mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-21 00:32:23 +00:00
38b5807bd9
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@22265 91177308-0d34-0410-b5e6-96231b3b80d8
789 lines
32 KiB
C++
789 lines
32 KiB
C++
//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass performs loop invariant code motion, attempting to remove as much
|
|
// code from the body of a loop as possible. It does this by either hoisting
|
|
// code into the preheader block, or by sinking code to the exit blocks if it is
|
|
// safe. This pass also promotes must-aliased memory locations in the loop to
|
|
// live in registers, thus hoisting and sinking "invariant" loads and stores.
|
|
//
|
|
// This pass uses alias analysis for two purposes:
|
|
//
|
|
// 1. Moving loop invariant loads and calls out of loops. If we can determine
|
|
// that a load or call inside of a loop never aliases anything stored to,
|
|
// we can hoist it or sink it like any other instruction.
|
|
// 2. Scalar Promotion of Memory - If there is a store instruction inside of
|
|
// the loop, we try to move the store to happen AFTER the loop instead of
|
|
// inside of the loop. This can only happen if a few conditions are true:
|
|
// A. The pointer stored through is loop invariant
|
|
// B. There are no stores or loads in the loop which _may_ alias the
|
|
// pointer. There are no calls in the loop which mod/ref the pointer.
|
|
// If these conditions are true, we can promote the loads and stores in the
|
|
// loop of the pointer to use a temporary alloca'd variable. We then use
|
|
// the mem2reg functionality to construct the appropriate SSA form for the
|
|
// variable.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "licm"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/AliasSetTracker.h"
|
|
#include "llvm/Analysis/Dominators.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
cl::opt<bool>
|
|
DisablePromotion("disable-licm-promotion", cl::Hidden,
|
|
cl::desc("Disable memory promotion in LICM pass"));
|
|
|
|
Statistic<> NumSunk("licm", "Number of instructions sunk out of loop");
|
|
Statistic<> NumHoisted("licm", "Number of instructions hoisted out of loop");
|
|
Statistic<> NumMovedLoads("licm", "Number of load insts hoisted or sunk");
|
|
Statistic<> NumMovedCalls("licm", "Number of call insts hoisted or sunk");
|
|
Statistic<> NumPromoted("licm",
|
|
"Number of memory locations promoted to registers");
|
|
|
|
struct LICM : public FunctionPass {
|
|
virtual bool runOnFunction(Function &F);
|
|
|
|
/// This transformation requires natural loop information & requires that
|
|
/// loop preheaders be inserted into the CFG...
|
|
///
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesCFG();
|
|
AU.addRequiredID(LoopSimplifyID);
|
|
AU.addRequired<LoopInfo>();
|
|
AU.addRequired<DominatorTree>();
|
|
AU.addRequired<DominanceFrontier>(); // For scalar promotion (mem2reg)
|
|
AU.addRequired<AliasAnalysis>();
|
|
}
|
|
|
|
private:
|
|
// Various analyses that we use...
|
|
AliasAnalysis *AA; // Current AliasAnalysis information
|
|
LoopInfo *LI; // Current LoopInfo
|
|
DominatorTree *DT; // Dominator Tree for the current Loop...
|
|
DominanceFrontier *DF; // Current Dominance Frontier
|
|
|
|
// State that is updated as we process loops
|
|
bool Changed; // Set to true when we change anything.
|
|
BasicBlock *Preheader; // The preheader block of the current loop...
|
|
Loop *CurLoop; // The current loop we are working on...
|
|
AliasSetTracker *CurAST; // AliasSet information for the current loop...
|
|
|
|
/// visitLoop - Hoist expressions out of the specified loop...
|
|
///
|
|
void visitLoop(Loop *L, AliasSetTracker &AST);
|
|
|
|
/// SinkRegion - Walk the specified region of the CFG (defined by all blocks
|
|
/// dominated by the specified block, and that are in the current loop) in
|
|
/// reverse depth first order w.r.t the DominatorTree. This allows us to
|
|
/// visit uses before definitions, allowing us to sink a loop body in one
|
|
/// pass without iteration.
|
|
///
|
|
void SinkRegion(DominatorTree::Node *N);
|
|
|
|
/// HoistRegion - Walk the specified region of the CFG (defined by all
|
|
/// blocks dominated by the specified block, and that are in the current
|
|
/// loop) in depth first order w.r.t the DominatorTree. This allows us to
|
|
/// visit definitions before uses, allowing us to hoist a loop body in one
|
|
/// pass without iteration.
|
|
///
|
|
void HoistRegion(DominatorTree::Node *N);
|
|
|
|
/// inSubLoop - Little predicate that returns true if the specified basic
|
|
/// block is in a subloop of the current one, not the current one itself.
|
|
///
|
|
bool inSubLoop(BasicBlock *BB) {
|
|
assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
|
|
for (Loop::iterator I = CurLoop->begin(), E = CurLoop->end(); I != E; ++I)
|
|
if ((*I)->contains(BB))
|
|
return true; // A subloop actually contains this block!
|
|
return false;
|
|
}
|
|
|
|
/// isExitBlockDominatedByBlockInLoop - This method checks to see if the
|
|
/// specified exit block of the loop is dominated by the specified block
|
|
/// that is in the body of the loop. We use these constraints to
|
|
/// dramatically limit the amount of the dominator tree that needs to be
|
|
/// searched.
|
|
bool isExitBlockDominatedByBlockInLoop(BasicBlock *ExitBlock,
|
|
BasicBlock *BlockInLoop) const {
|
|
// If the block in the loop is the loop header, it must be dominated!
|
|
BasicBlock *LoopHeader = CurLoop->getHeader();
|
|
if (BlockInLoop == LoopHeader)
|
|
return true;
|
|
|
|
DominatorTree::Node *BlockInLoopNode = DT->getNode(BlockInLoop);
|
|
DominatorTree::Node *IDom = DT->getNode(ExitBlock);
|
|
|
|
// Because the exit block is not in the loop, we know we have to get _at
|
|
// least_ its immediate dominator.
|
|
do {
|
|
// Get next Immediate Dominator.
|
|
IDom = IDom->getIDom();
|
|
|
|
// If we have got to the header of the loop, then the instructions block
|
|
// did not dominate the exit node, so we can't hoist it.
|
|
if (IDom->getBlock() == LoopHeader)
|
|
return false;
|
|
|
|
} while (IDom != BlockInLoopNode);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// sink - When an instruction is found to only be used outside of the loop,
|
|
/// this function moves it to the exit blocks and patches up SSA form as
|
|
/// needed.
|
|
///
|
|
void sink(Instruction &I);
|
|
|
|
/// hoist - When an instruction is found to only use loop invariant operands
|
|
/// that is safe to hoist, this instruction is called to do the dirty work.
|
|
///
|
|
void hoist(Instruction &I);
|
|
|
|
/// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
|
|
/// is not a trapping instruction or if it is a trapping instruction and is
|
|
/// guaranteed to execute.
|
|
///
|
|
bool isSafeToExecuteUnconditionally(Instruction &I);
|
|
|
|
/// pointerInvalidatedByLoop - Return true if the body of this loop may
|
|
/// store into the memory location pointed to by V.
|
|
///
|
|
bool pointerInvalidatedByLoop(Value *V, unsigned Size) {
|
|
// Check to see if any of the basic blocks in CurLoop invalidate *V.
|
|
return CurAST->getAliasSetForPointer(V, Size).isMod();
|
|
}
|
|
|
|
bool canSinkOrHoistInst(Instruction &I);
|
|
bool isLoopInvariantInst(Instruction &I);
|
|
bool isNotUsedInLoop(Instruction &I);
|
|
|
|
/// PromoteValuesInLoop - Look at the stores in the loop and promote as many
|
|
/// to scalars as we can.
|
|
///
|
|
void PromoteValuesInLoop();
|
|
|
|
/// FindPromotableValuesInLoop - Check the current loop for stores to
|
|
/// definite pointers, which are not loaded and stored through may aliases.
|
|
/// If these are found, create an alloca for the value, add it to the
|
|
/// PromotedValues list, and keep track of the mapping from value to
|
|
/// alloca...
|
|
///
|
|
void FindPromotableValuesInLoop(
|
|
std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
|
|
std::map<Value*, AllocaInst*> &Val2AlMap);
|
|
};
|
|
|
|
RegisterOpt<LICM> X("licm", "Loop Invariant Code Motion");
|
|
}
|
|
|
|
FunctionPass *llvm::createLICMPass() { return new LICM(); }
|
|
|
|
/// runOnFunction - For LICM, this simply traverses the loop structure of the
|
|
/// function, hoisting expressions out of loops if possible.
|
|
///
|
|
bool LICM::runOnFunction(Function &) {
|
|
Changed = false;
|
|
|
|
// Get our Loop and Alias Analysis information...
|
|
LI = &getAnalysis<LoopInfo>();
|
|
AA = &getAnalysis<AliasAnalysis>();
|
|
DF = &getAnalysis<DominanceFrontier>();
|
|
DT = &getAnalysis<DominatorTree>();
|
|
|
|
// Hoist expressions out of all of the top-level loops.
|
|
for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) {
|
|
AliasSetTracker AST(*AA);
|
|
visitLoop(*I, AST);
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
|
|
/// visitLoop - Hoist expressions out of the specified loop...
|
|
///
|
|
void LICM::visitLoop(Loop *L, AliasSetTracker &AST) {
|
|
// Recurse through all subloops before we process this loop...
|
|
for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) {
|
|
AliasSetTracker SubAST(*AA);
|
|
visitLoop(*I, SubAST);
|
|
|
|
// Incorporate information about the subloops into this loop...
|
|
AST.add(SubAST);
|
|
}
|
|
CurLoop = L;
|
|
CurAST = &AST;
|
|
|
|
// Get the preheader block to move instructions into...
|
|
Preheader = L->getLoopPreheader();
|
|
assert(Preheader&&"Preheader insertion pass guarantees we have a preheader!");
|
|
|
|
// Loop over the body of this loop, looking for calls, invokes, and stores.
|
|
// Because subloops have already been incorporated into AST, we skip blocks in
|
|
// subloops.
|
|
//
|
|
for (std::vector<BasicBlock*>::const_iterator I = L->getBlocks().begin(),
|
|
E = L->getBlocks().end(); I != E; ++I)
|
|
if (LI->getLoopFor(*I) == L) // Ignore blocks in subloops...
|
|
AST.add(**I); // Incorporate the specified basic block
|
|
|
|
// We want to visit all of the instructions in this loop... that are not parts
|
|
// of our subloops (they have already had their invariants hoisted out of
|
|
// their loop, into this loop, so there is no need to process the BODIES of
|
|
// the subloops).
|
|
//
|
|
// Traverse the body of the loop in depth first order on the dominator tree so
|
|
// that we are guaranteed to see definitions before we see uses. This allows
|
|
// us to sink instructions in one pass, without iteration. AFter sinking
|
|
// instructions, we perform another pass to hoist them out of the loop.
|
|
//
|
|
SinkRegion(DT->getNode(L->getHeader()));
|
|
HoistRegion(DT->getNode(L->getHeader()));
|
|
|
|
// Now that all loop invariants have been removed from the loop, promote any
|
|
// memory references to scalars that we can...
|
|
if (!DisablePromotion)
|
|
PromoteValuesInLoop();
|
|
|
|
// Clear out loops state information for the next iteration
|
|
CurLoop = 0;
|
|
Preheader = 0;
|
|
}
|
|
|
|
/// SinkRegion - Walk the specified region of the CFG (defined by all blocks
|
|
/// dominated by the specified block, and that are in the current loop) in
|
|
/// reverse depth first order w.r.t the DominatorTree. This allows us to visit
|
|
/// uses before definitions, allowing us to sink a loop body in one pass without
|
|
/// iteration.
|
|
///
|
|
void LICM::SinkRegion(DominatorTree::Node *N) {
|
|
assert(N != 0 && "Null dominator tree node?");
|
|
BasicBlock *BB = N->getBlock();
|
|
|
|
// If this subregion is not in the top level loop at all, exit.
|
|
if (!CurLoop->contains(BB)) return;
|
|
|
|
// We are processing blocks in reverse dfo, so process children first...
|
|
const std::vector<DominatorTree::Node*> &Children = N->getChildren();
|
|
for (unsigned i = 0, e = Children.size(); i != e; ++i)
|
|
SinkRegion(Children[i]);
|
|
|
|
// Only need to process the contents of this block if it is not part of a
|
|
// subloop (which would already have been processed).
|
|
if (inSubLoop(BB)) return;
|
|
|
|
for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) {
|
|
Instruction &I = *--II;
|
|
|
|
// Check to see if we can sink this instruction to the exit blocks
|
|
// of the loop. We can do this if the all users of the instruction are
|
|
// outside of the loop. In this case, it doesn't even matter if the
|
|
// operands of the instruction are loop invariant.
|
|
//
|
|
if (isNotUsedInLoop(I) && canSinkOrHoistInst(I)) {
|
|
++II;
|
|
sink(I);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
|
|
/// dominated by the specified block, and that are in the current loop) in depth
|
|
/// first order w.r.t the DominatorTree. This allows us to visit definitions
|
|
/// before uses, allowing us to hoist a loop body in one pass without iteration.
|
|
///
|
|
void LICM::HoistRegion(DominatorTree::Node *N) {
|
|
assert(N != 0 && "Null dominator tree node?");
|
|
BasicBlock *BB = N->getBlock();
|
|
|
|
// If this subregion is not in the top level loop at all, exit.
|
|
if (!CurLoop->contains(BB)) return;
|
|
|
|
// Only need to process the contents of this block if it is not part of a
|
|
// subloop (which would already have been processed).
|
|
if (!inSubLoop(BB))
|
|
for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) {
|
|
Instruction &I = *II++;
|
|
|
|
// Try hoisting the instruction out to the preheader. We can only do this
|
|
// if all of the operands of the instruction are loop invariant and if it
|
|
// is safe to hoist the instruction.
|
|
//
|
|
if (isLoopInvariantInst(I) && canSinkOrHoistInst(I) &&
|
|
isSafeToExecuteUnconditionally(I))
|
|
hoist(I);
|
|
}
|
|
|
|
const std::vector<DominatorTree::Node*> &Children = N->getChildren();
|
|
for (unsigned i = 0, e = Children.size(); i != e; ++i)
|
|
HoistRegion(Children[i]);
|
|
}
|
|
|
|
/// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
|
|
/// instruction.
|
|
///
|
|
bool LICM::canSinkOrHoistInst(Instruction &I) {
|
|
// Loads have extra constraints we have to verify before we can hoist them.
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
|
|
if (LI->isVolatile())
|
|
return false; // Don't hoist volatile loads!
|
|
|
|
// Don't hoist loads which have may-aliased stores in loop.
|
|
unsigned Size = 0;
|
|
if (LI->getType()->isSized())
|
|
Size = AA->getTargetData().getTypeSize(LI->getType());
|
|
return !pointerInvalidatedByLoop(LI->getOperand(0), Size);
|
|
} else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
|
|
// Handle obvious cases efficiently.
|
|
if (Function *Callee = CI->getCalledFunction()) {
|
|
AliasAnalysis::ModRefBehavior Behavior =AA->getModRefBehavior(Callee, CI);
|
|
if (Behavior == AliasAnalysis::DoesNotAccessMemory)
|
|
return true;
|
|
else if (Behavior == AliasAnalysis::OnlyReadsMemory) {
|
|
// If this call only reads from memory and there are no writes to memory
|
|
// in the loop, we can hoist or sink the call as appropriate.
|
|
bool FoundMod = false;
|
|
for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
|
|
I != E; ++I) {
|
|
AliasSet &AS = *I;
|
|
if (!AS.isForwardingAliasSet() && AS.isMod()) {
|
|
FoundMod = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!FoundMod) return true;
|
|
}
|
|
}
|
|
|
|
// FIXME: This should use mod/ref information to see if we can hoist or sink
|
|
// the call.
|
|
|
|
return false;
|
|
}
|
|
|
|
return isa<BinaryOperator>(I) || isa<ShiftInst>(I) || isa<CastInst>(I) ||
|
|
isa<SelectInst>(I) ||
|
|
isa<GetElementPtrInst>(I);
|
|
}
|
|
|
|
/// isNotUsedInLoop - Return true if the only users of this instruction are
|
|
/// outside of the loop. If this is true, we can sink the instruction to the
|
|
/// exit blocks of the loop.
|
|
///
|
|
bool LICM::isNotUsedInLoop(Instruction &I) {
|
|
for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) {
|
|
Instruction *User = cast<Instruction>(*UI);
|
|
if (PHINode *PN = dyn_cast<PHINode>(User)) {
|
|
// PHI node uses occur in predecessor blocks!
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
if (PN->getIncomingValue(i) == &I)
|
|
if (CurLoop->contains(PN->getIncomingBlock(i)))
|
|
return false;
|
|
} else if (CurLoop->contains(User->getParent())) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/// isLoopInvariantInst - Return true if all operands of this instruction are
|
|
/// loop invariant. We also filter out non-hoistable instructions here just for
|
|
/// efficiency.
|
|
///
|
|
bool LICM::isLoopInvariantInst(Instruction &I) {
|
|
// The instruction is loop invariant if all of its operands are loop-invariant
|
|
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
|
|
if (!CurLoop->isLoopInvariant(I.getOperand(i)))
|
|
return false;
|
|
|
|
// If we got this far, the instruction is loop invariant!
|
|
return true;
|
|
}
|
|
|
|
/// sink - When an instruction is found to only be used outside of the loop,
|
|
/// this function moves it to the exit blocks and patches up SSA form as needed.
|
|
/// This method is guaranteed to remove the original instruction from its
|
|
/// position, and may either delete it or move it to outside of the loop.
|
|
///
|
|
void LICM::sink(Instruction &I) {
|
|
DEBUG(std::cerr << "LICM sinking instruction: " << I);
|
|
|
|
std::vector<BasicBlock*> ExitBlocks;
|
|
CurLoop->getExitBlocks(ExitBlocks);
|
|
|
|
if (isa<LoadInst>(I)) ++NumMovedLoads;
|
|
else if (isa<CallInst>(I)) ++NumMovedCalls;
|
|
++NumSunk;
|
|
Changed = true;
|
|
|
|
// The case where there is only a single exit node of this loop is common
|
|
// enough that we handle it as a special (more efficient) case. It is more
|
|
// efficient to handle because there are no PHI nodes that need to be placed.
|
|
if (ExitBlocks.size() == 1) {
|
|
if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[0], I.getParent())) {
|
|
// Instruction is not used, just delete it.
|
|
CurAST->deleteValue(&I);
|
|
I.getParent()->getInstList().erase(&I);
|
|
} else {
|
|
// Move the instruction to the start of the exit block, after any PHI
|
|
// nodes in it.
|
|
I.getParent()->getInstList().remove(&I);
|
|
|
|
BasicBlock::iterator InsertPt = ExitBlocks[0]->begin();
|
|
while (isa<PHINode>(InsertPt)) ++InsertPt;
|
|
ExitBlocks[0]->getInstList().insert(InsertPt, &I);
|
|
}
|
|
} else if (ExitBlocks.size() == 0) {
|
|
// The instruction is actually dead if there ARE NO exit blocks.
|
|
CurAST->deleteValue(&I);
|
|
I.getParent()->getInstList().erase(&I);
|
|
} else {
|
|
// Otherwise, if we have multiple exits, use the PromoteMem2Reg function to
|
|
// do all of the hard work of inserting PHI nodes as necessary. We convert
|
|
// the value into a stack object to get it to do this.
|
|
|
|
// Firstly, we create a stack object to hold the value...
|
|
AllocaInst *AI = 0;
|
|
|
|
if (I.getType() != Type::VoidTy)
|
|
AI = new AllocaInst(I.getType(), 0, I.getName(),
|
|
I.getParent()->getParent()->front().begin());
|
|
|
|
// Secondly, insert load instructions for each use of the instruction
|
|
// outside of the loop.
|
|
while (!I.use_empty()) {
|
|
Instruction *U = cast<Instruction>(I.use_back());
|
|
|
|
// If the user is a PHI Node, we actually have to insert load instructions
|
|
// in all predecessor blocks, not in the PHI block itself!
|
|
if (PHINode *UPN = dyn_cast<PHINode>(U)) {
|
|
// Only insert into each predecessor once, so that we don't have
|
|
// different incoming values from the same block!
|
|
std::map<BasicBlock*, Value*> InsertedBlocks;
|
|
for (unsigned i = 0, e = UPN->getNumIncomingValues(); i != e; ++i)
|
|
if (UPN->getIncomingValue(i) == &I) {
|
|
BasicBlock *Pred = UPN->getIncomingBlock(i);
|
|
Value *&PredVal = InsertedBlocks[Pred];
|
|
if (!PredVal) {
|
|
// Insert a new load instruction right before the terminator in
|
|
// the predecessor block.
|
|
PredVal = new LoadInst(AI, "", Pred->getTerminator());
|
|
}
|
|
|
|
UPN->setIncomingValue(i, PredVal);
|
|
}
|
|
|
|
} else {
|
|
LoadInst *L = new LoadInst(AI, "", U);
|
|
U->replaceUsesOfWith(&I, L);
|
|
}
|
|
}
|
|
|
|
// Thirdly, insert a copy of the instruction in each exit block of the loop
|
|
// that is dominated by the instruction, storing the result into the memory
|
|
// location. Be careful not to insert the instruction into any particular
|
|
// basic block more than once.
|
|
std::set<BasicBlock*> InsertedBlocks;
|
|
BasicBlock *InstOrigBB = I.getParent();
|
|
|
|
for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
|
|
BasicBlock *ExitBlock = ExitBlocks[i];
|
|
|
|
if (isExitBlockDominatedByBlockInLoop(ExitBlock, InstOrigBB)) {
|
|
// If we haven't already processed this exit block, do so now.
|
|
if (InsertedBlocks.insert(ExitBlock).second) {
|
|
// Insert the code after the last PHI node...
|
|
BasicBlock::iterator InsertPt = ExitBlock->begin();
|
|
while (isa<PHINode>(InsertPt)) ++InsertPt;
|
|
|
|
// If this is the first exit block processed, just move the original
|
|
// instruction, otherwise clone the original instruction and insert
|
|
// the copy.
|
|
Instruction *New;
|
|
if (InsertedBlocks.size() == 1) {
|
|
I.getParent()->getInstList().remove(&I);
|
|
ExitBlock->getInstList().insert(InsertPt, &I);
|
|
New = &I;
|
|
} else {
|
|
New = I.clone();
|
|
CurAST->copyValue(&I, New);
|
|
if (!I.getName().empty())
|
|
New->setName(I.getName()+".le");
|
|
ExitBlock->getInstList().insert(InsertPt, New);
|
|
}
|
|
|
|
// Now that we have inserted the instruction, store it into the alloca
|
|
if (AI) new StoreInst(New, AI, InsertPt);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the instruction doesn't dominate any exit blocks, it must be dead.
|
|
if (InsertedBlocks.empty()) {
|
|
CurAST->deleteValue(&I);
|
|
I.getParent()->getInstList().erase(&I);
|
|
}
|
|
|
|
// Finally, promote the fine value to SSA form.
|
|
if (AI) {
|
|
std::vector<AllocaInst*> Allocas;
|
|
Allocas.push_back(AI);
|
|
PromoteMemToReg(Allocas, *DT, *DF, AA->getTargetData(), CurAST);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// hoist - When an instruction is found to only use loop invariant operands
|
|
/// that is safe to hoist, this instruction is called to do the dirty work.
|
|
///
|
|
void LICM::hoist(Instruction &I) {
|
|
DEBUG(std::cerr << "LICM hoisting to " << Preheader->getName()
|
|
<< ": " << I);
|
|
|
|
// Remove the instruction from its current basic block... but don't delete the
|
|
// instruction.
|
|
I.getParent()->getInstList().remove(&I);
|
|
|
|
// Insert the new node in Preheader, before the terminator.
|
|
Preheader->getInstList().insert(Preheader->getTerminator(), &I);
|
|
|
|
if (isa<LoadInst>(I)) ++NumMovedLoads;
|
|
else if (isa<CallInst>(I)) ++NumMovedCalls;
|
|
++NumHoisted;
|
|
Changed = true;
|
|
}
|
|
|
|
/// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
|
|
/// not a trapping instruction or if it is a trapping instruction and is
|
|
/// guaranteed to execute.
|
|
///
|
|
bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
|
|
// If it is not a trapping instruction, it is always safe to hoist.
|
|
if (!Inst.isTrapping()) return true;
|
|
|
|
// Otherwise we have to check to make sure that the instruction dominates all
|
|
// of the exit blocks. If it doesn't, then there is a path out of the loop
|
|
// which does not execute this instruction, so we can't hoist it.
|
|
|
|
// If the instruction is in the header block for the loop (which is very
|
|
// common), it is always guaranteed to dominate the exit blocks. Since this
|
|
// is a common case, and can save some work, check it now.
|
|
if (Inst.getParent() == CurLoop->getHeader())
|
|
return true;
|
|
|
|
// It's always safe to load from a global or alloca.
|
|
if (isa<LoadInst>(Inst))
|
|
if (isa<AllocationInst>(Inst.getOperand(0)) ||
|
|
isa<GlobalVariable>(Inst.getOperand(0)))
|
|
return true;
|
|
|
|
// Get the exit blocks for the current loop.
|
|
std::vector<BasicBlock*> ExitBlocks;
|
|
CurLoop->getExitBlocks(ExitBlocks);
|
|
|
|
// For each exit block, get the DT node and walk up the DT until the
|
|
// instruction's basic block is found or we exit the loop.
|
|
for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
|
|
if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[i], Inst.getParent()))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/// PromoteValuesInLoop - Try to promote memory values to scalars by sinking
|
|
/// stores out of the loop and moving loads to before the loop. We do this by
|
|
/// looping over the stores in the loop, looking for stores to Must pointers
|
|
/// which are loop invariant. We promote these memory locations to use allocas
|
|
/// instead. These allocas can easily be raised to register values by the
|
|
/// PromoteMem2Reg functionality.
|
|
///
|
|
void LICM::PromoteValuesInLoop() {
|
|
// PromotedValues - List of values that are promoted out of the loop. Each
|
|
// value has an alloca instruction for it, and a canonical version of the
|
|
// pointer.
|
|
std::vector<std::pair<AllocaInst*, Value*> > PromotedValues;
|
|
std::map<Value*, AllocaInst*> ValueToAllocaMap; // Map of ptr to alloca
|
|
|
|
FindPromotableValuesInLoop(PromotedValues, ValueToAllocaMap);
|
|
if (ValueToAllocaMap.empty()) return; // If there are values to promote.
|
|
|
|
Changed = true;
|
|
NumPromoted += PromotedValues.size();
|
|
|
|
std::vector<Value*> PointerValueNumbers;
|
|
|
|
// Emit a copy from the value into the alloca'd value in the loop preheader
|
|
TerminatorInst *LoopPredInst = Preheader->getTerminator();
|
|
for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
|
|
Value *Ptr = PromotedValues[i].second;
|
|
|
|
// If we are promoting a pointer value, update alias information for the
|
|
// inserted load.
|
|
Value *LoadValue = 0;
|
|
if (isa<PointerType>(cast<PointerType>(Ptr->getType())->getElementType())) {
|
|
// Locate a load or store through the pointer, and assign the same value
|
|
// to LI as we are loading or storing. Since we know that the value is
|
|
// stored in this loop, this will always succeed.
|
|
for (Value::use_iterator UI = Ptr->use_begin(), E = Ptr->use_end();
|
|
UI != E; ++UI)
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
|
|
LoadValue = LI;
|
|
break;
|
|
} else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
|
|
if (SI->getOperand(1) == Ptr) {
|
|
LoadValue = SI->getOperand(0);
|
|
break;
|
|
}
|
|
}
|
|
assert(LoadValue && "No store through the pointer found!");
|
|
PointerValueNumbers.push_back(LoadValue); // Remember this for later.
|
|
}
|
|
|
|
// Load from the memory we are promoting.
|
|
LoadInst *LI = new LoadInst(Ptr, Ptr->getName()+".promoted", LoopPredInst);
|
|
|
|
if (LoadValue) CurAST->copyValue(LoadValue, LI);
|
|
|
|
// Store into the temporary alloca.
|
|
new StoreInst(LI, PromotedValues[i].first, LoopPredInst);
|
|
}
|
|
|
|
// Scan the basic blocks in the loop, replacing uses of our pointers with
|
|
// uses of the allocas in question.
|
|
//
|
|
const std::vector<BasicBlock*> &LoopBBs = CurLoop->getBlocks();
|
|
for (std::vector<BasicBlock*>::const_iterator I = LoopBBs.begin(),
|
|
E = LoopBBs.end(); I != E; ++I) {
|
|
// Rewrite all loads and stores in the block of the pointer...
|
|
for (BasicBlock::iterator II = (*I)->begin(), E = (*I)->end();
|
|
II != E; ++II) {
|
|
if (LoadInst *L = dyn_cast<LoadInst>(II)) {
|
|
std::map<Value*, AllocaInst*>::iterator
|
|
I = ValueToAllocaMap.find(L->getOperand(0));
|
|
if (I != ValueToAllocaMap.end())
|
|
L->setOperand(0, I->second); // Rewrite load instruction...
|
|
} else if (StoreInst *S = dyn_cast<StoreInst>(II)) {
|
|
std::map<Value*, AllocaInst*>::iterator
|
|
I = ValueToAllocaMap.find(S->getOperand(1));
|
|
if (I != ValueToAllocaMap.end())
|
|
S->setOperand(1, I->second); // Rewrite store instruction...
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now that the body of the loop uses the allocas instead of the original
|
|
// memory locations, insert code to copy the alloca value back into the
|
|
// original memory location on all exits from the loop. Note that we only
|
|
// want to insert one copy of the code in each exit block, though the loop may
|
|
// exit to the same block more than once.
|
|
//
|
|
std::set<BasicBlock*> ProcessedBlocks;
|
|
|
|
std::vector<BasicBlock*> ExitBlocks;
|
|
CurLoop->getExitBlocks(ExitBlocks);
|
|
for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
|
|
if (ProcessedBlocks.insert(ExitBlocks[i]).second) {
|
|
// Copy all of the allocas into their memory locations.
|
|
BasicBlock::iterator BI = ExitBlocks[i]->begin();
|
|
while (isa<PHINode>(*BI))
|
|
++BI; // Skip over all of the phi nodes in the block.
|
|
Instruction *InsertPos = BI;
|
|
unsigned PVN = 0;
|
|
for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
|
|
// Load from the alloca.
|
|
LoadInst *LI = new LoadInst(PromotedValues[i].first, "", InsertPos);
|
|
|
|
// If this is a pointer type, update alias info appropriately.
|
|
if (isa<PointerType>(LI->getType()))
|
|
CurAST->copyValue(PointerValueNumbers[PVN++], LI);
|
|
|
|
// Store into the memory we promoted.
|
|
new StoreInst(LI, PromotedValues[i].second, InsertPos);
|
|
}
|
|
}
|
|
|
|
// Now that we have done the deed, use the mem2reg functionality to promote
|
|
// all of the new allocas we just created into real SSA registers.
|
|
//
|
|
std::vector<AllocaInst*> PromotedAllocas;
|
|
PromotedAllocas.reserve(PromotedValues.size());
|
|
for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i)
|
|
PromotedAllocas.push_back(PromotedValues[i].first);
|
|
PromoteMemToReg(PromotedAllocas, *DT, *DF, AA->getTargetData(), CurAST);
|
|
}
|
|
|
|
/// FindPromotableValuesInLoop - Check the current loop for stores to definite
|
|
/// pointers, which are not loaded and stored through may aliases. If these are
|
|
/// found, create an alloca for the value, add it to the PromotedValues list,
|
|
/// and keep track of the mapping from value to alloca.
|
|
///
|
|
void LICM::FindPromotableValuesInLoop(
|
|
std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
|
|
std::map<Value*, AllocaInst*> &ValueToAllocaMap) {
|
|
Instruction *FnStart = CurLoop->getHeader()->getParent()->begin()->begin();
|
|
|
|
// Loop over all of the alias sets in the tracker object.
|
|
for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
|
|
I != E; ++I) {
|
|
AliasSet &AS = *I;
|
|
// We can promote this alias set if it has a store, if it is a "Must" alias
|
|
// set, if the pointer is loop invariant, and if we are not eliminating any
|
|
// volatile loads or stores.
|
|
if (!AS.isForwardingAliasSet() && AS.isMod() && AS.isMustAlias() &&
|
|
!AS.isVolatile() && CurLoop->isLoopInvariant(AS.begin()->first)) {
|
|
assert(AS.begin() != AS.end() &&
|
|
"Must alias set should have at least one pointer element in it!");
|
|
Value *V = AS.begin()->first;
|
|
|
|
// Check that all of the pointers in the alias set have the same type. We
|
|
// cannot (yet) promote a memory location that is loaded and stored in
|
|
// different sizes.
|
|
bool PointerOk = true;
|
|
for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
|
|
if (V->getType() != I->first->getType()) {
|
|
PointerOk = false;
|
|
break;
|
|
}
|
|
|
|
if (PointerOk) {
|
|
const Type *Ty = cast<PointerType>(V->getType())->getElementType();
|
|
AllocaInst *AI = new AllocaInst(Ty, 0, V->getName()+".tmp", FnStart);
|
|
PromotedValues.push_back(std::make_pair(AI, V));
|
|
|
|
// Update the AST and alias analysis.
|
|
CurAST->copyValue(V, AI);
|
|
|
|
for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
|
|
ValueToAllocaMap.insert(std::make_pair(I->first, AI));
|
|
|
|
DEBUG(std::cerr << "LICM: Promoting value: " << *V << "\n");
|
|
}
|
|
}
|
|
}
|
|
}
|