llvm-6502/lib/VMCore/Dominators.cpp
Chris Lattner 7ed54a0ece 1. Random tidiness cleanups
2. Make domtree printing print dfin/dfout #'s
3. Fix the Transforms/LoopSimplify/2004-04-13-LoopSimplifyUpdateDomFrontier.ll failure from last night (in DominanceFrontier::splitBlock).

w.r.t. #3, my patches last night happened to expose the bug, but this 
has been broken since Owen's r35839 patch to LoopSimplify.  The code
was subsequently moved over from LoopSimplify into Dominators, carrying
the latent bug.  Fun stuff.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40858 91177308-0d34-0410-b5e6-96231b3b80d8
2007-08-06 06:19:47 +00:00

817 lines
26 KiB
C++

//===- Dominators.cpp - Dominator Calculation -----------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements simple dominator construction algorithms for finding
// forward dominators. Postdominators are available in libanalysis, but are not
// included in libvmcore, because it's not needed. Forward dominators are
// needed to support the Verifier pass.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/Dominators.h"
#include "llvm/Support/CFG.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Instructions.h"
#include "llvm/Support/Streams.h"
#include <algorithm>
using namespace llvm;
namespace llvm {
static std::ostream &operator<<(std::ostream &o,
const std::set<BasicBlock*> &BBs) {
for (std::set<BasicBlock*>::const_iterator I = BBs.begin(), E = BBs.end();
I != E; ++I)
if (*I)
WriteAsOperand(o, *I, false);
else
o << " <<exit node>>";
return o;
}
}
//===----------------------------------------------------------------------===//
// DominatorTree Implementation
//===----------------------------------------------------------------------===//
//
// DominatorTree construction - This pass constructs immediate dominator
// information for a flow-graph based on the algorithm described in this
// document:
//
// A Fast Algorithm for Finding Dominators in a Flowgraph
// T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141.
//
// This implements both the O(n*ack(n)) and the O(n*log(n)) versions of EVAL and
// LINK, but it turns out that the theoretically slower O(n*log(n))
// implementation is actually faster than the "efficient" algorithm (even for
// large CFGs) because the constant overheads are substantially smaller. The
// lower-complexity version can be enabled with the following #define:
//
#define BALANCE_IDOM_TREE 0
//
//===----------------------------------------------------------------------===//
char DominatorTree::ID = 0;
static RegisterPass<DominatorTree>
E("domtree", "Dominator Tree Construction", true);
// NewBB is split and now it has one successor. Update dominator tree to
// reflect this change.
void DominatorTree::splitBlock(BasicBlock *NewBB) {
assert(NewBB->getTerminator()->getNumSuccessors() == 1
&& "NewBB should have a single successor!");
BasicBlock *NewBBSucc = NewBB->getTerminator()->getSuccessor(0);
std::vector<BasicBlock*> PredBlocks;
for (pred_iterator PI = pred_begin(NewBB), PE = pred_end(NewBB);
PI != PE; ++PI)
PredBlocks.push_back(*PI);
assert(!PredBlocks.empty() && "No predblocks??");
// The newly inserted basic block will dominate existing basic blocks iff the
// PredBlocks dominate all of the non-pred blocks. If all predblocks dominate
// the non-pred blocks, then they all must be the same block!
//
bool NewBBDominatesNewBBSucc = true;
{
BasicBlock *OnePred = PredBlocks[0];
unsigned i = 1, e = PredBlocks.size();
for (i = 1; !isReachableFromEntry(OnePred); ++i) {
assert(i != e && "Didn't find reachable pred?");
OnePred = PredBlocks[i];
}
for (; i != e; ++i)
if (PredBlocks[i] != OnePred && isReachableFromEntry(OnePred)) {
NewBBDominatesNewBBSucc = false;
break;
}
if (NewBBDominatesNewBBSucc)
for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc);
PI != E; ++PI)
if (*PI != NewBB && !dominates(NewBBSucc, *PI)) {
NewBBDominatesNewBBSucc = false;
break;
}
}
// The other scenario where the new block can dominate its successors are when
// all predecessors of NewBBSucc that are not NewBB are dominated by NewBBSucc
// already.
if (!NewBBDominatesNewBBSucc) {
NewBBDominatesNewBBSucc = true;
for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc);
PI != E; ++PI)
if (*PI != NewBB && !dominates(NewBBSucc, *PI)) {
NewBBDominatesNewBBSucc = false;
break;
}
}
// Find NewBB's immediate dominator and create new dominator tree node for
// NewBB.
BasicBlock *NewBBIDom = 0;
unsigned i = 0;
for (i = 0; i < PredBlocks.size(); ++i)
if (isReachableFromEntry(PredBlocks[i])) {
NewBBIDom = PredBlocks[i];
break;
}
assert(i != PredBlocks.size() && "No reachable preds?");
for (i = i + 1; i < PredBlocks.size(); ++i) {
if (isReachableFromEntry(PredBlocks[i]))
NewBBIDom = findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
}
assert(NewBBIDom && "No immediate dominator found??");
// Create the new dominator tree node... and set the idom of NewBB.
DomTreeNode *NewBBNode = addNewBlock(NewBB, NewBBIDom);
// If NewBB strictly dominates other blocks, then it is now the immediate
// dominator of NewBBSucc. Update the dominator tree as appropriate.
if (NewBBDominatesNewBBSucc) {
DomTreeNode *NewBBSuccNode = getNode(NewBBSucc);
changeImmediateDominator(NewBBSuccNode, NewBBNode);
}
}
unsigned DominatorTree::DFSPass(BasicBlock *V, unsigned N) {
// This is more understandable as a recursive algorithm, but we can't use the
// recursive algorithm due to stack depth issues. Keep it here for
// documentation purposes.
#if 0
InfoRec &VInfo = Info[Roots[i]];
VInfo.Semi = ++N;
VInfo.Label = V;
Vertex.push_back(V); // Vertex[n] = V;
//Info[V].Ancestor = 0; // Ancestor[n] = 0
//Info[V].Child = 0; // Child[v] = 0
VInfo.Size = 1; // Size[v] = 1
for (succ_iterator SI = succ_begin(V), E = succ_end(V); SI != E; ++SI) {
InfoRec &SuccVInfo = Info[*SI];
if (SuccVInfo.Semi == 0) {
SuccVInfo.Parent = V;
N = DFSPass(*SI, N);
}
}
#else
std::vector<std::pair<BasicBlock*, unsigned> > Worklist;
Worklist.push_back(std::make_pair(V, 0U));
while (!Worklist.empty()) {
BasicBlock *BB = Worklist.back().first;
unsigned NextSucc = Worklist.back().second;
// First time we visited this BB?
if (NextSucc == 0) {
InfoRec &BBInfo = Info[BB];
BBInfo.Semi = ++N;
BBInfo.Label = BB;
Vertex.push_back(BB); // Vertex[n] = V;
//BBInfo[V].Ancestor = 0; // Ancestor[n] = 0
//BBInfo[V].Child = 0; // Child[v] = 0
BBInfo.Size = 1; // Size[v] = 1
}
// If we are done with this block, remove it from the worklist.
if (NextSucc == BB->getTerminator()->getNumSuccessors()) {
Worklist.pop_back();
continue;
}
// Otherwise, increment the successor number for the next time we get to it.
++Worklist.back().second;
// Visit the successor next, if it isn't already visited.
BasicBlock *Succ = BB->getTerminator()->getSuccessor(NextSucc);
InfoRec &SuccVInfo = Info[Succ];
if (SuccVInfo.Semi == 0) {
SuccVInfo.Parent = BB;
Worklist.push_back(std::make_pair(Succ, 0U));
}
}
#endif
return N;
}
void DominatorTree::Compress(BasicBlock *VIn) {
std::vector<BasicBlock *> Work;
SmallPtrSet<BasicBlock *, 32> Visited;
BasicBlock *VInAncestor = Info[VIn].Ancestor;
InfoRec &VInVAInfo = Info[VInAncestor];
if (VInVAInfo.Ancestor != 0)
Work.push_back(VIn);
while (!Work.empty()) {
BasicBlock *V = Work.back();
InfoRec &VInfo = Info[V];
BasicBlock *VAncestor = VInfo.Ancestor;
InfoRec &VAInfo = Info[VAncestor];
// Process Ancestor first
if (Visited.insert(VAncestor) &&
VAInfo.Ancestor != 0) {
Work.push_back(VAncestor);
continue;
}
Work.pop_back();
// Update VInfo based on Ancestor info
if (VAInfo.Ancestor == 0)
continue;
BasicBlock *VAncestorLabel = VAInfo.Label;
BasicBlock *VLabel = VInfo.Label;
if (Info[VAncestorLabel].Semi < Info[VLabel].Semi)
VInfo.Label = VAncestorLabel;
VInfo.Ancestor = VAInfo.Ancestor;
}
}
BasicBlock *DominatorTree::Eval(BasicBlock *V) {
InfoRec &VInfo = Info[V];
#if !BALANCE_IDOM_TREE
// Higher-complexity but faster implementation
if (VInfo.Ancestor == 0)
return V;
Compress(V);
return VInfo.Label;
#else
// Lower-complexity but slower implementation
if (VInfo.Ancestor == 0)
return VInfo.Label;
Compress(V);
BasicBlock *VLabel = VInfo.Label;
BasicBlock *VAncestorLabel = Info[VInfo.Ancestor].Label;
if (Info[VAncestorLabel].Semi >= Info[VLabel].Semi)
return VLabel;
else
return VAncestorLabel;
#endif
}
void DominatorTree::Link(BasicBlock *V, BasicBlock *W, InfoRec &WInfo){
#if !BALANCE_IDOM_TREE
// Higher-complexity but faster implementation
WInfo.Ancestor = V;
#else
// Lower-complexity but slower implementation
BasicBlock *WLabel = WInfo.Label;
unsigned WLabelSemi = Info[WLabel].Semi;
BasicBlock *S = W;
InfoRec *SInfo = &Info[S];
BasicBlock *SChild = SInfo->Child;
InfoRec *SChildInfo = &Info[SChild];
while (WLabelSemi < Info[SChildInfo->Label].Semi) {
BasicBlock *SChildChild = SChildInfo->Child;
if (SInfo->Size+Info[SChildChild].Size >= 2*SChildInfo->Size) {
SChildInfo->Ancestor = S;
SInfo->Child = SChild = SChildChild;
SChildInfo = &Info[SChild];
} else {
SChildInfo->Size = SInfo->Size;
S = SInfo->Ancestor = SChild;
SInfo = SChildInfo;
SChild = SChildChild;
SChildInfo = &Info[SChild];
}
}
InfoRec &VInfo = Info[V];
SInfo->Label = WLabel;
assert(V != W && "The optimization here will not work in this case!");
unsigned WSize = WInfo.Size;
unsigned VSize = (VInfo.Size += WSize);
if (VSize < 2*WSize)
std::swap(S, VInfo.Child);
while (S) {
SInfo = &Info[S];
SInfo->Ancestor = V;
S = SInfo->Child;
}
#endif
}
void DominatorTree::calculate(Function &F) {
BasicBlock* Root = Roots[0];
// Add a node for the root...
DomTreeNodes[Root] = RootNode = new DomTreeNode(Root, 0);
Vertex.push_back(0);
// Step #1: Number blocks in depth-first order and initialize variables used
// in later stages of the algorithm.
unsigned N = DFSPass(Root, 0);
for (unsigned i = N; i >= 2; --i) {
BasicBlock *W = Vertex[i];
InfoRec &WInfo = Info[W];
// Step #2: Calculate the semidominators of all vertices
for (pred_iterator PI = pred_begin(W), E = pred_end(W); PI != E; ++PI)
if (Info.count(*PI)) { // Only if this predecessor is reachable!
unsigned SemiU = Info[Eval(*PI)].Semi;
if (SemiU < WInfo.Semi)
WInfo.Semi = SemiU;
}
Info[Vertex[WInfo.Semi]].Bucket.push_back(W);
BasicBlock *WParent = WInfo.Parent;
Link(WParent, W, WInfo);
// Step #3: Implicitly define the immediate dominator of vertices
std::vector<BasicBlock*> &WParentBucket = Info[WParent].Bucket;
while (!WParentBucket.empty()) {
BasicBlock *V = WParentBucket.back();
WParentBucket.pop_back();
BasicBlock *U = Eval(V);
IDoms[V] = Info[U].Semi < Info[V].Semi ? U : WParent;
}
}
// Step #4: Explicitly define the immediate dominator of each vertex
for (unsigned i = 2; i <= N; ++i) {
BasicBlock *W = Vertex[i];
BasicBlock *&WIDom = IDoms[W];
if (WIDom != Vertex[Info[W].Semi])
WIDom = IDoms[WIDom];
}
// Loop over all of the reachable blocks in the function...
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
if (BasicBlock *ImmDom = getIDom(I)) { // Reachable block.
DomTreeNode *BBNode = DomTreeNodes[I];
if (BBNode) continue; // Haven't calculated this node yet?
// Get or calculate the node for the immediate dominator
DomTreeNode *IDomNode = getNodeForBlock(ImmDom);
// Add a new tree node for this BasicBlock, and link it as a child of
// IDomNode
DomTreeNode *C = new DomTreeNode(I, IDomNode);
DomTreeNodes[I] = IDomNode->addChild(C);
}
// Free temporary memory used to construct idom's
Info.clear();
IDoms.clear();
std::vector<BasicBlock*>().swap(Vertex);
updateDFSNumbers();
}
void DominatorTreeBase::updateDFSNumbers() {
int dfsnum = 0;
// Iterate over all nodes in depth first order.
for (unsigned i = 0, e = Roots.size(); i != e; ++i)
for (df_iterator<BasicBlock*> I = df_begin(Roots[i]),
E = df_end(Roots[i]); I != E; ++I) {
if (DomTreeNode *BBNode = getNode(*I)) {
if (!BBNode->getIDom())
BBNode->assignDFSNumber(dfsnum);
}
}
SlowQueries = 0;
DFSInfoValid = true;
}
/// isReachableFromEntry - Return true if A is dominated by the entry
/// block of the function containing it.
const bool DominatorTreeBase::isReachableFromEntry(BasicBlock* A) {
assert (!isPostDominator()
&& "This is not implemented for post dominators");
return dominates(&A->getParent()->getEntryBlock(), A);
}
// dominates - Return true if A dominates B. THis performs the
// special checks necessary if A and B are in the same basic block.
bool DominatorTreeBase::dominates(Instruction *A, Instruction *B) {
BasicBlock *BBA = A->getParent(), *BBB = B->getParent();
if (BBA != BBB) return dominates(BBA, BBB);
// It is not possible to determine dominance between two PHI nodes
// based on their ordering.
if (isa<PHINode>(A) && isa<PHINode>(B))
return false;
// Loop through the basic block until we find A or B.
BasicBlock::iterator I = BBA->begin();
for (; &*I != A && &*I != B; ++I) /*empty*/;
if(!IsPostDominators) {
// A dominates B if it is found first in the basic block.
return &*I == A;
} else {
// A post-dominates B if B is found first in the basic block.
return &*I == B;
}
}
// DominatorTreeBase::reset - Free all of the tree node memory.
//
void DominatorTreeBase::reset() {
for (DomTreeNodeMapType::iterator I = DomTreeNodes.begin(),
E = DomTreeNodes.end(); I != E; ++I)
delete I->second;
DomTreeNodes.clear();
IDoms.clear();
Roots.clear();
Vertex.clear();
RootNode = 0;
}
/// findNearestCommonDominator - Find nearest common dominator basic block
/// for basic block A and B. If there is no such block then return NULL.
BasicBlock *DominatorTreeBase::findNearestCommonDominator(BasicBlock *A,
BasicBlock *B) {
assert (!isPostDominator()
&& "This is not implemented for post dominators");
assert (A->getParent() == B->getParent()
&& "Two blocks are not in same function");
// If either A or B is a entry block then it is nearest common dominator.
BasicBlock &Entry = A->getParent()->getEntryBlock();
if (A == &Entry || B == &Entry)
return &Entry;
// If B dominates A then B is nearest common dominator.
if (dominates(B, A))
return B;
// If A dominates B then A is nearest common dominator.
if (dominates(A, B))
return A;
DomTreeNode *NodeA = getNode(A);
DomTreeNode *NodeB = getNode(B);
// Collect NodeA dominators set.
SmallPtrSet<DomTreeNode*, 16> NodeADoms;
NodeADoms.insert(NodeA);
DomTreeNode *IDomA = NodeA->getIDom();
while (IDomA) {
NodeADoms.insert(IDomA);
IDomA = IDomA->getIDom();
}
// Walk NodeB immediate dominators chain and find common dominator node.
DomTreeNode *IDomB = NodeB->getIDom();
while(IDomB) {
if (NodeADoms.count(IDomB) != 0)
return IDomB->getBlock();
IDomB = IDomB->getIDom();
}
return NULL;
}
/// assignDFSNumber - Assign In and Out numbers while walking dominator tree
/// in dfs order.
void DomTreeNode::assignDFSNumber(int num) {
std::vector<DomTreeNode *> workStack;
SmallPtrSet<DomTreeNode *, 32> Visited;
workStack.push_back(this);
Visited.insert(this);
this->DFSNumIn = num++;
while (!workStack.empty()) {
DomTreeNode *Node = workStack.back();
bool visitChild = false;
for (std::vector<DomTreeNode*>::iterator DI = Node->begin(),
E = Node->end(); DI != E && !visitChild; ++DI) {
DomTreeNode *Child = *DI;
if (!Visited.insert(Child))
continue;
visitChild = true;
Child->DFSNumIn = num++;
workStack.push_back(Child);
}
if (!visitChild) {
// If we reach here means all children are visited
Node->DFSNumOut = num++;
workStack.pop_back();
}
}
}
void DomTreeNode::setIDom(DomTreeNode *NewIDom) {
assert(IDom && "No immediate dominator?");
if (IDom != NewIDom) {
std::vector<DomTreeNode*>::iterator I =
std::find(IDom->Children.begin(), IDom->Children.end(), this);
assert(I != IDom->Children.end() &&
"Not in immediate dominator children set!");
// I am no longer your child...
IDom->Children.erase(I);
// Switch to new dominator
IDom = NewIDom;
IDom->Children.push_back(this);
}
}
DomTreeNode *DominatorTree::getNodeForBlock(BasicBlock *BB) {
if (DomTreeNode *BBNode = DomTreeNodes[BB])
return BBNode;
// Haven't calculated this node yet? Get or calculate the node for the
// immediate dominator.
BasicBlock *IDom = getIDom(BB);
DomTreeNode *IDomNode = getNodeForBlock(IDom);
// Add a new tree node for this BasicBlock, and link it as a child of
// IDomNode
DomTreeNode *C = new DomTreeNode(BB, IDomNode);
return DomTreeNodes[BB] = IDomNode->addChild(C);
}
static std::ostream &operator<<(std::ostream &o, const DomTreeNode *Node) {
if (Node->getBlock())
WriteAsOperand(o, Node->getBlock(), false);
else
o << " <<exit node>>";
o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}";
return o << "\n";
}
static void PrintDomTree(const DomTreeNode *N, std::ostream &o,
unsigned Lev) {
o << std::string(2*Lev, ' ') << "[" << Lev << "] " << N;
for (DomTreeNode::const_iterator I = N->begin(), E = N->end();
I != E; ++I)
PrintDomTree(*I, o, Lev+1);
}
void DominatorTreeBase::print(std::ostream &o, const Module* ) const {
o << "=============================--------------------------------\n";
o << "Inorder Dominator Tree: ";
if (DFSInfoValid)
o << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
o << "\n";
PrintDomTree(getRootNode(), o, 1);
}
void DominatorTreeBase::dump() {
print(llvm::cerr);
}
bool DominatorTree::runOnFunction(Function &F) {
reset(); // Reset from the last time we were run...
Roots.push_back(&F.getEntryBlock());
calculate(F);
return false;
}
//===----------------------------------------------------------------------===//
// DominanceFrontier Implementation
//===----------------------------------------------------------------------===//
char DominanceFrontier::ID = 0;
static RegisterPass<DominanceFrontier>
G("domfrontier", "Dominance Frontier Construction", true);
// NewBB is split and now it has one successor. Update dominace frontier to
// reflect this change.
void DominanceFrontier::splitBlock(BasicBlock *NewBB) {
assert(NewBB->getTerminator()->getNumSuccessors() == 1
&& "NewBB should have a single successor!");
BasicBlock *NewBBSucc = NewBB->getTerminator()->getSuccessor(0);
std::vector<BasicBlock*> PredBlocks;
for (pred_iterator PI = pred_begin(NewBB), PE = pred_end(NewBB);
PI != PE; ++PI)
PredBlocks.push_back(*PI);
if (PredBlocks.empty())
// If NewBB does not have any predecessors then it is a entry block.
// In this case, NewBB and its successor NewBBSucc dominates all
// other blocks.
return;
// NewBBSucc inherits original NewBB frontier.
DominanceFrontier::iterator NewBBI = find(NewBB);
if (NewBBI != end()) {
DominanceFrontier::DomSetType NewBBSet = NewBBI->second;
DominanceFrontier::DomSetType NewBBSuccSet;
NewBBSuccSet.insert(NewBBSet.begin(), NewBBSet.end());
addBasicBlock(NewBBSucc, NewBBSuccSet);
}
// If NewBB dominates NewBBSucc, then DF(NewBB) is now going to be the
// DF(PredBlocks[0]) without the stuff that the new block does not dominate
// a predecessor of.
DominatorTree &DT = getAnalysis<DominatorTree>();
if (DT.dominates(NewBB, NewBBSucc)) {
DominanceFrontier::iterator DFI = find(PredBlocks[0]);
if (DFI != end()) {
DominanceFrontier::DomSetType Set = DFI->second;
// Filter out stuff in Set that we do not dominate a predecessor of.
for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
E = Set.end(); SetI != E;) {
bool DominatesPred = false;
for (pred_iterator PI = pred_begin(*SetI), E = pred_end(*SetI);
PI != E; ++PI)
if (DT.dominates(NewBB, *PI))
DominatesPred = true;
if (!DominatesPred)
Set.erase(SetI++);
else
++SetI;
}
if (NewBBI != end()) {
DominanceFrontier::DomSetType NewBBSet = NewBBI->second;
NewBBSet.insert(Set.begin(), Set.end());
} else
addBasicBlock(NewBB, Set);
}
} else {
// DF(NewBB) is {NewBBSucc} because NewBB does not strictly dominate
// NewBBSucc, but it does dominate itself (and there is an edge (NewBB ->
// NewBBSucc)). NewBBSucc is the single successor of NewBB.
DominanceFrontier::DomSetType NewDFSet;
NewDFSet.insert(NewBBSucc);
addBasicBlock(NewBB, NewDFSet);
}
// Now we must loop over all of the dominance frontiers in the function,
// replacing occurrences of NewBBSucc with NewBB in some cases. All
// blocks that dominate a block in PredBlocks and contained NewBBSucc in
// their dominance frontier must be updated to contain NewBB instead.
//
for (Function::iterator FI = NewBB->getParent()->begin(),
FE = NewBB->getParent()->end(); FI != FE; ++FI) {
DominanceFrontier::iterator DFI = find(FI);
if (DFI == end()) continue; // unreachable block.
// Only consider nodes that have NewBBSucc in their dominator frontier.
if (!DFI->second.count(NewBBSucc)) continue;
// Verify whether this block dominates a block in predblocks. If not, do
// not update it.
bool BlockDominatesAny = false;
for (std::vector<BasicBlock*>::const_iterator BI = PredBlocks.begin(),
BE = PredBlocks.end(); BI != BE; ++BI) {
if (DT.dominates(FI, *BI)) {
BlockDominatesAny = true;
break;
}
}
if (!BlockDominatesAny)
continue;
// If NewBBSucc should not stay in our dominator frontier, remove it.
// We remove it unless there is a predecessor of NewBBSucc that we
// dominate, but we don't strictly dominate NewBBSucc.
bool ShouldRemove = true;
if ((BasicBlock*)FI == NewBBSucc || !DT.dominates(FI, NewBBSucc)) {
// Okay, we know that PredDom does not strictly dominate NewBBSucc.
// Check to see if it dominates any predecessors of NewBBSucc.
for (pred_iterator PI = pred_begin(NewBBSucc),
E = pred_end(NewBBSucc); PI != E; ++PI)
if (DT.dominates(FI, *PI)) {
ShouldRemove = false;
break;
}
}
if (ShouldRemove)
removeFromFrontier(DFI, NewBBSucc);
addToFrontier(DFI, NewBB);
}
}
namespace {
class DFCalculateWorkObject {
public:
DFCalculateWorkObject(BasicBlock *B, BasicBlock *P,
const DomTreeNode *N,
const DomTreeNode *PN)
: currentBB(B), parentBB(P), Node(N), parentNode(PN) {}
BasicBlock *currentBB;
BasicBlock *parentBB;
const DomTreeNode *Node;
const DomTreeNode *parentNode;
};
}
const DominanceFrontier::DomSetType &
DominanceFrontier::calculate(const DominatorTree &DT,
const DomTreeNode *Node) {
BasicBlock *BB = Node->getBlock();
DomSetType *Result = NULL;
std::vector<DFCalculateWorkObject> workList;
SmallPtrSet<BasicBlock *, 32> visited;
workList.push_back(DFCalculateWorkObject(BB, NULL, Node, NULL));
do {
DFCalculateWorkObject *currentW = &workList.back();
assert (currentW && "Missing work object.");
BasicBlock *currentBB = currentW->currentBB;
BasicBlock *parentBB = currentW->parentBB;
const DomTreeNode *currentNode = currentW->Node;
const DomTreeNode *parentNode = currentW->parentNode;
assert (currentBB && "Invalid work object. Missing current Basic Block");
assert (currentNode && "Invalid work object. Missing current Node");
DomSetType &S = Frontiers[currentBB];
// Visit each block only once.
if (visited.count(currentBB) == 0) {
visited.insert(currentBB);
// Loop over CFG successors to calculate DFlocal[currentNode]
for (succ_iterator SI = succ_begin(currentBB), SE = succ_end(currentBB);
SI != SE; ++SI) {
// Does Node immediately dominate this successor?
if (DT[*SI]->getIDom() != currentNode)
S.insert(*SI);
}
}
// At this point, S is DFlocal. Now we union in DFup's of our children...
// Loop through and visit the nodes that Node immediately dominates (Node's
// children in the IDomTree)
bool visitChild = false;
for (DomTreeNode::const_iterator NI = currentNode->begin(),
NE = currentNode->end(); NI != NE; ++NI) {
DomTreeNode *IDominee = *NI;
BasicBlock *childBB = IDominee->getBlock();
if (visited.count(childBB) == 0) {
workList.push_back(DFCalculateWorkObject(childBB, currentBB,
IDominee, currentNode));
visitChild = true;
}
}
// If all children are visited or there is any child then pop this block
// from the workList.
if (!visitChild) {
if (!parentBB) {
Result = &S;
break;
}
DomSetType::const_iterator CDFI = S.begin(), CDFE = S.end();
DomSetType &parentSet = Frontiers[parentBB];
for (; CDFI != CDFE; ++CDFI) {
if (!DT.properlyDominates(parentNode, DT[*CDFI]))
parentSet.insert(*CDFI);
}
workList.pop_back();
}
} while (!workList.empty());
return *Result;
}
void DominanceFrontierBase::print(std::ostream &o, const Module* ) const {
for (const_iterator I = begin(), E = end(); I != E; ++I) {
o << " DomFrontier for BB";
if (I->first)
WriteAsOperand(o, I->first, false);
else
o << " <<exit node>>";
o << " is:\t" << I->second << "\n";
}
}
void DominanceFrontierBase::dump() {
print (llvm::cerr);
}