lle_X_scanf;
|
|
FuncNames["lle_X_fprintf"] = lle_X_fprintf;
|
|
}
|
|
|