llvm-6502/include/llvm/LTO/LTOCodeGenerator.h
Duncan P. N. Exon Smith 3e4542b2ca Reapply "LTO: add API to set strategy for -internalize"
Reapply r199191, reverted in r199197 because it carelessly broke
Other/link-opts.ll.  The problem was that calling
createInternalizePass("main") would select
createInternalizePass(bool("main")) instead of
createInternalizePass(ArrayRef<const char *>("main")).  This commit
fixes the bug.

The original commit message follows.

Add API to LTOCodeGenerator to specify a strategy for the -internalize
pass.

This is a new attempt at Bill's change in r185882, which he reverted in
r188029 due to problems with the gold linker.  This puts the onus on the
linker to decide whether (and what) to internalize.

In particular, running internalize before outputting an object file may
change a 'weak' symbol into an internal one, even though that symbol
could be needed by an external object file --- e.g., with arclite.

This patch enables three strategies:

- LTO_INTERNALIZE_FULL: the default (and the old behaviour).
- LTO_INTERNALIZE_NONE: skip -internalize.
- LTO_INTERNALIZE_HIDDEN: only -internalize symbols with hidden
  visibility.

LTO_INTERNALIZE_FULL should be used when linking an executable.

Outputting an object file (e.g., via ld -r) is more complicated, and
depends on whether hidden symbols should be internalized.  E.g., for
ld -r, LTO_INTERNALIZE_NONE can be used when -keep_private_externs, and
LTO_INTERNALIZE_HIDDEN can be used otherwise.  However,
LTO_INTERNALIZE_FULL is inappropriate, since the output object file will
eventually need to link with others.

lto_codegen_set_internalize_strategy() sets the strategy for subsequent
calls to lto_codegen_write_merged_modules() and lto_codegen_compile*().

<rdar://problem/14334895>

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199244 91177308-0d34-0410-b5e6-96231b3b80d8
2014-01-14 18:52:17 +00:00

161 lines
6.0 KiB
C++

//===-LTOCodeGenerator.h - LLVM Link Time Optimizer -----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the LTOCodeGenerator class.
//
// LTO compilation consists of three phases: Pre-IPO, IPO and Post-IPO.
//
// The Pre-IPO phase compiles source code into bitcode file. The resulting
// bitcode files, along with object files and libraries, will be fed to the
// linker to through the IPO and Post-IPO phases. By using obj-file extension,
// the resulting bitcode file disguises itself as an object file, and therefore
// obviates the need of writing a special set of the make-rules only for LTO
// compilation.
//
// The IPO phase perform inter-procedural analyses and optimizations, and
// the Post-IPO consists two sub-phases: intra-procedural scalar optimizations
// (SOPT), and intra-procedural target-dependent code generator (CG).
//
// As of this writing, we don't separate IPO and the Post-IPO SOPT. They
// are intermingled together, and are driven by a single pass manager (see
// PassManagerBuilder::populateLTOPassManager()).
//
// The "LTOCodeGenerator" is the driver for the IPO and Post-IPO stages.
// The "CodeGenerator" here is bit confusing. Don't confuse the "CodeGenerator"
// with the machine specific code generator.
//
//===----------------------------------------------------------------------===//
#ifndef LTO_CODE_GENERATOR_H
#define LTO_CODE_GENERATOR_H
#include "llvm-c/lto.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Linker.h"
#include "llvm/Target/TargetOptions.h"
#include <string>
#include <vector>
namespace llvm {
class LLVMContext;
class GlobalValue;
class Mangler;
class MemoryBuffer;
class TargetLibraryInfo;
class TargetMachine;
class raw_ostream;
}
//===----------------------------------------------------------------------===//
/// LTOCodeGenerator - C++ class which implements the opaque lto_code_gen_t
/// type.
///
struct LTOCodeGenerator {
static const char *getVersionString();
LTOCodeGenerator();
~LTOCodeGenerator();
// Merge given module, return true on success.
bool addModule(struct LTOModule*, std::string &errMsg);
void setTargetOptions(llvm::TargetOptions options);
void setDebugInfo(lto_debug_model);
void setCodePICModel(lto_codegen_model);
void setInternalizeStrategy(lto_internalize_strategy);
void setCpu(const char *mCpu) { MCpu = mCpu; }
void addMustPreserveSymbol(const char *sym) { MustPreserveSymbols[sym] = 1; }
// To pass options to the driver and optimization passes. These options are
// not necessarily for debugging purpose (The function name is misleading).
// This function should be called before LTOCodeGenerator::compilexxx(),
// and LTOCodeGenerator::writeMergedModules().
void setCodeGenDebugOptions(const char *opts);
// Parse the options set in setCodeGenDebugOptions. Like
// setCodeGenDebugOptions, this must be called before
// LTOCodeGenerator::compilexxx() and LTOCodeGenerator::writeMergedModules()
void parseCodeGenDebugOptions();
// Write the merged module to the file specified by the given path.
// Return true on success.
bool writeMergedModules(const char *path, std::string &errMsg);
// Compile the merged module into a *single* object file; the path to object
// file is returned to the caller via argument "name". Return true on
// success.
//
// NOTE that it is up to the linker to remove the intermediate object file.
// Do not try to remove the object file in LTOCodeGenerator's destructor
// as we don't who (LTOCodeGenerator or the obj file) will last longer.
bool compile_to_file(const char **name,
bool disableOpt,
bool disableInline,
bool disableGVNLoadPRE,
std::string &errMsg);
// As with compile_to_file(), this function compiles the merged module into
// single object file. Instead of returning the object-file-path to the caller
// (linker), it brings the object to a buffer, and return the buffer to the
// caller. This function should delete intermediate object file once its content
// is brought to memory. Return NULL if the compilation was not successful.
const void *compile(size_t *length,
bool disableOpt,
bool disableInline,
bool disableGVNLoadPRE,
std::string &errMsg);
bool shouldInternalize() const {
return InternalizeStrategy != LTO_INTERNALIZE_NONE;
}
bool shouldOnlyInternalizeHidden() const {
return InternalizeStrategy == LTO_INTERNALIZE_HIDDEN;
}
private:
void initializeLTOPasses();
bool generateObjectFile(llvm::raw_ostream &out,
bool disableOpt,
bool disableInline,
bool disableGVNLoadPRE,
std::string &errMsg);
void applyScopeRestrictions();
void applyRestriction(llvm::GlobalValue &GV,
const llvm::ArrayRef<llvm::StringRef> &Libcalls,
std::vector<const char*> &MustPreserveList,
llvm::SmallPtrSet<llvm::GlobalValue*, 8> &AsmUsed,
llvm::Mangler &Mangler);
bool determineTarget(std::string &errMsg);
typedef llvm::StringMap<uint8_t> StringSet;
llvm::LLVMContext &Context;
llvm::Linker Linker;
llvm::TargetMachine *TargetMach;
bool EmitDwarfDebugInfo;
bool ScopeRestrictionsDone;
lto_codegen_model CodeModel;
lto_internalize_strategy InternalizeStrategy;
StringSet MustPreserveSymbols;
StringSet AsmUndefinedRefs;
llvm::MemoryBuffer *NativeObjectFile;
std::vector<char *> CodegenOptions;
std::string MCpu;
std::string NativeObjectPath;
llvm::TargetOptions Options;
};
#endif // LTO_CODE_GENERATOR_H