llvm-6502/lib/Target/ARM/ARMISelLowering.cpp
2010-04-02 18:43:02 +00:00

4711 lines
178 KiB
C++

//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that ARM uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#include "ARM.h"
#include "ARMAddressingModes.h"
#include "ARMConstantPoolValue.h"
#include "ARMISelLowering.h"
#include "ARMMachineFunctionInfo.h"
#include "ARMPerfectShuffle.h"
#include "ARMRegisterInfo.h"
#include "ARMSubtarget.h"
#include "ARMTargetMachine.h"
#include "ARMTargetObjectFile.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/GlobalValue.h"
#include "llvm/Instruction.h"
#include "llvm/Intrinsics.h"
#include "llvm/Type.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/ADT/VectorExtras.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <sstream>
using namespace llvm;
static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags,
CCState &State);
static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags,
CCState &State);
static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags,
CCState &State);
static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags,
CCState &State);
void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
EVT PromotedBitwiseVT) {
if (VT != PromotedLdStVT) {
setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
PromotedLdStVT.getSimpleVT());
setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
PromotedLdStVT.getSimpleVT());
}
EVT ElemTy = VT.getVectorElementType();
if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
setOperationAction(ISD::VSETCC, VT.getSimpleVT(), Custom);
if (ElemTy == MVT::i8 || ElemTy == MVT::i16)
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
if (ElemTy != MVT::i32) {
setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
}
setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Custom);
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Expand);
if (VT.isInteger()) {
setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
}
// Promote all bit-wise operations.
if (VT.isInteger() && VT != PromotedBitwiseVT) {
setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
AddPromotedToType (ISD::AND, VT.getSimpleVT(),
PromotedBitwiseVT.getSimpleVT());
setOperationAction(ISD::OR, VT.getSimpleVT(), Promote);
AddPromotedToType (ISD::OR, VT.getSimpleVT(),
PromotedBitwiseVT.getSimpleVT());
setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
PromotedBitwiseVT.getSimpleVT());
}
// Neon does not support vector divide/remainder operations.
setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
}
void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
addRegisterClass(VT, ARM::DPRRegisterClass);
addTypeForNEON(VT, MVT::f64, MVT::v2i32);
}
void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
addRegisterClass(VT, ARM::QPRRegisterClass);
addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
}
static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
return new TargetLoweringObjectFileMachO();
return new ARMElfTargetObjectFile();
}
ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
: TargetLowering(TM, createTLOF(TM)) {
Subtarget = &TM.getSubtarget<ARMSubtarget>();
if (Subtarget->isTargetDarwin()) {
// Uses VFP for Thumb libfuncs if available.
if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
// Single-precision floating-point arithmetic.
setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
// Double-precision floating-point arithmetic.
setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
// Single-precision comparisons.
setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
setLibcallName(RTLIB::UO_F32, "__unordsf2vfp");
setLibcallName(RTLIB::O_F32, "__unordsf2vfp");
setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
setCmpLibcallCC(RTLIB::UO_F32, ISD::SETNE);
setCmpLibcallCC(RTLIB::O_F32, ISD::SETEQ);
// Double-precision comparisons.
setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
setLibcallName(RTLIB::UO_F64, "__unorddf2vfp");
setLibcallName(RTLIB::O_F64, "__unorddf2vfp");
setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
setCmpLibcallCC(RTLIB::UO_F64, ISD::SETNE);
setCmpLibcallCC(RTLIB::O_F64, ISD::SETEQ);
// Floating-point to integer conversions.
// i64 conversions are done via library routines even when generating VFP
// instructions, so use the same ones.
setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
// Conversions between floating types.
setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
setLibcallName(RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp");
// Integer to floating-point conversions.
// i64 conversions are done via library routines even when generating VFP
// instructions, so use the same ones.
// FIXME: There appears to be some naming inconsistency in ARM libgcc:
// e.g., __floatunsidf vs. __floatunssidfvfp.
setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
}
}
// These libcalls are not available in 32-bit.
setLibcallName(RTLIB::SHL_I128, 0);
setLibcallName(RTLIB::SRL_I128, 0);
setLibcallName(RTLIB::SRA_I128, 0);
// Libcalls should use the AAPCS base standard ABI, even if hard float
// is in effect, as per the ARM RTABI specification, section 4.1.2.
if (Subtarget->isAAPCS_ABI()) {
for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
setLibcallCallingConv(static_cast<RTLIB::Libcall>(i),
CallingConv::ARM_AAPCS);
}
}
if (Subtarget->isThumb1Only())
addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
else
addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
}
if (Subtarget->hasNEON()) {
addDRTypeForNEON(MVT::v2f32);
addDRTypeForNEON(MVT::v8i8);
addDRTypeForNEON(MVT::v4i16);
addDRTypeForNEON(MVT::v2i32);
addDRTypeForNEON(MVT::v1i64);
addQRTypeForNEON(MVT::v4f32);
addQRTypeForNEON(MVT::v2f64);
addQRTypeForNEON(MVT::v16i8);
addQRTypeForNEON(MVT::v8i16);
addQRTypeForNEON(MVT::v4i32);
addQRTypeForNEON(MVT::v2i64);
// v2f64 is legal so that QR subregs can be extracted as f64 elements, but
// neither Neon nor VFP support any arithmetic operations on it.
setOperationAction(ISD::FADD, MVT::v2f64, Expand);
setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
setOperationAction(ISD::FREM, MVT::v2f64, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
setOperationAction(ISD::VSETCC, MVT::v2f64, Expand);
setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
setOperationAction(ISD::FABS, MVT::v2f64, Expand);
setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
// Neon does not support some operations on v1i64 and v2i64 types.
setOperationAction(ISD::MUL, MVT::v1i64, Expand);
setOperationAction(ISD::MUL, MVT::v2i64, Expand);
setOperationAction(ISD::VSETCC, MVT::v1i64, Expand);
setOperationAction(ISD::VSETCC, MVT::v2i64, Expand);
setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
setTargetDAGCombine(ISD::SHL);
setTargetDAGCombine(ISD::SRL);
setTargetDAGCombine(ISD::SRA);
setTargetDAGCombine(ISD::SIGN_EXTEND);
setTargetDAGCombine(ISD::ZERO_EXTEND);
setTargetDAGCombine(ISD::ANY_EXTEND);
setTargetDAGCombine(ISD::SELECT_CC);
}
computeRegisterProperties();
// ARM does not have f32 extending load.
setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
// ARM does not have i1 sign extending load.
setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
// ARM supports all 4 flavors of integer indexed load / store.
if (!Subtarget->isThumb1Only()) {
for (unsigned im = (unsigned)ISD::PRE_INC;
im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
setIndexedLoadAction(im, MVT::i1, Legal);
setIndexedLoadAction(im, MVT::i8, Legal);
setIndexedLoadAction(im, MVT::i16, Legal);
setIndexedLoadAction(im, MVT::i32, Legal);
setIndexedStoreAction(im, MVT::i1, Legal);
setIndexedStoreAction(im, MVT::i8, Legal);
setIndexedStoreAction(im, MVT::i16, Legal);
setIndexedStoreAction(im, MVT::i32, Legal);
}
}
// i64 operation support.
if (Subtarget->isThumb1Only()) {
setOperationAction(ISD::MUL, MVT::i64, Expand);
setOperationAction(ISD::MULHU, MVT::i32, Expand);
setOperationAction(ISD::MULHS, MVT::i32, Expand);
setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
} else {
setOperationAction(ISD::MUL, MVT::i64, Expand);
setOperationAction(ISD::MULHU, MVT::i32, Expand);
if (!Subtarget->hasV6Ops())
setOperationAction(ISD::MULHS, MVT::i32, Expand);
}
setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
setOperationAction(ISD::SRL, MVT::i64, Custom);
setOperationAction(ISD::SRA, MVT::i64, Custom);
// ARM does not have ROTL.
setOperationAction(ISD::ROTL, MVT::i32, Expand);
setOperationAction(ISD::CTTZ, MVT::i32, Custom);
setOperationAction(ISD::CTPOP, MVT::i32, Expand);
if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
setOperationAction(ISD::CTLZ, MVT::i32, Expand);
// Only ARMv6 has BSWAP.
if (!Subtarget->hasV6Ops())
setOperationAction(ISD::BSWAP, MVT::i32, Expand);
// These are expanded into libcalls.
setOperationAction(ISD::SDIV, MVT::i32, Expand);
setOperationAction(ISD::UDIV, MVT::i32, Expand);
setOperationAction(ISD::SREM, MVT::i32, Expand);
setOperationAction(ISD::UREM, MVT::i32, Expand);
setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
// Use the default implementation.
setOperationAction(ISD::VASTART, MVT::Other, Custom);
setOperationAction(ISD::VAARG, MVT::Other, Expand);
setOperationAction(ISD::VACOPY, MVT::Other, Expand);
setOperationAction(ISD::VAEND, MVT::Other, Expand);
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
// FIXME: Shouldn't need this, since no register is used, but the legalizer
// doesn't yet know how to not do that for SjLj.
setExceptionSelectorRegister(ARM::R0);
if (Subtarget->isThumb())
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
else
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
if (!Subtarget->hasV6Ops() && !Subtarget->isThumb2()) {
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
}
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only())
// Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
// iff target supports vfp2.
setOperationAction(ISD::BIT_CONVERT, MVT::i64, Custom);
// We want to custom lower some of our intrinsics.
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
setOperationAction(ISD::SETCC, MVT::i32, Expand);
setOperationAction(ISD::SETCC, MVT::f32, Expand);
setOperationAction(ISD::SETCC, MVT::f64, Expand);
setOperationAction(ISD::SELECT, MVT::i32, Expand);
setOperationAction(ISD::SELECT, MVT::f32, Expand);
setOperationAction(ISD::SELECT, MVT::f64, Expand);
setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
setOperationAction(ISD::BRCOND, MVT::Other, Expand);
setOperationAction(ISD::BR_CC, MVT::i32, Custom);
setOperationAction(ISD::BR_CC, MVT::f32, Custom);
setOperationAction(ISD::BR_CC, MVT::f64, Custom);
setOperationAction(ISD::BR_JT, MVT::Other, Custom);
// We don't support sin/cos/fmod/copysign/pow
setOperationAction(ISD::FSIN, MVT::f64, Expand);
setOperationAction(ISD::FSIN, MVT::f32, Expand);
setOperationAction(ISD::FCOS, MVT::f32, Expand);
setOperationAction(ISD::FCOS, MVT::f64, Expand);
setOperationAction(ISD::FREM, MVT::f64, Expand);
setOperationAction(ISD::FREM, MVT::f32, Expand);
if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
}
setOperationAction(ISD::FPOW, MVT::f64, Expand);
setOperationAction(ISD::FPOW, MVT::f32, Expand);
// Various VFP goodness
if (!UseSoftFloat && !Subtarget->isThumb1Only()) {
// int <-> fp are custom expanded into bit_convert + ARMISD ops.
if (Subtarget->hasVFP2()) {
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
}
// Special handling for half-precision FP.
if (!Subtarget->hasFP16()) {
setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
}
}
// We have target-specific dag combine patterns for the following nodes:
// ARMISD::VMOVRRD - No need to call setTargetDAGCombine
setTargetDAGCombine(ISD::ADD);
setTargetDAGCombine(ISD::SUB);
setStackPointerRegisterToSaveRestore(ARM::SP);
setSchedulingPreference(SchedulingForRegPressure);
// FIXME: If-converter should use instruction latency to determine
// profitability rather than relying on fixed limits.
if (Subtarget->getCPUString() == "generic") {
// Generic (and overly aggressive) if-conversion limits.
setIfCvtBlockSizeLimit(10);
setIfCvtDupBlockSizeLimit(2);
} else if (Subtarget->hasV7Ops()) {
setIfCvtBlockSizeLimit(3);
setIfCvtDupBlockSizeLimit(1);
} else if (Subtarget->hasV6Ops()) {
setIfCvtBlockSizeLimit(2);
setIfCvtDupBlockSizeLimit(1);
} else {
setIfCvtBlockSizeLimit(3);
setIfCvtDupBlockSizeLimit(2);
}
maxStoresPerMemcpy = 1; //// temporary - rewrite interface to use type
// Do not enable CodePlacementOpt for now: it currently runs after the
// ARMConstantIslandPass and messes up branch relaxation and placement
// of constant islands.
// benefitFromCodePlacementOpt = true;
}
const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
switch (Opcode) {
default: return 0;
case ARMISD::Wrapper: return "ARMISD::Wrapper";
case ARMISD::WrapperJT: return "ARMISD::WrapperJT";
case ARMISD::CALL: return "ARMISD::CALL";
case ARMISD::CALL_PRED: return "ARMISD::CALL_PRED";
case ARMISD::CALL_NOLINK: return "ARMISD::CALL_NOLINK";
case ARMISD::tCALL: return "ARMISD::tCALL";
case ARMISD::BRCOND: return "ARMISD::BRCOND";
case ARMISD::BR_JT: return "ARMISD::BR_JT";
case ARMISD::BR2_JT: return "ARMISD::BR2_JT";
case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG";
case ARMISD::PIC_ADD: return "ARMISD::PIC_ADD";
case ARMISD::CMP: return "ARMISD::CMP";
case ARMISD::CMPZ: return "ARMISD::CMPZ";
case ARMISD::CMPFP: return "ARMISD::CMPFP";
case ARMISD::CMPFPw0: return "ARMISD::CMPFPw0";
case ARMISD::FMSTAT: return "ARMISD::FMSTAT";
case ARMISD::CMOV: return "ARMISD::CMOV";
case ARMISD::CNEG: return "ARMISD::CNEG";
case ARMISD::RBIT: return "ARMISD::RBIT";
case ARMISD::FTOSI: return "ARMISD::FTOSI";
case ARMISD::FTOUI: return "ARMISD::FTOUI";
case ARMISD::SITOF: return "ARMISD::SITOF";
case ARMISD::UITOF: return "ARMISD::UITOF";
case ARMISD::SRL_FLAG: return "ARMISD::SRL_FLAG";
case ARMISD::SRA_FLAG: return "ARMISD::SRA_FLAG";
case ARMISD::RRX: return "ARMISD::RRX";
case ARMISD::VMOVRRD: return "ARMISD::VMOVRRD";
case ARMISD::VMOVDRR: return "ARMISD::VMOVDRR";
case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
case ARMISD::DYN_ALLOC: return "ARMISD::DYN_ALLOC";
case ARMISD::MEMBARRIER: return "ARMISD::MEMBARRIER";
case ARMISD::SYNCBARRIER: return "ARMISD::SYNCBARRIER";
case ARMISD::VCEQ: return "ARMISD::VCEQ";
case ARMISD::VCGE: return "ARMISD::VCGE";
case ARMISD::VCGEU: return "ARMISD::VCGEU";
case ARMISD::VCGT: return "ARMISD::VCGT";
case ARMISD::VCGTU: return "ARMISD::VCGTU";
case ARMISD::VTST: return "ARMISD::VTST";
case ARMISD::VSHL: return "ARMISD::VSHL";
case ARMISD::VSHRs: return "ARMISD::VSHRs";
case ARMISD::VSHRu: return "ARMISD::VSHRu";
case ARMISD::VSHLLs: return "ARMISD::VSHLLs";
case ARMISD::VSHLLu: return "ARMISD::VSHLLu";
case ARMISD::VSHLLi: return "ARMISD::VSHLLi";
case ARMISD::VSHRN: return "ARMISD::VSHRN";
case ARMISD::VRSHRs: return "ARMISD::VRSHRs";
case ARMISD::VRSHRu: return "ARMISD::VRSHRu";
case ARMISD::VRSHRN: return "ARMISD::VRSHRN";
case ARMISD::VQSHLs: return "ARMISD::VQSHLs";
case ARMISD::VQSHLu: return "ARMISD::VQSHLu";
case ARMISD::VQSHLsu: return "ARMISD::VQSHLsu";
case ARMISD::VQSHRNs: return "ARMISD::VQSHRNs";
case ARMISD::VQSHRNu: return "ARMISD::VQSHRNu";
case ARMISD::VQSHRNsu: return "ARMISD::VQSHRNsu";
case ARMISD::VQRSHRNs: return "ARMISD::VQRSHRNs";
case ARMISD::VQRSHRNu: return "ARMISD::VQRSHRNu";
case ARMISD::VQRSHRNsu: return "ARMISD::VQRSHRNsu";
case ARMISD::VGETLANEu: return "ARMISD::VGETLANEu";
case ARMISD::VGETLANEs: return "ARMISD::VGETLANEs";
case ARMISD::VDUP: return "ARMISD::VDUP";
case ARMISD::VDUPLANE: return "ARMISD::VDUPLANE";
case ARMISD::VEXT: return "ARMISD::VEXT";
case ARMISD::VREV64: return "ARMISD::VREV64";
case ARMISD::VREV32: return "ARMISD::VREV32";
case ARMISD::VREV16: return "ARMISD::VREV16";
case ARMISD::VZIP: return "ARMISD::VZIP";
case ARMISD::VUZP: return "ARMISD::VUZP";
case ARMISD::VTRN: return "ARMISD::VTRN";
case ARMISD::FMAX: return "ARMISD::FMAX";
case ARMISD::FMIN: return "ARMISD::FMIN";
}
}
/// getFunctionAlignment - Return the Log2 alignment of this function.
unsigned ARMTargetLowering::getFunctionAlignment(const Function *F) const {
return getTargetMachine().getSubtarget<ARMSubtarget>().isThumb() ? 0 : 1;
}
//===----------------------------------------------------------------------===//
// Lowering Code
//===----------------------------------------------------------------------===//
/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
switch (CC) {
default: llvm_unreachable("Unknown condition code!");
case ISD::SETNE: return ARMCC::NE;
case ISD::SETEQ: return ARMCC::EQ;
case ISD::SETGT: return ARMCC::GT;
case ISD::SETGE: return ARMCC::GE;
case ISD::SETLT: return ARMCC::LT;
case ISD::SETLE: return ARMCC::LE;
case ISD::SETUGT: return ARMCC::HI;
case ISD::SETUGE: return ARMCC::HS;
case ISD::SETULT: return ARMCC::LO;
case ISD::SETULE: return ARMCC::LS;
}
}
/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
ARMCC::CondCodes &CondCode2) {
CondCode2 = ARMCC::AL;
switch (CC) {
default: llvm_unreachable("Unknown FP condition!");
case ISD::SETEQ:
case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
case ISD::SETGT:
case ISD::SETOGT: CondCode = ARMCC::GT; break;
case ISD::SETGE:
case ISD::SETOGE: CondCode = ARMCC::GE; break;
case ISD::SETOLT: CondCode = ARMCC::MI; break;
case ISD::SETOLE: CondCode = ARMCC::LS; break;
case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
case ISD::SETO: CondCode = ARMCC::VC; break;
case ISD::SETUO: CondCode = ARMCC::VS; break;
case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
case ISD::SETUGT: CondCode = ARMCC::HI; break;
case ISD::SETUGE: CondCode = ARMCC::PL; break;
case ISD::SETLT:
case ISD::SETULT: CondCode = ARMCC::LT; break;
case ISD::SETLE:
case ISD::SETULE: CondCode = ARMCC::LE; break;
case ISD::SETNE:
case ISD::SETUNE: CondCode = ARMCC::NE; break;
}
}
//===----------------------------------------------------------------------===//
// Calling Convention Implementation
//===----------------------------------------------------------------------===//
#include "ARMGenCallingConv.inc"
// APCS f64 is in register pairs, possibly split to stack
static bool f64AssignAPCS(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
CCValAssign::LocInfo &LocInfo,
CCState &State, bool CanFail) {
static const unsigned RegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
// Try to get the first register.
if (unsigned Reg = State.AllocateReg(RegList, 4))
State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
else {
// For the 2nd half of a v2f64, do not fail.
if (CanFail)
return false;
// Put the whole thing on the stack.
State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
State.AllocateStack(8, 4),
LocVT, LocInfo));
return true;
}
// Try to get the second register.
if (unsigned Reg = State.AllocateReg(RegList, 4))
State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
else
State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
State.AllocateStack(4, 4),
LocVT, LocInfo));
return true;
}
static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags,
CCState &State) {
if (!f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
return false;
if (LocVT == MVT::v2f64 &&
!f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
return false;
return true; // we handled it
}
// AAPCS f64 is in aligned register pairs
static bool f64AssignAAPCS(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
CCValAssign::LocInfo &LocInfo,
CCState &State, bool CanFail) {
static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2);
if (Reg == 0) {
// For the 2nd half of a v2f64, do not just fail.
if (CanFail)
return false;
// Put the whole thing on the stack.
State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
State.AllocateStack(8, 8),
LocVT, LocInfo));
return true;
}
unsigned i;
for (i = 0; i < 2; ++i)
if (HiRegList[i] == Reg)
break;
State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
LocVT, LocInfo));
return true;
}
static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags,
CCState &State) {
if (!f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
return false;
if (LocVT == MVT::v2f64 &&
!f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
return false;
return true; // we handled it
}
static bool f64RetAssign(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
CCValAssign::LocInfo &LocInfo, CCState &State) {
static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2);
if (Reg == 0)
return false; // we didn't handle it
unsigned i;
for (i = 0; i < 2; ++i)
if (HiRegList[i] == Reg)
break;
State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
LocVT, LocInfo));
return true;
}
static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags,
CCState &State) {
if (!f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
return false;
if (LocVT == MVT::v2f64 && !f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
return false;
return true; // we handled it
}
static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags,
CCState &State) {
return RetCC_ARM_APCS_Custom_f64(ValNo, ValVT, LocVT, LocInfo, ArgFlags,
State);
}
/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
/// given CallingConvention value.
CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
bool Return,
bool isVarArg) const {
switch (CC) {
default:
llvm_unreachable("Unsupported calling convention");
case CallingConv::C:
case CallingConv::Fast:
// Use target triple & subtarget features to do actual dispatch.
if (Subtarget->isAAPCS_ABI()) {
if (Subtarget->hasVFP2() &&
FloatABIType == FloatABI::Hard && !isVarArg)
return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
else
return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
} else
return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
case CallingConv::ARM_AAPCS_VFP:
return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
case CallingConv::ARM_AAPCS:
return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
case CallingConv::ARM_APCS:
return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
}
}
/// LowerCallResult - Lower the result values of a call into the
/// appropriate copies out of appropriate physical registers.
SDValue
ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) {
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
RVLocs, *DAG.getContext());
CCInfo.AnalyzeCallResult(Ins,
CCAssignFnForNode(CallConv, /* Return*/ true,
isVarArg));
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign VA = RVLocs[i];
SDValue Val;
if (VA.needsCustom()) {
// Handle f64 or half of a v2f64.
SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
InFlag);
Chain = Lo.getValue(1);
InFlag = Lo.getValue(2);
VA = RVLocs[++i]; // skip ahead to next loc
SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
InFlag);
Chain = Hi.getValue(1);
InFlag = Hi.getValue(2);
Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
if (VA.getLocVT() == MVT::v2f64) {
SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
DAG.getConstant(0, MVT::i32));
VA = RVLocs[++i]; // skip ahead to next loc
Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
Chain = Lo.getValue(1);
InFlag = Lo.getValue(2);
VA = RVLocs[++i]; // skip ahead to next loc
Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
Chain = Hi.getValue(1);
InFlag = Hi.getValue(2);
Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
DAG.getConstant(1, MVT::i32));
}
} else {
Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
InFlag);
Chain = Val.getValue(1);
InFlag = Val.getValue(2);
}
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::BCvt:
Val = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), Val);
break;
}
InVals.push_back(Val);
}
return Chain;
}
/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
/// by "Src" to address "Dst" of size "Size". Alignment information is
/// specified by the specific parameter attribute. The copy will be passed as
/// a byval function parameter.
/// Sometimes what we are copying is the end of a larger object, the part that
/// does not fit in registers.
static SDValue
CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
DebugLoc dl) {
SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
/*AlwaysInline=*/false, NULL, 0, NULL, 0);
}
/// LowerMemOpCallTo - Store the argument to the stack.
SDValue
ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
SDValue StackPtr, SDValue Arg,
DebugLoc dl, SelectionDAG &DAG,
const CCValAssign &VA,
ISD::ArgFlagsTy Flags) {
unsigned LocMemOffset = VA.getLocMemOffset();
SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
if (Flags.isByVal()) {
return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
}
return DAG.getStore(Chain, dl, Arg, PtrOff,
PseudoSourceValue::getStack(), LocMemOffset,
false, false, 0);
}
void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
SDValue Chain, SDValue &Arg,
RegsToPassVector &RegsToPass,
CCValAssign &VA, CCValAssign &NextVA,
SDValue &StackPtr,
SmallVector<SDValue, 8> &MemOpChains,
ISD::ArgFlagsTy Flags) {
SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
DAG.getVTList(MVT::i32, MVT::i32), Arg);
RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
if (NextVA.isRegLoc())
RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
else {
assert(NextVA.isMemLoc());
if (StackPtr.getNode() == 0)
StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
dl, DAG, NextVA,
Flags));
}
}
/// LowerCall - Lowering a call into a callseq_start <-
/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
/// nodes.
SDValue
ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
CallingConv::ID CallConv, bool isVarArg,
bool &isTailCall,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) {
// ARM target does not yet support tail call optimization.
isTailCall = false;
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
*DAG.getContext());
CCInfo.AnalyzeCallOperands(Outs,
CCAssignFnForNode(CallConv, /* Return*/ false,
isVarArg));
// Get a count of how many bytes are to be pushed on the stack.
unsigned NumBytes = CCInfo.getNextStackOffset();
// Adjust the stack pointer for the new arguments...
// These operations are automatically eliminated by the prolog/epilog pass
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
RegsToPassVector RegsToPass;
SmallVector<SDValue, 8> MemOpChains;
// Walk the register/memloc assignments, inserting copies/loads. In the case
// of tail call optimization, arguments are handled later.
for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
i != e;
++i, ++realArgIdx) {
CCValAssign &VA = ArgLocs[i];
SDValue Arg = Outs[realArgIdx].Val;
ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
// Promote the value if needed.
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::AExt:
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::BCvt:
Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
break;
}
// f64 and v2f64 might be passed in i32 pairs and must be split into pieces
if (VA.needsCustom()) {
if (VA.getLocVT() == MVT::v2f64) {
SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
DAG.getConstant(0, MVT::i32));
SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
DAG.getConstant(1, MVT::i32));
PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
VA = ArgLocs[++i]; // skip ahead to next loc
if (VA.isRegLoc()) {
PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
} else {
assert(VA.isMemLoc());
MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
dl, DAG, VA, Flags));
}
} else {
PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
StackPtr, MemOpChains, Flags);
}
} else if (VA.isRegLoc()) {
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
} else {
assert(VA.isMemLoc());
MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
dl, DAG, VA, Flags));
}
}
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
&MemOpChains[0], MemOpChains.size());
// Build a sequence of copy-to-reg nodes chained together with token chain
// and flag operands which copy the outgoing args into the appropriate regs.
SDValue InFlag;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
RegsToPass[i].second, InFlag);
InFlag = Chain.getValue(1);
}
// If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
// direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
// node so that legalize doesn't hack it.
bool isDirect = false;
bool isARMFunc = false;
bool isLocalARMFunc = false;
MachineFunction &MF = DAG.getMachineFunction();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
GlobalValue *GV = G->getGlobal();
isDirect = true;
bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
getTargetMachine().getRelocationModel() != Reloc::Static;
isARMFunc = !Subtarget->isThumb() || isStub;
// ARM call to a local ARM function is predicable.
isLocalARMFunc = !Subtarget->isThumb() && !isExt;
// tBX takes a register source operand.
if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
ARMPCLabelIndex,
ARMCP::CPValue, 4);
SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
Callee = DAG.getLoad(getPointerTy(), dl,
DAG.getEntryNode(), CPAddr,
PseudoSourceValue::getConstantPool(), 0,
false, false, 0);
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
getPointerTy(), Callee, PICLabel);
} else
Callee = DAG.getTargetGlobalAddress(GV, getPointerTy());
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
isDirect = true;
bool isStub = Subtarget->isTargetDarwin() &&
getTargetMachine().getRelocationModel() != Reloc::Static;
isARMFunc = !Subtarget->isThumb() || isStub;
// tBX takes a register source operand.
const char *Sym = S->getSymbol();
if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
Sym, ARMPCLabelIndex, 4);
SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
Callee = DAG.getLoad(getPointerTy(), dl,
DAG.getEntryNode(), CPAddr,
PseudoSourceValue::getConstantPool(), 0,
false, false, 0);
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
getPointerTy(), Callee, PICLabel);
} else
Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy());
}
// FIXME: handle tail calls differently.
unsigned CallOpc;
if (Subtarget->isThumb()) {
if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
CallOpc = ARMISD::CALL_NOLINK;
else
CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
} else {
CallOpc = (isDirect || Subtarget->hasV5TOps())
? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
: ARMISD::CALL_NOLINK;
}
if (CallOpc == ARMISD::CALL_NOLINK && !Subtarget->isThumb1Only()) {
// implicit def LR - LR mustn't be allocated as GRP:$dst of CALL_NOLINK
Chain = DAG.getCopyToReg(Chain, dl, ARM::LR, DAG.getUNDEF(MVT::i32),InFlag);
InFlag = Chain.getValue(1);
}
std::vector<SDValue> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
// Add argument registers to the end of the list so that they are known live
// into the call.
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
if (InFlag.getNode())
Ops.push_back(InFlag);
// Returns a chain and a flag for retval copy to use.
Chain = DAG.getNode(CallOpc, dl, DAG.getVTList(MVT::Other, MVT::Flag),
&Ops[0], Ops.size());
InFlag = Chain.getValue(1);
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
DAG.getIntPtrConstant(0, true), InFlag);
if (!Ins.empty())
InFlag = Chain.getValue(1);
// Handle result values, copying them out of physregs into vregs that we
// return.
return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
dl, DAG, InVals);
}
SDValue
ARMTargetLowering::LowerReturn(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
DebugLoc dl, SelectionDAG &DAG) {
// CCValAssign - represent the assignment of the return value to a location.
SmallVector<CCValAssign, 16> RVLocs;
// CCState - Info about the registers and stack slots.
CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
*DAG.getContext());
// Analyze outgoing return values.
CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
isVarArg));
// If this is the first return lowered for this function, add
// the regs to the liveout set for the function.
if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
for (unsigned i = 0; i != RVLocs.size(); ++i)
if (RVLocs[i].isRegLoc())
DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
}
SDValue Flag;
// Copy the result values into the output registers.
for (unsigned i = 0, realRVLocIdx = 0;
i != RVLocs.size();
++i, ++realRVLocIdx) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
SDValue Arg = Outs[realRVLocIdx].Val;
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::BCvt:
Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
break;
}
if (VA.needsCustom()) {
if (VA.getLocVT() == MVT::v2f64) {
// Extract the first half and return it in two registers.
SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
DAG.getConstant(0, MVT::i32));
SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
DAG.getVTList(MVT::i32, MVT::i32), Half);
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
Flag = Chain.getValue(1);
VA = RVLocs[++i]; // skip ahead to next loc
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
HalfGPRs.getValue(1), Flag);
Flag = Chain.getValue(1);
VA = RVLocs[++i]; // skip ahead to next loc
// Extract the 2nd half and fall through to handle it as an f64 value.
Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
DAG.getConstant(1, MVT::i32));
}
// Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is
// available.
SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
Flag = Chain.getValue(1);
VA = RVLocs[++i]; // skip ahead to next loc
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
Flag);
} else
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
// Guarantee that all emitted copies are
// stuck together, avoiding something bad.
Flag = Chain.getValue(1);
}
SDValue result;
if (Flag.getNode())
result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
else // Return Void
result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
return result;
}
// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
// one of the above mentioned nodes. It has to be wrapped because otherwise
// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
// be used to form addressing mode. These wrapped nodes will be selected
// into MOVi.
static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
EVT PtrVT = Op.getValueType();
// FIXME there is no actual debug info here
DebugLoc dl = Op.getDebugLoc();
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
SDValue Res;
if (CP->isMachineConstantPoolEntry())
Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
CP->getAlignment());
else
Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
CP->getAlignment());
return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
}
SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) {
MachineFunction &MF = DAG.getMachineFunction();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
unsigned ARMPCLabelIndex = 0;
DebugLoc DL = Op.getDebugLoc();
EVT PtrVT = getPointerTy();
BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
Reloc::Model RelocM = getTargetMachine().getRelocationModel();
SDValue CPAddr;
if (RelocM == Reloc::Static) {
CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
} else {
unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
ARMPCLabelIndex = AFI->createConstPoolEntryUId();
ARMConstantPoolValue *CPV = new ARMConstantPoolValue(BA, ARMPCLabelIndex,
ARMCP::CPBlockAddress,
PCAdj);
CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
}
CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
PseudoSourceValue::getConstantPool(), 0,
false, false, 0);
if (RelocM == Reloc::Static)
return Result;
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
}
// Lower ISD::GlobalTLSAddress using the "general dynamic" model
SDValue
ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
SelectionDAG &DAG) {
DebugLoc dl = GA->getDebugLoc();
EVT PtrVT = getPointerTy();
unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
MachineFunction &MF = DAG.getMachineFunction();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
ARMConstantPoolValue *CPV =
new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
ARMCP::CPValue, PCAdj, "tlsgd", true);
SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
PseudoSourceValue::getConstantPool(), 0,
false, false, 0);
SDValue Chain = Argument.getValue(1);
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
// call __tls_get_addr.
ArgListTy Args;
ArgListEntry Entry;
Entry.Node = Argument;
Entry.Ty = (const Type *) Type::getInt32Ty(*DAG.getContext());
Args.push_back(Entry);
// FIXME: is there useful debug info available here?
std::pair<SDValue, SDValue> CallResult =
LowerCallTo(Chain, (const Type *) Type::getInt32Ty(*DAG.getContext()),
false, false, false, false,
0, CallingConv::C, false, /*isReturnValueUsed=*/true,
DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
return CallResult.first;
}
// Lower ISD::GlobalTLSAddress using the "initial exec" or
// "local exec" model.
SDValue
ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
SelectionDAG &DAG) {
GlobalValue *GV = GA->getGlobal();
DebugLoc dl = GA->getDebugLoc();
SDValue Offset;
SDValue Chain = DAG.getEntryNode();
EVT PtrVT = getPointerTy();
// Get the Thread Pointer
SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
if (GV->isDeclaration()) {
MachineFunction &MF = DAG.getMachineFunction();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
// Initial exec model.
unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
ARMConstantPoolValue *CPV =
new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
ARMCP::CPValue, PCAdj, "gottpoff", true);
Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
PseudoSourceValue::getConstantPool(), 0,
false, false, 0);
Chain = Offset.getValue(1);
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
PseudoSourceValue::getConstantPool(), 0,
false, false, 0);
} else {
// local exec model
ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, "tpoff");
Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
PseudoSourceValue::getConstantPool(), 0,
false, false, 0);
}
// The address of the thread local variable is the add of the thread
// pointer with the offset of the variable.
return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
}
SDValue
ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
// TODO: implement the "local dynamic" model
assert(Subtarget->isTargetELF() &&
"TLS not implemented for non-ELF targets");
GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
// If the relocation model is PIC, use the "General Dynamic" TLS Model,
// otherwise use the "Local Exec" TLS Model
if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
return LowerToTLSGeneralDynamicModel(GA, DAG);
else
return LowerToTLSExecModels(GA, DAG);
}
SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
SelectionDAG &DAG) {
EVT PtrVT = getPointerTy();
DebugLoc dl = Op.getDebugLoc();
GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
Reloc::Model RelocM = getTargetMachine().getRelocationModel();
if (RelocM == Reloc::PIC_) {
bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
ARMConstantPoolValue *CPV =
new ARMConstantPoolValue(GV, UseGOTOFF ? "GOTOFF" : "GOT");
SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
CPAddr,
PseudoSourceValue::getConstantPool(), 0,
false, false, 0);
SDValue Chain = Result.getValue(1);
SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
if (!UseGOTOFF)
Result = DAG.getLoad(PtrVT, dl, Chain, Result,
PseudoSourceValue::getGOT(), 0,
false, false, 0);
return Result;
} else {
// If we have T2 ops, we can materialize the address directly via movt/movw
// pair. This is always cheaper.
if (Subtarget->useMovt()) {
return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
DAG.getTargetGlobalAddress(GV, PtrVT));
} else {
SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
PseudoSourceValue::getConstantPool(), 0,
false, false, 0);
}
}
}
SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
SelectionDAG &DAG) {
MachineFunction &MF = DAG.getMachineFunction();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
unsigned ARMPCLabelIndex = 0;
EVT PtrVT = getPointerTy();
DebugLoc dl = Op.getDebugLoc();
GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
Reloc::Model RelocM = getTargetMachine().getRelocationModel();
SDValue CPAddr;
if (RelocM == Reloc::Static)
CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
else {
ARMPCLabelIndex = AFI->createConstPoolEntryUId();
unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
ARMConstantPoolValue *CPV =
new ARMConstantPoolValue(GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj);
CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
}
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
PseudoSourceValue::getConstantPool(), 0,
false, false, 0);
SDValue Chain = Result.getValue(1);
if (RelocM == Reloc::PIC_) {
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
}
if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
Result = DAG.getLoad(PtrVT, dl, Chain, Result,
PseudoSourceValue::getGOT(), 0,
false, false, 0);
return Result;
}
SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
SelectionDAG &DAG){
assert(Subtarget->isTargetELF() &&
"GLOBAL OFFSET TABLE not implemented for non-ELF targets");
MachineFunction &MF = DAG.getMachineFunction();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
EVT PtrVT = getPointerTy();
DebugLoc dl = Op.getDebugLoc();
unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
"_GLOBAL_OFFSET_TABLE_",
ARMPCLabelIndex, PCAdj);
SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
PseudoSourceValue::getConstantPool(), 0,
false, false, 0);
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
}
SDValue
ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *Subtarget) {
unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
DebugLoc dl = Op.getDebugLoc();
switch (IntNo) {
default: return SDValue(); // Don't custom lower most intrinsics.
case Intrinsic::arm_thread_pointer: {
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
}
case Intrinsic::eh_sjlj_lsda: {
MachineFunction &MF = DAG.getMachineFunction();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
EVT PtrVT = getPointerTy();
DebugLoc dl = Op.getDebugLoc();
Reloc::Model RelocM = getTargetMachine().getRelocationModel();
SDValue CPAddr;
unsigned PCAdj = (RelocM != Reloc::PIC_)
? 0 : (Subtarget->isThumb() ? 4 : 8);
ARMConstantPoolValue *CPV =
new ARMConstantPoolValue(MF.getFunction(), ARMPCLabelIndex,
ARMCP::CPLSDA, PCAdj);
CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
SDValue Result =
DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
PseudoSourceValue::getConstantPool(), 0,
false, false, 0);
SDValue Chain = Result.getValue(1);
if (RelocM == Reloc::PIC_) {
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
}
return Result;
}
case Intrinsic::eh_sjlj_setjmp:
SDValue Val = Subtarget->isThumb() ?
DAG.getCopyFromReg(DAG.getEntryNode(), dl, ARM::SP, MVT::i32) :
DAG.getConstant(0, MVT::i32);
return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, MVT::i32, Op.getOperand(1),
Val);
}
}
static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *Subtarget) {
DebugLoc dl = Op.getDebugLoc();
SDValue Op5 = Op.getOperand(5);
SDValue Res;
unsigned isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue();
if (isDeviceBarrier) {
if (Subtarget->hasV7Ops())
Res = DAG.getNode(ARMISD::SYNCBARRIER, dl, MVT::Other, Op.getOperand(0));
else
Res = DAG.getNode(ARMISD::SYNCBARRIER, dl, MVT::Other, Op.getOperand(0),
DAG.getConstant(0, MVT::i32));
} else {
if (Subtarget->hasV7Ops())
Res = DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
else
Res = DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
DAG.getConstant(0, MVT::i32));
}
return Res;
}
static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
unsigned VarArgsFrameIndex) {
// vastart just stores the address of the VarArgsFrameIndex slot into the
// memory location argument.
DebugLoc dl = Op.getDebugLoc();
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0,
false, false, 0);
}
SDValue
ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) {
SDNode *Node = Op.getNode();
DebugLoc dl = Node->getDebugLoc();
EVT VT = Node->getValueType(0);
SDValue Chain = Op.getOperand(0);
SDValue Size = Op.getOperand(1);
SDValue Align = Op.getOperand(2);
// Chain the dynamic stack allocation so that it doesn't modify the stack
// pointer when other instructions are using the stack.
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
unsigned AlignVal = cast<ConstantSDNode>(Align)->getZExtValue();
unsigned StackAlign = getTargetMachine().getFrameInfo()->getStackAlignment();
if (AlignVal > StackAlign)
// Do this now since selection pass cannot introduce new target
// independent node.
Align = DAG.getConstant(-(uint64_t)AlignVal, VT);
// In Thumb1 mode, there isn't a "sub r, sp, r" instruction, we will end up
// using a "add r, sp, r" instead. Negate the size now so we don't have to
// do even more horrible hack later.
MachineFunction &MF = DAG.getMachineFunction();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
if (AFI->isThumb1OnlyFunction()) {
bool Negate = true;
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Size);
if (C) {
uint32_t Val = C->getZExtValue();
if (Val <= 508 && ((Val & 3) == 0))
Negate = false;
}
if (Negate)
Size = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, VT), Size);
}
SDVTList VTList = DAG.getVTList(VT, MVT::Other);
SDValue Ops1[] = { Chain, Size, Align };
SDValue Res = DAG.getNode(ARMISD::DYN_ALLOC, dl, VTList, Ops1, 3);
Chain = Res.getValue(1);
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true),
DAG.getIntPtrConstant(0, true), SDValue());
SDValue Ops2[] = { Res, Chain };
return DAG.getMergeValues(Ops2, 2, dl);
}
SDValue
ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
SDValue &Root, SelectionDAG &DAG,
DebugLoc dl) {
MachineFunction &MF = DAG.getMachineFunction();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
TargetRegisterClass *RC;
if (AFI->isThumb1OnlyFunction())
RC = ARM::tGPRRegisterClass;
else
RC = ARM::GPRRegisterClass;
// Transform the arguments stored in physical registers into virtual ones.
unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
SDValue ArgValue2;
if (NextVA.isMemLoc()) {
unsigned ArgSize = NextVA.getLocVT().getSizeInBits()/8;
MachineFrameInfo *MFI = MF.getFrameInfo();
int FI = MFI->CreateFixedObject(ArgSize, NextVA.getLocMemOffset(),
true, false);
// Create load node to retrieve arguments from the stack.
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
PseudoSourceValue::getFixedStack(FI), 0,
false, false, 0);
} else {
Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
}
return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
}
SDValue
ARMTargetLowering::LowerFormalArguments(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg>
&Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
*DAG.getContext());
CCInfo.AnalyzeFormalArguments(Ins,
CCAssignFnForNode(CallConv, /* Return*/ false,
isVarArg));
SmallVector<SDValue, 16> ArgValues;
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
// Arguments stored in registers.
if (VA.isRegLoc()) {
EVT RegVT = VA.getLocVT();
SDValue ArgValue;
if (VA.needsCustom()) {
// f64 and vector types are split up into multiple registers or
// combinations of registers and stack slots.
RegVT = MVT::i32;
if (VA.getLocVT() == MVT::v2f64) {
SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
Chain, DAG, dl);
VA = ArgLocs[++i]; // skip ahead to next loc
SDValue ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
Chain, DAG, dl);
ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
} else
ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
} else {
TargetRegisterClass *RC;
if (RegVT == MVT::f32)
RC = ARM::SPRRegisterClass;
else if (RegVT == MVT::f64)
RC = ARM::DPRRegisterClass;
else if (RegVT == MVT::v2f64)
RC = ARM::QPRRegisterClass;
else if (RegVT == MVT::i32)
RC = (AFI->isThumb1OnlyFunction() ?
ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
else
llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
// Transform the arguments in physical registers into virtual ones.
unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
}
// If this is an 8 or 16-bit value, it is really passed promoted
// to 32 bits. Insert an assert[sz]ext to capture this, then
// truncate to the right size.
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::BCvt:
ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
break;
case CCValAssign::SExt:
ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
DAG.getValueType(VA.getValVT()));
ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
break;
case CCValAssign::ZExt:
ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
DAG.getValueType(VA.getValVT()));
ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
break;
}
InVals.push_back(ArgValue);
} else { // VA.isRegLoc()
// sanity check
assert(VA.isMemLoc());
assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
unsigned ArgSize = VA.getLocVT().getSizeInBits()/8;
int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
true, false);
// Create load nodes to retrieve arguments from the stack.
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
PseudoSourceValue::getFixedStack(FI), 0,
false, false, 0));
}
}
// varargs
if (isVarArg) {
static const unsigned GPRArgRegs[] = {
ARM::R0, ARM::R1, ARM::R2, ARM::R3
};
unsigned NumGPRs = CCInfo.getFirstUnallocated
(GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
unsigned VARegSize = (4 - NumGPRs) * 4;
unsigned VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
unsigned ArgOffset = CCInfo.getNextStackOffset();
if (VARegSaveSize) {
// If this function is vararg, store any remaining integer argument regs
// to their spots on the stack so that they may be loaded by deferencing
// the result of va_next.
AFI->setVarArgsRegSaveSize(VARegSaveSize);
VarArgsFrameIndex = MFI->CreateFixedObject(VARegSaveSize, ArgOffset +
VARegSaveSize - VARegSize,
true, false);
SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
SmallVector<SDValue, 4> MemOps;
for (; NumGPRs < 4; ++NumGPRs) {
TargetRegisterClass *RC;
if (AFI->isThumb1OnlyFunction())
RC = ARM::tGPRRegisterClass;
else
RC = ARM::GPRRegisterClass;
unsigned VReg = MF.addLiveIn(GPRArgRegs[NumGPRs], RC);
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
PseudoSourceValue::getFixedStack(VarArgsFrameIndex), 0,
false, false, 0);
MemOps.push_back(Store);
FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
DAG.getConstant(4, getPointerTy()));
}
if (!MemOps.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
&MemOps[0], MemOps.size());
} else
// This will point to the next argument passed via stack.
VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset, true, false);
}
return Chain;
}
/// isFloatingPointZero - Return true if this is +0.0.
static bool isFloatingPointZero(SDValue Op) {
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
return CFP->getValueAPF().isPosZero();
else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
// Maybe this has already been legalized into the constant pool?
if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
SDValue WrapperOp = Op.getOperand(1).getOperand(0);
if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
return CFP->getValueAPF().isPosZero();
}
}
return false;
}
/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
/// the given operands.
SDValue
ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
SDValue &ARMCC, SelectionDAG &DAG, DebugLoc dl) {
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
unsigned C = RHSC->getZExtValue();
if (!isLegalICmpImmediate(C)) {
// Constant does not fit, try adjusting it by one?
switch (CC) {
default: break;
case ISD::SETLT:
case ISD::SETGE:
if (isLegalICmpImmediate(C-1)) {
CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
RHS = DAG.getConstant(C-1, MVT::i32);
}
break;
case ISD::SETULT:
case ISD::SETUGE:
if (C > 0 && isLegalICmpImmediate(C-1)) {
CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
RHS = DAG.getConstant(C-1, MVT::i32);
}
break;
case ISD::SETLE:
case ISD::SETGT:
if (isLegalICmpImmediate(C+1)) {
CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
RHS = DAG.getConstant(C+1, MVT::i32);
}
break;
case ISD::SETULE:
case ISD::SETUGT:
if (C < 0xffffffff && isLegalICmpImmediate(C+1)) {
CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
RHS = DAG.getConstant(C+1, MVT::i32);
}
break;
}
}
}
ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
ARMISD::NodeType CompareType;
switch (CondCode) {
default:
CompareType = ARMISD::CMP;
break;
case ARMCC::EQ:
case ARMCC::NE:
// Uses only Z Flag
CompareType = ARMISD::CMPZ;
break;
}
ARMCC = DAG.getConstant(CondCode, MVT::i32);
return DAG.getNode(CompareType, dl, MVT::Flag, LHS, RHS);
}
/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
static SDValue getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
DebugLoc dl) {
SDValue Cmp;
if (!isFloatingPointZero(RHS))
Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Flag, LHS, RHS);
else
Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Flag, LHS);
return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Flag, Cmp);
}
SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) {
EVT VT = Op.getValueType();
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
SDValue TrueVal = Op.getOperand(2);
SDValue FalseVal = Op.getOperand(3);
DebugLoc dl = Op.getDebugLoc();
if (LHS.getValueType() == MVT::i32) {
SDValue ARMCC;
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, dl);
return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMCC, CCR,Cmp);
}
ARMCC::CondCodes CondCode, CondCode2;
FPCCToARMCC(CC, CondCode, CondCode2);
SDValue ARMCC = DAG.getConstant(CondCode, MVT::i32);
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
ARMCC, CCR, Cmp);
if (CondCode2 != ARMCC::AL) {
SDValue ARMCC2 = DAG.getConstant(CondCode2, MVT::i32);
// FIXME: Needs another CMP because flag can have but one use.
SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
Result = DAG.getNode(ARMISD::CMOV, dl, VT,
Result, TrueVal, ARMCC2, CCR, Cmp2);
}
return Result;
}
SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) {
SDValue Chain = Op.getOperand(0);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
SDValue LHS = Op.getOperand(2);
SDValue RHS = Op.getOperand(3);
SDValue Dest = Op.getOperand(4);
DebugLoc dl = Op.getDebugLoc();
if (LHS.getValueType() == MVT::i32) {
SDValue ARMCC;
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, dl);
return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
Chain, Dest, ARMCC, CCR,Cmp);
}
assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
ARMCC::CondCodes CondCode, CondCode2;
FPCCToARMCC(CC, CondCode, CondCode2);
SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
SDValue ARMCC = DAG.getConstant(CondCode, MVT::i32);
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
SDValue Ops[] = { Chain, Dest, ARMCC, CCR, Cmp };
SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
if (CondCode2 != ARMCC::AL) {
ARMCC = DAG.getConstant(CondCode2, MVT::i32);
SDValue Ops[] = { Res, Dest, ARMCC, CCR, Res.getValue(1) };
Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
}
return Res;
}
SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) {
SDValue Chain = Op.getOperand(0);
SDValue Table = Op.getOperand(1);
SDValue Index = Op.getOperand(2);
DebugLoc dl = Op.getDebugLoc();
EVT PTy = getPointerTy();
JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
if (Subtarget->isThumb2()) {
// Thumb2 uses a two-level jump. That is, it jumps into the jump table
// which does another jump to the destination. This also makes it easier
// to translate it to TBB / TBH later.
// FIXME: This might not work if the function is extremely large.
return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
Addr, Op.getOperand(2), JTI, UId);
}
if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
PseudoSourceValue::getJumpTable(), 0,
false, false, 0);
Chain = Addr.getValue(1);
Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
} else {
Addr = DAG.getLoad(PTy, dl, Chain, Addr,
PseudoSourceValue::getJumpTable(), 0, false, false, 0);
Chain = Addr.getValue(1);
return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
}
}
static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
DebugLoc dl = Op.getDebugLoc();
unsigned Opc;
switch (Op.getOpcode()) {
default:
assert(0 && "Invalid opcode!");
case ISD::FP_TO_SINT:
Opc = ARMISD::FTOSI;
break;
case ISD::FP_TO_UINT:
Opc = ARMISD::FTOUI;
break;
}
Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
}
static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
EVT VT = Op.getValueType();
DebugLoc dl = Op.getDebugLoc();
unsigned Opc;
switch (Op.getOpcode()) {
default:
assert(0 && "Invalid opcode!");
case ISD::SINT_TO_FP:
Opc = ARMISD::SITOF;
break;
case ISD::UINT_TO_FP:
Opc = ARMISD::UITOF;
break;
}
Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Op.getOperand(0));
return DAG.getNode(Opc, dl, VT, Op);
}
static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
// Implement fcopysign with a fabs and a conditional fneg.
SDValue Tmp0 = Op.getOperand(0);
SDValue Tmp1 = Op.getOperand(1);
DebugLoc dl = Op.getDebugLoc();
EVT VT = Op.getValueType();
EVT SrcVT = Tmp1.getValueType();
SDValue AbsVal = DAG.getNode(ISD::FABS, dl, VT, Tmp0);
SDValue Cmp = getVFPCmp(Tmp1, DAG.getConstantFP(0.0, SrcVT), DAG, dl);
SDValue ARMCC = DAG.getConstant(ARMCC::LT, MVT::i32);
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
return DAG.getNode(ARMISD::CNEG, dl, VT, AbsVal, AbsVal, ARMCC, CCR, Cmp);
}
SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
MFI->setFrameAddressIsTaken(true);
EVT VT = Op.getValueType();
DebugLoc dl = Op.getDebugLoc(); // FIXME probably not meaningful
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
? ARM::R7 : ARM::R11;
SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
while (Depth--)
FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0,
false, false, 0);
return FrameAddr;
}
SDValue
ARMTargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
SDValue Chain,
SDValue Dst, SDValue Src,
SDValue Size, unsigned Align,
bool AlwaysInline,
const Value *DstSV, uint64_t DstSVOff,
const Value *SrcSV, uint64_t SrcSVOff){
// Do repeated 4-byte loads and stores. To be improved.
// This requires 4-byte alignment.
if ((Align & 3) != 0)
return SDValue();
// This requires the copy size to be a constant, preferrably
// within a subtarget-specific limit.
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
if (!ConstantSize)
return SDValue();
uint64_t SizeVal = ConstantSize->getZExtValue();
if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
return SDValue();
unsigned BytesLeft = SizeVal & 3;
unsigned NumMemOps = SizeVal >> 2;
unsigned EmittedNumMemOps = 0;
EVT VT = MVT::i32;
unsigned VTSize = 4;
unsigned i = 0;
const unsigned MAX_LOADS_IN_LDM = 6;
SDValue TFOps[MAX_LOADS_IN_LDM];
SDValue Loads[MAX_LOADS_IN_LDM];
uint64_t SrcOff = 0, DstOff = 0;
// Emit up to MAX_LOADS_IN_LDM loads, then a TokenFactor barrier, then the
// same number of stores. The loads and stores will get combined into
// ldm/stm later on.
while (EmittedNumMemOps < NumMemOps) {
for (i = 0;
i < MAX_LOADS_IN_LDM && EmittedNumMemOps + i < NumMemOps; ++i) {
Loads[i] = DAG.getLoad(VT, dl, Chain,
DAG.getNode(ISD::ADD, dl, MVT::i32, Src,
DAG.getConstant(SrcOff, MVT::i32)),
SrcSV, SrcSVOff + SrcOff, false, false, 0);
TFOps[i] = Loads[i].getValue(1);
SrcOff += VTSize;
}
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
for (i = 0;
i < MAX_LOADS_IN_LDM && EmittedNumMemOps + i < NumMemOps; ++i) {
TFOps[i] = DAG.getStore(Chain, dl, Loads[i],
DAG.getNode(ISD::ADD, dl, MVT::i32, Dst,
DAG.getConstant(DstOff, MVT::i32)),
DstSV, DstSVOff + DstOff, false, false, 0);
DstOff += VTSize;
}
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
EmittedNumMemOps += i;
}
if (BytesLeft == 0)
return Chain;
// Issue loads / stores for the trailing (1 - 3) bytes.
unsigned BytesLeftSave = BytesLeft;
i = 0;
while (BytesLeft) {
if (BytesLeft >= 2) {
VT = MVT::i16;
VTSize = 2;
} else {
VT = MVT::i8;
VTSize = 1;
}
Loads[i] = DAG.getLoad(VT, dl, Chain,
DAG.getNode(ISD::ADD, dl, MVT::i32, Src,
DAG.getConstant(SrcOff, MVT::i32)),
SrcSV, SrcSVOff + SrcOff, false, false, 0);
TFOps[i] = Loads[i].getValue(1);
++i;
SrcOff += VTSize;
BytesLeft -= VTSize;
}
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
i = 0;
BytesLeft = BytesLeftSave;
while (BytesLeft) {
if (BytesLeft >= 2) {
VT = MVT::i16;
VTSize = 2;
} else {
VT = MVT::i8;
VTSize = 1;
}
TFOps[i] = DAG.getStore(Chain, dl, Loads[i],
DAG.getNode(ISD::ADD, dl, MVT::i32, Dst,
DAG.getConstant(DstOff, MVT::i32)),
DstSV, DstSVOff + DstOff, false, false, 0);
++i;
DstOff += VTSize;
BytesLeft -= VTSize;
}
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
}
static SDValue ExpandBIT_CONVERT(SDNode *N, SelectionDAG &DAG) {
SDValue Op = N->getOperand(0);
DebugLoc dl = N->getDebugLoc();
if (N->getValueType(0) == MVT::f64) {
// Turn i64->f64 into VMOVDRR.
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
DAG.getConstant(0, MVT::i32));
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
DAG.getConstant(1, MVT::i32));
return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
}
// Turn f64->i64 into VMOVRRD.
SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
// Merge the pieces into a single i64 value.
return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
}
/// getZeroVector - Returns a vector of specified type with all zero elements.
///
static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
assert(VT.isVector() && "Expected a vector type");
// Zero vectors are used to represent vector negation and in those cases
// will be implemented with the NEON VNEG instruction. However, VNEG does
// not support i64 elements, so sometimes the zero vectors will need to be
// explicitly constructed. For those cases, and potentially other uses in
// the future, always build zero vectors as <16 x i8> or <8 x i8> bitcasted
// to their dest type. This ensures they get CSE'd.
SDValue Vec;
SDValue Cst = DAG.getTargetConstant(0, MVT::i8);
SmallVector<SDValue, 8> Ops;
MVT TVT;
if (VT.getSizeInBits() == 64) {
Ops.assign(8, Cst); TVT = MVT::v8i8;
} else {
Ops.assign(16, Cst); TVT = MVT::v16i8;
}
Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, TVT, &Ops[0], Ops.size());
return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
}
/// getOnesVector - Returns a vector of specified type with all bits set.
///
static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
assert(VT.isVector() && "Expected a vector type");
// Always build ones vectors as <16 x i8> or <8 x i8> bitcasted to their
// dest type. This ensures they get CSE'd.
SDValue Vec;
SDValue Cst = DAG.getTargetConstant(0xFF, MVT::i8);
SmallVector<SDValue, 8> Ops;
MVT TVT;
if (VT.getSizeInBits() == 64) {
Ops.assign(8, Cst); TVT = MVT::v8i8;
} else {
Ops.assign(16, Cst); TVT = MVT::v16i8;
}
Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, TVT, &Ops[0], Ops.size());
return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
}
/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
/// i32 values and take a 2 x i32 value to shift plus a shift amount.
SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op, SelectionDAG &DAG) {
assert(Op.getNumOperands() == 3 && "Not a double-shift!");
EVT VT = Op.getValueType();
unsigned VTBits = VT.getSizeInBits();
DebugLoc dl = Op.getDebugLoc();
SDValue ShOpLo = Op.getOperand(0);
SDValue ShOpHi = Op.getOperand(1);
SDValue ShAmt = Op.getOperand(2);
SDValue ARMCC;
unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
DAG.getConstant(VTBits, MVT::i32), ShAmt);
SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
DAG.getConstant(VTBits, MVT::i32));
SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
ARMCC, DAG, dl);
SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMCC,
CCR, Cmp);
SDValue Ops[2] = { Lo, Hi };
return DAG.getMergeValues(Ops, 2, dl);
}
/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
/// i32 values and take a 2 x i32 value to shift plus a shift amount.
SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op, SelectionDAG &DAG) {
assert(Op.getNumOperands() == 3 && "Not a double-shift!");
EVT VT = Op.getValueType();
unsigned VTBits = VT.getSizeInBits();
DebugLoc dl = Op.getDebugLoc();
SDValue ShOpLo = Op.getOperand(0);
SDValue ShOpHi = Op.getOperand(1);
SDValue ShAmt = Op.getOperand(2);
SDValue ARMCC;
assert(Op.getOpcode() == ISD::SHL_PARTS);
SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
DAG.getConstant(VTBits, MVT::i32), ShAmt);
SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
DAG.getConstant(VTBits, MVT::i32));
SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
ARMCC, DAG, dl);
SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMCC,
CCR, Cmp);
SDValue Ops[2] = { Lo, Hi };
return DAG.getMergeValues(Ops, 2, dl);
}
static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
const ARMSubtarget *ST) {
EVT VT = N->getValueType(0);
DebugLoc dl = N->getDebugLoc();
if (!ST->hasV6T2Ops())
return SDValue();
SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
}
static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
const ARMSubtarget *ST) {
EVT VT = N->getValueType(0);
DebugLoc dl = N->getDebugLoc();
// Lower vector shifts on NEON to use VSHL.
if (VT.isVector()) {
assert(ST->hasNEON() && "unexpected vector shift");
// Left shifts translate directly to the vshiftu intrinsic.
if (N->getOpcode() == ISD::SHL)
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
N->getOperand(0), N->getOperand(1));
assert((N->getOpcode() == ISD::SRA ||
N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
// NEON uses the same intrinsics for both left and right shifts. For
// right shifts, the shift amounts are negative, so negate the vector of
// shift amounts.
EVT ShiftVT = N->getOperand(1).getValueType();
SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
getZeroVector(ShiftVT, DAG, dl),
N->getOperand(1));
Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
Intrinsic::arm_neon_vshifts :
Intrinsic::arm_neon_vshiftu);
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
DAG.getConstant(vshiftInt, MVT::i32),
N->getOperand(0), NegatedCount);
}
// We can get here for a node like i32 = ISD::SHL i32, i64
if (VT != MVT::i64)
return SDValue();
assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
"Unknown shift to lower!");
// We only lower SRA, SRL of 1 here, all others use generic lowering.
if (!isa<ConstantSDNode>(N->getOperand(1)) ||
cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
return SDValue();
// If we are in thumb mode, we don't have RRX.
if (ST->isThumb1Only()) return SDValue();
// Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
DAG.getConstant(0, MVT::i32));
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
DAG.getConstant(1, MVT::i32));
// First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
// captures the result into a carry flag.
unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Flag), &Hi, 1);
// The low part is an ARMISD::RRX operand, which shifts the carry in.
Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
// Merge the pieces into a single i64 value.
return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
}
static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
SDValue TmpOp0, TmpOp1;
bool Invert = false;
bool Swap = false;
unsigned Opc = 0;
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
SDValue CC = Op.getOperand(2);
EVT VT = Op.getValueType();
ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
DebugLoc dl = Op.getDebugLoc();
if (Op.getOperand(1).getValueType().isFloatingPoint()) {
switch (SetCCOpcode) {
default: llvm_unreachable("Illegal FP comparison"); break;
case ISD::SETUNE:
case ISD::SETNE: Invert = true; // Fallthrough
case ISD::SETOEQ:
case ISD::SETEQ: Opc = ARMISD::VCEQ; break;
case ISD::SETOLT:
case ISD::SETLT: Swap = true; // Fallthrough
case ISD::SETOGT:
case ISD::SETGT: Opc = ARMISD::VCGT; break;
case ISD::SETOLE:
case ISD::SETLE: Swap = true; // Fallthrough
case ISD::SETOGE:
case ISD::SETGE: Opc = ARMISD::VCGE; break;
case ISD::SETUGE: Swap = true; // Fallthrough
case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
case ISD::SETUGT: Swap = true; // Fallthrough
case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
case ISD::SETUEQ: Invert = true; // Fallthrough
case ISD::SETONE:
// Expand this to (OLT | OGT).
TmpOp0 = Op0;
TmpOp1 = Op1;
Opc = ISD::OR;
Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
break;
case ISD::SETUO: Invert = true; // Fallthrough
case ISD::SETO:
// Expand this to (OLT | OGE).
TmpOp0 = Op0;
TmpOp1 = Op1;
Opc = ISD::OR;
Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
break;
}
} else {
// Integer comparisons.
switch (SetCCOpcode) {
default: llvm_unreachable("Illegal integer comparison"); break;
case ISD::SETNE: Invert = true;
case ISD::SETEQ: Opc = ARMISD::VCEQ; break;
case ISD::SETLT: Swap = true;
case ISD::SETGT: Opc = ARMISD::VCGT; break;
case ISD::SETLE: Swap = true;
case ISD::SETGE: Opc = ARMISD::VCGE; break;
case ISD::SETULT: Swap = true;
case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
case ISD::SETULE: Swap = true;
case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
}
// Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
if (Opc == ARMISD::VCEQ) {
SDValue AndOp;
if (ISD::isBuildVectorAllZeros(Op1.getNode()))
AndOp = Op0;
else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
AndOp = Op1;
// Ignore bitconvert.
if (AndOp.getNode() && AndOp.getOpcode() == ISD::BIT_CONVERT)
AndOp = AndOp.getOperand(0);
if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
Opc = ARMISD::VTST;
Op0 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(0));
Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(1));
Invert = !Invert;
}
}
}
if (Swap)
std::swap(Op0, Op1);
SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
if (Invert)
Result = DAG.getNOT(dl, Result, VT);
return Result;
}
/// isVMOVSplat - Check if the specified splat value corresponds to an immediate
/// VMOV instruction, and if so, return the constant being splatted.
static SDValue isVMOVSplat(uint64_t SplatBits, uint64_t SplatUndef,
unsigned SplatBitSize, SelectionDAG &DAG) {
switch (SplatBitSize) {
case 8:
// Any 1-byte value is OK.
assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
return DAG.getTargetConstant(SplatBits, MVT::i8);
case 16:
// NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
if ((SplatBits & ~0xff) == 0 ||
(SplatBits & ~0xff00) == 0)
return DAG.getTargetConstant(SplatBits, MVT::i16);
break;
case 32:
// NEON's 32-bit VMOV supports splat values where:
// * only one byte is nonzero, or
// * the least significant byte is 0xff and the second byte is nonzero, or
// * the least significant 2 bytes are 0xff and the third is nonzero.
if ((SplatBits & ~0xff) == 0 ||
(SplatBits & ~0xff00) == 0 ||
(SplatBits & ~0xff0000) == 0 ||
(SplatBits & ~0xff000000) == 0)
return DAG.getTargetConstant(SplatBits, MVT::i32);
if ((SplatBits & ~0xffff) == 0 &&
((SplatBits | SplatUndef) & 0xff) == 0xff)
return DAG.getTargetConstant(SplatBits | 0xff, MVT::i32);
if ((SplatBits & ~0xffffff) == 0 &&
((SplatBits | SplatUndef) & 0xffff) == 0xffff)
return DAG.getTargetConstant(SplatBits | 0xffff, MVT::i32);
// Note: there are a few 32-bit splat values (specifically: 00ffff00,
// ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
// VMOV.I32. A (very) minor optimization would be to replicate the value
// and fall through here to test for a valid 64-bit splat. But, then the
// caller would also need to check and handle the change in size.
break;
case 64: {
// NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
uint64_t BitMask = 0xff;
uint64_t Val = 0;
for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
if (((SplatBits | SplatUndef) & BitMask) == BitMask)
Val |= BitMask;
else if ((SplatBits & BitMask) != 0)
return SDValue();
BitMask <<= 8;
}
return DAG.getTargetConstant(Val, MVT::i64);
}
default:
llvm_unreachable("unexpected size for isVMOVSplat");
break;
}
return SDValue();
}
/// getVMOVImm - If this is a build_vector of constants which can be
/// formed by using a VMOV instruction of the specified element size,
/// return the constant being splatted. The ByteSize field indicates the
/// number of bytes of each element [1248].
SDValue ARM::getVMOVImm(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N);
APInt SplatBits, SplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
HasAnyUndefs, ByteSize * 8))
return SDValue();
if (SplatBitSize > ByteSize * 8)
return SDValue();
return isVMOVSplat(SplatBits.getZExtValue(), SplatUndef.getZExtValue(),
SplatBitSize, DAG);
}
static bool isVEXTMask(const SmallVectorImpl<int> &M, EVT VT,
bool &ReverseVEXT, unsigned &Imm) {
unsigned NumElts = VT.getVectorNumElements();
ReverseVEXT = false;
Imm = M[0];
// If this is a VEXT shuffle, the immediate value is the index of the first
// element. The other shuffle indices must be the successive elements after
// the first one.
unsigned ExpectedElt = Imm;
for (unsigned i = 1; i < NumElts; ++i) {
// Increment the expected index. If it wraps around, it may still be
// a VEXT but the source vectors must be swapped.
ExpectedElt += 1;
if (ExpectedElt == NumElts * 2) {
ExpectedElt = 0;
ReverseVEXT = true;
}
if (ExpectedElt != static_cast<unsigned>(M[i]))
return false;
}
// Adjust the index value if the source operands will be swapped.
if (ReverseVEXT)
Imm -= NumElts;
return true;
}
/// isVREVMask - Check if a vector shuffle corresponds to a VREV
/// instruction with the specified blocksize. (The order of the elements
/// within each block of the vector is reversed.)
static bool isVREVMask(const SmallVectorImpl<int> &M, EVT VT,
unsigned BlockSize) {
assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
"Only possible block sizes for VREV are: 16, 32, 64");
unsigned EltSz = VT.getVectorElementType().getSizeInBits();
if (EltSz == 64)
return false;
unsigned NumElts = VT.getVectorNumElements();
unsigned BlockElts = M[0] + 1;
if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
return false;
for (unsigned i = 0; i < NumElts; ++i) {
if ((unsigned) M[i] !=
(i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
return false;
}
return true;
}
static bool isVTRNMask(const SmallVectorImpl<int> &M, EVT VT,
unsigned &WhichResult) {
unsigned EltSz = VT.getVectorElementType().getSizeInBits();
if (EltSz == 64)
return false;
unsigned NumElts = VT.getVectorNumElements();
WhichResult = (M[0] == 0 ? 0 : 1);
for (unsigned i = 0; i < NumElts; i += 2) {
if ((unsigned) M[i] != i + WhichResult ||
(unsigned) M[i+1] != i + NumElts + WhichResult)
return false;
}
return true;
}
/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
static bool isVTRN_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
unsigned &WhichResult) {
unsigned EltSz = VT.getVectorElementType().getSizeInBits();
if (EltSz == 64)
return false;
unsigned NumElts = VT.getVectorNumElements();
WhichResult = (M[0] == 0 ? 0 : 1);
for (unsigned i = 0; i < NumElts; i += 2) {
if ((unsigned) M[i] != i + WhichResult ||
(unsigned) M[i+1] != i + WhichResult)
return false;
}
return true;
}
static bool isVUZPMask(const SmallVectorImpl<int> &M, EVT VT,
unsigned &WhichResult) {
unsigned EltSz = VT.getVectorElementType().getSizeInBits();
if (EltSz == 64)
return false;
unsigned NumElts = VT.getVectorNumElements();
WhichResult = (M[0] == 0 ? 0 : 1);
for (unsigned i = 0; i != NumElts; ++i) {
if ((unsigned) M[i] != 2 * i + WhichResult)
return false;
}
// VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
if (VT.is64BitVector() && EltSz == 32)
return false;
return true;
}
/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
static bool isVUZP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
unsigned &WhichResult) {
unsigned EltSz = VT.getVectorElementType().getSizeInBits();
if (EltSz == 64)
return false;
unsigned Half = VT.getVectorNumElements() / 2;
WhichResult = (M[0] == 0 ? 0 : 1);
for (unsigned j = 0; j != 2; ++j) {
unsigned Idx = WhichResult;
for (unsigned i = 0; i != Half; ++i) {
if ((unsigned) M[i + j * Half] != Idx)
return false;
Idx += 2;
}
}
// VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
if (VT.is64BitVector() && EltSz == 32)
return false;
return true;
}
static bool isVZIPMask(const SmallVectorImpl<int> &M, EVT VT,
unsigned &WhichResult) {
unsigned EltSz = VT.getVectorElementType().getSizeInBits();
if (EltSz == 64)
return false;
unsigned NumElts = VT.getVectorNumElements();
WhichResult = (M[0] == 0 ? 0 : 1);
unsigned Idx = WhichResult * NumElts / 2;
for (unsigned i = 0; i != NumElts; i += 2) {
if ((unsigned) M[i] != Idx ||
(unsigned) M[i+1] != Idx + NumElts)
return false;
Idx += 1;
}
// VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
if (VT.is64BitVector() && EltSz == 32)
return false;
return true;
}
/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
static bool isVZIP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
unsigned &WhichResult) {
unsigned EltSz = VT.getVectorElementType().getSizeInBits();
if (EltSz == 64)
return false;
unsigned NumElts = VT.getVectorNumElements();
WhichResult = (M[0] == 0 ? 0 : 1);
unsigned Idx = WhichResult * NumElts / 2;
for (unsigned i = 0; i != NumElts; i += 2) {
if ((unsigned) M[i] != Idx ||
(unsigned) M[i+1] != Idx)
return false;
Idx += 1;
}
// VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
if (VT.is64BitVector() && EltSz == 32)
return false;
return true;
}
static SDValue BuildSplat(SDValue Val, EVT VT, SelectionDAG &DAG, DebugLoc dl) {
// Canonicalize all-zeros and all-ones vectors.
ConstantSDNode *ConstVal = cast<ConstantSDNode>(Val.getNode());
if (ConstVal->isNullValue())
return getZeroVector(VT, DAG, dl);
if (ConstVal->isAllOnesValue())
return getOnesVector(VT, DAG, dl);
EVT CanonicalVT;
if (VT.is64BitVector()) {
switch (Val.getValueType().getSizeInBits()) {
case 8: CanonicalVT = MVT::v8i8; break;
case 16: CanonicalVT = MVT::v4i16; break;
case 32: CanonicalVT = MVT::v2i32; break;
case 64: CanonicalVT = MVT::v1i64; break;
default: llvm_unreachable("unexpected splat element type"); break;
}
} else {
assert(VT.is128BitVector() && "unknown splat vector size");
switch (Val.getValueType().getSizeInBits()) {
case 8: CanonicalVT = MVT::v16i8; break;
case 16: CanonicalVT = MVT::v8i16; break;
case 32: CanonicalVT = MVT::v4i32; break;
case 64: CanonicalVT = MVT::v2i64; break;
default: llvm_unreachable("unexpected splat element type"); break;
}
}
// Build a canonical splat for this value.
SmallVector<SDValue, 8> Ops;
Ops.assign(CanonicalVT.getVectorNumElements(), Val);
SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, &Ops[0],
Ops.size());
return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Res);
}
// If this is a case we can't handle, return null and let the default
// expansion code take care of it.
static SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
DebugLoc dl = Op.getDebugLoc();
EVT VT = Op.getValueType();
APInt SplatBits, SplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
if (SplatBitSize <= 64) {
SDValue Val = isVMOVSplat(SplatBits.getZExtValue(),
SplatUndef.getZExtValue(), SplatBitSize, DAG);
if (Val.getNode())
return BuildSplat(Val, VT, DAG, dl);
}
}
// If there are only 2 elements in a 128-bit vector, insert them into an
// undef vector. This handles the common case for 128-bit vector argument
// passing, where the insertions should be translated to subreg accesses
// with no real instructions.
if (VT.is128BitVector() && Op.getNumOperands() == 2) {
SDValue Val = DAG.getUNDEF(VT);
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
if (Op0.getOpcode() != ISD::UNDEF)
Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, Op0,
DAG.getIntPtrConstant(0));
if (Op1.getOpcode() != ISD::UNDEF)
Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, Op1,
DAG.getIntPtrConstant(1));
return Val;
}
return SDValue();
}
/// isShuffleMaskLegal - Targets can use this to indicate that they only
/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
/// are assumed to be legal.
bool
ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
EVT VT) const {
if (VT.getVectorNumElements() == 4 &&
(VT.is128BitVector() || VT.is64BitVector())) {
unsigned PFIndexes[4];
for (unsigned i = 0; i != 4; ++i) {
if (M[i] < 0)
PFIndexes[i] = 8;
else
PFIndexes[i] = M[i];
}
// Compute the index in the perfect shuffle table.
unsigned PFTableIndex =
PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
unsigned Cost = (PFEntry >> 30);
if (Cost <= 4)
return true;
}
bool ReverseVEXT;
unsigned Imm, WhichResult;
return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
isVREVMask(M, VT, 64) ||
isVREVMask(M, VT, 32) ||
isVREVMask(M, VT, 16) ||
isVEXTMask(M, VT, ReverseVEXT, Imm) ||
isVTRNMask(M, VT, WhichResult) ||
isVUZPMask(M, VT, WhichResult) ||
isVZIPMask(M, VT, WhichResult) ||
isVTRN_v_undef_Mask(M, VT, WhichResult) ||
isVUZP_v_undef_Mask(M, VT, WhichResult) ||
isVZIP_v_undef_Mask(M, VT, WhichResult));
}
/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
/// the specified operations to build the shuffle.
static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
SDValue RHS, SelectionDAG &DAG,
DebugLoc dl) {
unsigned OpNum = (PFEntry >> 26) & 0x0F;
unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
enum {
OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
OP_VREV,
OP_VDUP0,
OP_VDUP1,
OP_VDUP2,
OP_VDUP3,
OP_VEXT1,
OP_VEXT2,
OP_VEXT3,
OP_VUZPL, // VUZP, left result
OP_VUZPR, // VUZP, right result
OP_VZIPL, // VZIP, left result
OP_VZIPR, // VZIP, right result
OP_VTRNL, // VTRN, left result
OP_VTRNR // VTRN, right result
};
if (OpNum == OP_COPY) {
if (LHSID == (1*9+2)*9+3) return LHS;
assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
return RHS;
}
SDValue OpLHS, OpRHS;
OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
EVT VT = OpLHS.getValueType();
switch (OpNum) {
default: llvm_unreachable("Unknown shuffle opcode!");
case OP_VREV:
return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
case OP_VDUP0:
case OP_VDUP1:
case OP_VDUP2:
case OP_VDUP3:
return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
case OP_VEXT1:
case OP_VEXT2:
case OP_VEXT3:
return DAG.getNode(ARMISD::VEXT, dl, VT,
OpLHS, OpRHS,
DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
case OP_VUZPL:
case OP_VUZPR:
return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
case OP_VZIPL:
case OP_VZIPR:
return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
case OP_VTRNL:
case OP_VTRNR:
return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
}
}
static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
DebugLoc dl = Op.getDebugLoc();
EVT VT = Op.getValueType();
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
SmallVector<int, 8> ShuffleMask;
// Convert shuffles that are directly supported on NEON to target-specific
// DAG nodes, instead of keeping them as shuffles and matching them again
// during code selection. This is more efficient and avoids the possibility
// of inconsistencies between legalization and selection.
// FIXME: floating-point vectors should be canonicalized to integer vectors
// of the same time so that they get CSEd properly.
SVN->getMask(ShuffleMask);
if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
int Lane = SVN->getSplatIndex();
// If this is undef splat, generate it via "just" vdup, if possible.
if (Lane == -1) Lane = 0;
if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
}
return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
DAG.getConstant(Lane, MVT::i32));
}
bool ReverseVEXT;
unsigned Imm;
if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
if (ReverseVEXT)
std::swap(V1, V2);
return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
DAG.getConstant(Imm, MVT::i32));
}
if (isVREVMask(ShuffleMask, VT, 64))
return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
if (isVREVMask(ShuffleMask, VT, 32))
return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
if (isVREVMask(ShuffleMask, VT, 16))
return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
// Check for Neon shuffles that modify both input vectors in place.
// If both results are used, i.e., if there are two shuffles with the same
// source operands and with masks corresponding to both results of one of
// these operations, DAG memoization will ensure that a single node is
// used for both shuffles.
unsigned WhichResult;
if (isVTRNMask(ShuffleMask, VT, WhichResult))
return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
V1, V2).getValue(WhichResult);
if (isVUZPMask(ShuffleMask, VT, WhichResult))
return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
V1, V2).getValue(WhichResult);
if (isVZIPMask(ShuffleMask, VT, WhichResult))
return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
V1, V2).getValue(WhichResult);
if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
V1, V1).getValue(WhichResult);
if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
V1, V1).getValue(WhichResult);
if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
V1, V1).getValue(WhichResult);
// If the shuffle is not directly supported and it has 4 elements, use
// the PerfectShuffle-generated table to synthesize it from other shuffles.
if (VT.getVectorNumElements() == 4 &&
(VT.is128BitVector() || VT.is64BitVector())) {
unsigned PFIndexes[4];
for (unsigned i = 0; i != 4; ++i) {
if (ShuffleMask[i] < 0)
PFIndexes[i] = 8;
else
PFIndexes[i] = ShuffleMask[i];
}
// Compute the index in the perfect shuffle table.
unsigned PFTableIndex =
PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
unsigned Cost = (PFEntry >> 30);
if (Cost <= 4)
return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
}
return SDValue();
}
static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
EVT VT = Op.getValueType();
DebugLoc dl = Op.getDebugLoc();
SDValue Vec = Op.getOperand(0);
SDValue Lane = Op.getOperand(1);
assert(VT == MVT::i32 &&
Vec.getValueType().getVectorElementType().getSizeInBits() < 32 &&
"unexpected type for custom-lowering vector extract");
return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
}
static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
// The only time a CONCAT_VECTORS operation can have legal types is when
// two 64-bit vectors are concatenated to a 128-bit vector.
assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
"unexpected CONCAT_VECTORS");
DebugLoc dl = Op.getDebugLoc();
SDValue Val = DAG.getUNDEF(MVT::v2f64);
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
if (Op0.getOpcode() != ISD::UNDEF)
Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op0),
DAG.getIntPtrConstant(0));
if (Op1.getOpcode() != ISD::UNDEF)
Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op1),
DAG.getIntPtrConstant(1));
return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Val);
}
SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
switch (Op.getOpcode()) {
default: llvm_unreachable("Don't know how to custom lower this!");
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
case ISD::GlobalAddress:
return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
LowerGlobalAddressELF(Op, DAG);
case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
case ISD::BR_CC: return LowerBR_CC(Op, DAG);
case ISD::BR_JT: return LowerBR_JT(Op, DAG);
case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
case ISD::VASTART: return LowerVASTART(Op, DAG, VarArgsFrameIndex);
case ISD::MEMBARRIER: return LowerMEMBARRIER(Op, DAG, Subtarget);
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG);
case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
case ISD::RETURNADDR: break;
case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
Subtarget);
case ISD::BIT_CONVERT: return ExpandBIT_CONVERT(Op.getNode(), DAG);
case ISD::SHL:
case ISD::SRL:
case ISD::SRA: return LowerShift(Op.getNode(), DAG, Subtarget);
case ISD::SHL_PARTS: return LowerShiftLeftParts(Op, DAG);
case ISD::SRL_PARTS:
case ISD::SRA_PARTS: return LowerShiftRightParts(Op, DAG);
case ISD::CTTZ: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
case ISD::VSETCC: return LowerVSETCC(Op, DAG);
case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
}
return SDValue();
}
/// ReplaceNodeResults - Replace the results of node with an illegal result
/// type with new values built out of custom code.
void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
SmallVectorImpl<SDValue>&Results,
SelectionDAG &DAG) {
switch (N->getOpcode()) {
default:
llvm_unreachable("Don't know how to custom expand this!");
return;
case ISD::BIT_CONVERT:
Results.push_back(ExpandBIT_CONVERT(N, DAG));
return;
case ISD::SRL:
case ISD::SRA: {
SDValue Res = LowerShift(N, DAG, Subtarget);
if (Res.getNode())
Results.push_back(Res);
return;
}
}
}
//===----------------------------------------------------------------------===//
// ARM Scheduler Hooks
//===----------------------------------------------------------------------===//
MachineBasicBlock *
ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
MachineBasicBlock *BB,
unsigned Size) const {
unsigned dest = MI->getOperand(0).getReg();
unsigned ptr = MI->getOperand(1).getReg();
unsigned oldval = MI->getOperand(2).getReg();
unsigned newval = MI->getOperand(3).getReg();
unsigned scratch = BB->getParent()->getRegInfo()
.createVirtualRegister(ARM::GPRRegisterClass);
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
DebugLoc dl = MI->getDebugLoc();
bool isThumb2 = Subtarget->isThumb2();
unsigned ldrOpc, strOpc;
switch (Size) {
default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
case 1:
ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
strOpc = isThumb2 ? ARM::t2LDREXB : ARM::STREXB;
break;
case 2:
ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
break;
case 4:
ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
break;
}
MachineFunction *MF = BB->getParent();
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = BB;
++It; // insert the new blocks after the current block
MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MF->insert(It, loop1MBB);
MF->insert(It, loop2MBB);
MF->insert(It, exitMBB);
exitMBB->transferSuccessors(BB);
// thisMBB:
// ...
// fallthrough --> loop1MBB
BB->addSuccessor(loop1MBB);
// loop1MBB:
// ldrex dest, [ptr]
// cmp dest, oldval
// bne exitMBB
BB = loop1MBB;
AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
.addReg(dest).addReg(oldval));
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
.addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
BB->addSuccessor(loop2MBB);
BB->addSuccessor(exitMBB);
// loop2MBB:
// strex scratch, newval, [ptr]
// cmp scratch, #0
// bne loop1MBB
BB = loop2MBB;
AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval)
.addReg(ptr));
AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
.addReg(scratch).addImm(0));
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
.addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
BB->addSuccessor(loop1MBB);
BB->addSuccessor(exitMBB);
// exitMBB:
// ...
BB = exitMBB;
MF->DeleteMachineInstr(MI); // The instruction is gone now.
return BB;
}
MachineBasicBlock *
ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
unsigned Size, unsigned BinOpcode) const {
// This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction *MF = BB->getParent();
MachineFunction::iterator It = BB;
++It;
unsigned dest = MI->getOperand(0).getReg();
unsigned ptr = MI->getOperand(1).getReg();
unsigned incr = MI->getOperand(2).getReg();
DebugLoc dl = MI->getDebugLoc();
bool isThumb2 = Subtarget->isThumb2();
unsigned ldrOpc, strOpc;
switch (Size) {
default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
case 1:
ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
break;
case 2:
ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
break;
case 4:
ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
break;
}
MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MF->insert(It, loopMBB);
MF->insert(It, exitMBB);
exitMBB->transferSuccessors(BB);
MachineRegisterInfo &RegInfo = MF->getRegInfo();
unsigned scratch = RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
unsigned scratch2 = (!BinOpcode) ? incr :
RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
// thisMBB:
// ...
// fallthrough --> loopMBB
BB->addSuccessor(loopMBB);
// loopMBB:
// ldrex dest, ptr
// <binop> scratch2, dest, incr
// strex scratch, scratch2, ptr
// cmp scratch, #0
// bne- loopMBB
// fallthrough --> exitMBB
BB = loopMBB;
AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
if (BinOpcode) {
// operand order needs to go the other way for NAND
if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
addReg(incr).addReg(dest)).addReg(0);
else
AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
addReg(dest).addReg(incr)).addReg(0);
}
AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2)
.addReg(ptr));
AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
.addReg(scratch).addImm(0));
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
.addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
BB->addSuccessor(loopMBB);
BB->addSuccessor(exitMBB);
// exitMBB:
// ...
BB = exitMBB;
MF->DeleteMachineInstr(MI); // The instruction is gone now.
return BB;
}
MachineBasicBlock *
ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *BB,
DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
DebugLoc dl = MI->getDebugLoc();
bool isThumb2 = Subtarget->isThumb2();
switch (MI->getOpcode()) {
default:
MI->dump();
llvm_unreachable("Unexpected instr type to insert");
case ARM::ATOMIC_LOAD_ADD_I8:
return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
case ARM::ATOMIC_LOAD_ADD_I16:
return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
case ARM::ATOMIC_LOAD_ADD_I32:
return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
case ARM::ATOMIC_LOAD_AND_I8:
return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
case ARM::ATOMIC_LOAD_AND_I16:
return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
case ARM::ATOMIC_LOAD_AND_I32:
return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
case ARM::ATOMIC_LOAD_OR_I8:
return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
case ARM::ATOMIC_LOAD_OR_I16:
return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
case ARM::ATOMIC_LOAD_OR_I32:
return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
case ARM::ATOMIC_LOAD_XOR_I8:
return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
case ARM::ATOMIC_LOAD_XOR_I16:
return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
case ARM::ATOMIC_LOAD_XOR_I32:
return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
case ARM::ATOMIC_LOAD_NAND_I8:
return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
case ARM::ATOMIC_LOAD_NAND_I16:
return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
case ARM::ATOMIC_LOAD_NAND_I32:
return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
case ARM::ATOMIC_LOAD_SUB_I8:
return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
case ARM::ATOMIC_LOAD_SUB_I16:
return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
case ARM::ATOMIC_LOAD_SUB_I32:
return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
case ARM::ATOMIC_SWAP_I8: return EmitAtomicBinary(MI, BB, 1, 0);
case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
case ARM::ATOMIC_CMP_SWAP_I8: return EmitAtomicCmpSwap(MI, BB, 1);
case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
case ARM::tMOVCCr_pseudo: {
// To "insert" a SELECT_CC instruction, we actually have to insert the
// diamond control-flow pattern. The incoming instruction knows the
// destination vreg to set, the condition code register to branch on, the
// true/false values to select between, and a branch opcode to use.
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = BB;
++It;
// thisMBB:
// ...
// TrueVal = ...
// cmpTY ccX, r1, r2
// bCC copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *thisMBB = BB;
MachineFunction *F = BB->getParent();
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
.addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
F->insert(It, copy0MBB);
F->insert(It, sinkMBB);
// Update machine-CFG edges by first adding all successors of the current
// block to the new block which will contain the Phi node for the select.
// Also inform sdisel of the edge changes.
for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),
E = BB->succ_end(); I != E; ++I) {
EM->insert(std::make_pair(*I, sinkMBB));
sinkMBB->addSuccessor(*I);
}
// Next, remove all successors of the current block, and add the true
// and fallthrough blocks as its successors.
while (!BB->succ_empty())
BB->removeSuccessor(BB->succ_begin());
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
// copy0MBB:
// %FalseValue = ...
// # fallthrough to sinkMBB
BB = copy0MBB;
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
// sinkMBB:
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
// ...
BB = sinkMBB;
BuildMI(BB, dl, TII->get(ARM::PHI), MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
.addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
F->DeleteMachineInstr(MI); // The pseudo instruction is gone now.
return BB;
}
case ARM::tANDsp:
case ARM::tADDspr_:
case ARM::tSUBspi_:
case ARM::t2SUBrSPi_:
case ARM::t2SUBrSPi12_:
case ARM::t2SUBrSPs_: {
MachineFunction *MF = BB->getParent();
unsigned DstReg = MI->getOperand(0).getReg();
unsigned SrcReg = MI->getOperand(1).getReg();
bool DstIsDead = MI->getOperand(0).isDead();
bool SrcIsKill = MI->getOperand(1).isKill();
if (SrcReg != ARM::SP) {
// Copy the source to SP from virtual register.
const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(SrcReg);
unsigned CopyOpc = (RC == ARM::tGPRRegisterClass)
? ARM::tMOVtgpr2gpr : ARM::tMOVgpr2gpr;
BuildMI(BB, dl, TII->get(CopyOpc), ARM::SP)
.addReg(SrcReg, getKillRegState(SrcIsKill));
}
unsigned OpOpc = 0;
bool NeedPred = false, NeedCC = false, NeedOp3 = false;
switch (MI->getOpcode()) {
default:
llvm_unreachable("Unexpected pseudo instruction!");
case ARM::tANDsp:
OpOpc = ARM::tAND;
NeedPred = true;
break;
case ARM::tADDspr_:
OpOpc = ARM::tADDspr;
break;
case ARM::tSUBspi_:
OpOpc = ARM::tSUBspi;
break;
case ARM::t2SUBrSPi_:
OpOpc = ARM::t2SUBrSPi;
NeedPred = true; NeedCC = true;
break;
case ARM::t2SUBrSPi12_:
OpOpc = ARM::t2SUBrSPi12;
NeedPred = true;
break;
case ARM::t2SUBrSPs_:
OpOpc = ARM::t2SUBrSPs;
NeedPred = true; NeedCC = true; NeedOp3 = true;
break;
}
MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(OpOpc), ARM::SP);
if (OpOpc == ARM::tAND)
AddDefaultT1CC(MIB);
MIB.addReg(ARM::SP);
MIB.addOperand(MI->getOperand(2));
if (NeedOp3)
MIB.addOperand(MI->getOperand(3));
if (NeedPred)
AddDefaultPred(MIB);
if (NeedCC)
AddDefaultCC(MIB);
// Copy the result from SP to virtual register.
const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(DstReg);
unsigned CopyOpc = (RC == ARM::tGPRRegisterClass)
? ARM::tMOVgpr2tgpr : ARM::tMOVgpr2gpr;
BuildMI(BB, dl, TII->get(CopyOpc))
.addReg(DstReg, getDefRegState(true) | getDeadRegState(DstIsDead))
.addReg(ARM::SP);
MF->DeleteMachineInstr(MI); // The pseudo instruction is gone now.
return BB;
}
}
}
//===----------------------------------------------------------------------===//
// ARM Optimization Hooks
//===----------------------------------------------------------------------===//
static
SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
TargetLowering::DAGCombinerInfo &DCI) {
SelectionDAG &DAG = DCI.DAG;
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
EVT VT = N->getValueType(0);
unsigned Opc = N->getOpcode();
bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
ISD::CondCode CC = ISD::SETCC_INVALID;
if (isSlctCC) {
CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
} else {
SDValue CCOp = Slct.getOperand(0);
if (CCOp.getOpcode() == ISD::SETCC)
CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
}
bool DoXform = false;
bool InvCC = false;
assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
"Bad input!");
if (LHS.getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(LHS)->isNullValue()) {
DoXform = true;
} else if (CC != ISD::SETCC_INVALID &&
RHS.getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(RHS)->isNullValue()) {
std::swap(LHS, RHS);
SDValue Op0 = Slct.getOperand(0);
EVT OpVT = isSlctCC ? Op0.getValueType() :
Op0.getOperand(0).getValueType();
bool isInt = OpVT.isInteger();
CC = ISD::getSetCCInverse(CC, isInt);
if (!TLI.isCondCodeLegal(CC, OpVT))
return SDValue(); // Inverse operator isn't legal.
DoXform = true;
InvCC = true;
}
if (DoXform) {
SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
if (isSlctCC)
return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
Slct.getOperand(0), Slct.getOperand(1), CC);
SDValue CCOp = Slct.getOperand(0);
if (InvCC)
CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
CCOp.getOperand(0), CCOp.getOperand(1), CC);
return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
CCOp, OtherOp, Result);
}
return SDValue();
}
/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
static SDValue PerformADDCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
// added by evan in r37685 with no testcase.
SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
// fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
if (Result.getNode()) return Result;
}
if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
if (Result.getNode()) return Result;
}
return SDValue();
}
/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
static SDValue PerformSUBCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
// added by evan in r37685 with no testcase.
SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
// fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
if (Result.getNode()) return Result;
}
return SDValue();
}
/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
/// ARMISD::VMOVRRD.
static SDValue PerformVMOVRRDCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
// fmrrd(fmdrr x, y) -> x,y
SDValue InDouble = N->getOperand(0);
if (InDouble.getOpcode() == ARMISD::VMOVDRR)
return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
return SDValue();
}
/// getVShiftImm - Check if this is a valid build_vector for the immediate
/// operand of a vector shift operation, where all the elements of the
/// build_vector must have the same constant integer value.
static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
// Ignore bit_converts.
while (Op.getOpcode() == ISD::BIT_CONVERT)
Op = Op.getOperand(0);
BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
APInt SplatBits, SplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
HasAnyUndefs, ElementBits) ||
SplatBitSize > ElementBits)
return false;
Cnt = SplatBits.getSExtValue();
return true;
}
/// isVShiftLImm - Check if this is a valid build_vector for the immediate
/// operand of a vector shift left operation. That value must be in the range:
/// 0 <= Value < ElementBits for a left shift; or
/// 0 <= Value <= ElementBits for a long left shift.
static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
assert(VT.isVector() && "vector shift count is not a vector type");
unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
if (! getVShiftImm(Op, ElementBits, Cnt))
return false;
return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
}
/// isVShiftRImm - Check if this is a valid build_vector for the immediate
/// operand of a vector shift right operation. For a shift opcode, the value
/// is positive, but for an intrinsic the value count must be negative. The
/// absolute value must be in the range:
/// 1 <= |Value| <= ElementBits for a right shift; or
/// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
int64_t &Cnt) {
assert(VT.isVector() && "vector shift count is not a vector type");
unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
if (! getVShiftImm(Op, ElementBits, Cnt))
return false;
if (isIntrinsic)
Cnt = -Cnt;
return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
}
/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
switch (IntNo) {
default:
// Don't do anything for most intrinsics.
break;
// Vector shifts: check for immediate versions and lower them.
// Note: This is done during DAG combining instead of DAG legalizing because
// the build_vectors for 64-bit vector element shift counts are generally
// not legal, and it is hard to see their values after they get legalized to
// loads from a constant pool.
case Intrinsic::arm_neon_vshifts:
case Intrinsic::arm_neon_vshiftu:
case Intrinsic::arm_neon_vshiftls:
case Intrinsic::arm_neon_vshiftlu:
case Intrinsic::arm_neon_vshiftn:
case Intrinsic::arm_neon_vrshifts:
case Intrinsic::arm_neon_vrshiftu:
case Intrinsic::arm_neon_vrshiftn:
case Intrinsic::arm_neon_vqshifts:
case Intrinsic::arm_neon_vqshiftu:
case Intrinsic::arm_neon_vqshiftsu:
case Intrinsic::arm_neon_vqshiftns:
case Intrinsic::arm_neon_vqshiftnu:
case Intrinsic::arm_neon_vqshiftnsu:
case Intrinsic::arm_neon_vqrshiftns:
case Intrinsic::arm_neon_vqrshiftnu:
case Intrinsic::arm_neon_vqrshiftnsu: {
EVT VT = N->getOperand(1).getValueType();
int64_t Cnt;
unsigned VShiftOpc = 0;
switch (IntNo) {
case Intrinsic::arm_neon_vshifts:
case Intrinsic::arm_neon_vshiftu:
if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
VShiftOpc = ARMISD::VSHL;
break;
}
if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
ARMISD::VSHRs : ARMISD::VSHRu);
break;
}
return SDValue();
case Intrinsic::arm_neon_vshiftls:
case Intrinsic::arm_neon_vshiftlu:
if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
break;
llvm_unreachable("invalid shift count for vshll intrinsic");
case Intrinsic::arm_neon_vrshifts:
case Intrinsic::arm_neon_vrshiftu:
if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
break;
return SDValue();
case Intrinsic::arm_neon_vqshifts:
case Intrinsic::arm_neon_vqshiftu:
if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
break;
return SDValue();
case Intrinsic::arm_neon_vqshiftsu:
if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
break;
llvm_unreachable("invalid shift count for vqshlu intrinsic");
case Intrinsic::arm_neon_vshiftn:
case Intrinsic::arm_neon_vrshiftn:
case Intrinsic::arm_neon_vqshiftns:
case Intrinsic::arm_neon_vqshiftnu:
case Intrinsic::arm_neon_vqshiftnsu:
case Intrinsic::arm_neon_vqrshiftns:
case Intrinsic::arm_neon_vqrshiftnu:
case Intrinsic::arm_neon_vqrshiftnsu:
// Narrowing shifts require an immediate right shift.
if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
break;
llvm_unreachable("invalid shift count for narrowing vector shift intrinsic");
default:
llvm_unreachable("unhandled vector shift");
}
switch (IntNo) {
case Intrinsic::arm_neon_vshifts:
case Intrinsic::arm_neon_vshiftu:
// Opcode already set above.
break;
case Intrinsic::arm_neon_vshiftls:
case Intrinsic::arm_neon_vshiftlu:
if (Cnt == VT.getVectorElementType().getSizeInBits())
VShiftOpc = ARMISD::VSHLLi;
else
VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
ARMISD::VSHLLs : ARMISD::VSHLLu);
break;
case Intrinsic::arm_neon_vshiftn:
VShiftOpc = ARMISD::VSHRN; break;
case Intrinsic::arm_neon_vrshifts:
VShiftOpc = ARMISD::VRSHRs; break;
case Intrinsic::arm_neon_vrshiftu:
VShiftOpc = ARMISD::VRSHRu; break;
case Intrinsic::arm_neon_vrshiftn:
VShiftOpc = ARMISD::VRSHRN; break;
case Intrinsic::arm_neon_vqshifts:
VShiftOpc = ARMISD::VQSHLs; break;
case Intrinsic::arm_neon_vqshiftu:
VShiftOpc = ARMISD::VQSHLu; break;
case Intrinsic::arm_neon_vqshiftsu:
VShiftOpc = ARMISD::VQSHLsu; break;
case Intrinsic::arm_neon_vqshiftns:
VShiftOpc = ARMISD::VQSHRNs; break;
case Intrinsic::arm_neon_vqshiftnu:
VShiftOpc = ARMISD::VQSHRNu; break;
case Intrinsic::arm_neon_vqshiftnsu:
VShiftOpc = ARMISD::VQSHRNsu; break;
case Intrinsic::arm_neon_vqrshiftns:
VShiftOpc = ARMISD::VQRSHRNs; break;
case Intrinsic::arm_neon_vqrshiftnu:
VShiftOpc = ARMISD::VQRSHRNu; break;
case Intrinsic::arm_neon_vqrshiftnsu:
VShiftOpc = ARMISD::VQRSHRNsu; break;
}
return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
}
case Intrinsic::arm_neon_vshiftins: {
EVT VT = N->getOperand(1).getValueType();
int64_t Cnt;
unsigned VShiftOpc = 0;
if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
VShiftOpc = ARMISD::VSLI;
else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
VShiftOpc = ARMISD::VSRI;
else {
llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
}
return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
N->getOperand(1), N->getOperand(2),
DAG.getConstant(Cnt, MVT::i32));
}
case Intrinsic::arm_neon_vqrshifts:
case Intrinsic::arm_neon_vqrshiftu:
// No immediate versions of these to check for.
break;
}
return SDValue();
}
/// PerformShiftCombine - Checks for immediate versions of vector shifts and
/// lowers them. As with the vector shift intrinsics, this is done during DAG
/// combining instead of DAG legalizing because the build_vectors for 64-bit
/// vector element shift counts are generally not legal, and it is hard to see
/// their values after they get legalized to loads from a constant pool.
static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
const ARMSubtarget *ST) {
EVT VT = N->getValueType(0);
// Nothing to be done for scalar shifts.
if (! VT.isVector())
return SDValue();
assert(ST->hasNEON() && "unexpected vector shift");
int64_t Cnt;
switch (N->getOpcode()) {
default: llvm_unreachable("unexpected shift opcode");
case ISD::SHL:
if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
DAG.getConstant(Cnt, MVT::i32));
break;
case ISD::SRA:
case ISD::SRL:
if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
ARMISD::VSHRs : ARMISD::VSHRu);
return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
DAG.getConstant(Cnt, MVT::i32));
}
}
return SDValue();
}
/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
const ARMSubtarget *ST) {
SDValue N0 = N->getOperand(0);
// Check for sign- and zero-extensions of vector extract operations of 8-
// and 16-bit vector elements. NEON supports these directly. They are
// handled during DAG combining because type legalization will promote them
// to 32-bit types and it is messy to recognize the operations after that.
if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
SDValue Vec = N0.getOperand(0);
SDValue Lane = N0.getOperand(1);
EVT VT = N->getValueType(0);
EVT EltVT = N0.getValueType();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (VT == MVT::i32 &&
(EltVT == MVT::i8 || EltVT == MVT::i16) &&
TLI.isTypeLegal(Vec.getValueType())) {
unsigned Opc = 0;
switch (N->getOpcode()) {
default: llvm_unreachable("unexpected opcode");
case ISD::SIGN_EXTEND:
Opc = ARMISD::VGETLANEs;
break;
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND:
Opc = ARMISD::VGETLANEu;
break;
}
return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
}
}
return SDValue();
}
/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
const ARMSubtarget *ST) {
// If the target supports NEON, try to use vmax/vmin instructions for f32
// selects like "x < y ? x : y". Unless the FiniteOnlyFPMath option is set,
// be careful about NaNs: NEON's vmax/vmin return NaN if either operand is
// a NaN; only do the transformation when it matches that behavior.
// For now only do this when using NEON for FP operations; if using VFP, it
// is not obvious that the benefit outweighs the cost of switching to the
// NEON pipeline.
if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
N->getValueType(0) != MVT::f32)
return SDValue();
SDValue CondLHS = N->getOperand(0);
SDValue CondRHS = N->getOperand(1);
SDValue LHS = N->getOperand(2);
SDValue RHS = N->getOperand(3);
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
unsigned Opcode = 0;
bool IsReversed;
if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
IsReversed = false; // x CC y ? x : y
} else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
IsReversed = true ; // x CC y ? y : x
} else {
return SDValue();
}
bool IsUnordered;
switch (CC) {
default: break;
case ISD::SETOLT:
case ISD::SETOLE:
case ISD::SETLT:
case ISD::SETLE:
case ISD::SETULT:
case ISD::SETULE:
// If LHS is NaN, an ordered comparison will be false and the result will
// be the RHS, but vmin(NaN, RHS) = NaN. Avoid this by checking that LHS
// != NaN. Likewise, for unordered comparisons, check for RHS != NaN.
IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
break;
// For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
// will return -0, so vmin can only be used for unsafe math or if one of
// the operands is known to be nonzero.
if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
!UnsafeFPMath &&
!(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
break;
Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
break;
case ISD::SETOGT:
case ISD::SETOGE:
case ISD::SETGT:
case ISD::SETGE:
case ISD::SETUGT:
case ISD::SETUGE:
// If LHS is NaN, an ordered comparison will be false and the result will
// be the RHS, but vmax(NaN, RHS) = NaN. Avoid this by checking that LHS
// != NaN. Likewise, for unordered comparisons, check for RHS != NaN.
IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
break;
// For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
// will return +0, so vmax can only be used for unsafe math or if one of
// the operands is known to be nonzero.
if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
!UnsafeFPMath &&
!(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
break;
Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
break;
}
if (!Opcode)
return SDValue();
return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
}
SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
switch (N->getOpcode()) {
default: break;
case ISD::ADD: return PerformADDCombine(N, DCI);
case ISD::SUB: return PerformSUBCombine(N, DCI);
case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
case ISD::SHL:
case ISD::SRA:
case ISD::SRL: return PerformShiftCombine(N, DCI.DAG, Subtarget);
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
case ISD::SELECT_CC: return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
}
return SDValue();
}
bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
if (!Subtarget->hasV6Ops())
// Pre-v6 does not support unaligned mem access.
return false;
else {
// v6+ may or may not support unaligned mem access depending on the system
// configuration.
// FIXME: This is pretty conservative. Should we provide cmdline option to
// control the behaviour?
if (!Subtarget->isTargetDarwin())
return false;
}
switch (VT.getSimpleVT().SimpleTy) {
default:
return false;
case MVT::i8:
case MVT::i16:
case MVT::i32:
return true;
// FIXME: VLD1 etc with standard alignment is legal.
}
}
static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
if (V < 0)
return false;
unsigned Scale = 1;
switch (VT.getSimpleVT().SimpleTy) {
default: return false;
case MVT::i1:
case MVT::i8:
// Scale == 1;
break;
case MVT::i16:
// Scale == 2;
Scale = 2;
break;
case MVT::i32:
// Scale == 4;
Scale = 4;
break;
}
if ((V & (Scale - 1)) != 0)
return false;
V /= Scale;
return V == (V & ((1LL << 5) - 1));
}
static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
const ARMSubtarget *Subtarget) {
bool isNeg = false;
if (V < 0) {
isNeg = true;
V = - V;
}
switch (VT.getSimpleVT().SimpleTy) {
default: return false;
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32:
// + imm12 or - imm8
if (isNeg)
return V == (V & ((1LL << 8) - 1));
return V == (V & ((1LL << 12) - 1));
case MVT::f32:
case MVT::f64:
// Same as ARM mode. FIXME: NEON?
if (!Subtarget->hasVFP2())
return false;
if ((V & 3) != 0)
return false;
V >>= 2;
return V == (V & ((1LL << 8) - 1));
}
}
/// isLegalAddressImmediate - Return true if the integer value can be used
/// as the offset of the target addressing mode for load / store of the
/// given type.
static bool isLegalAddressImmediate(int64_t V, EVT VT,
const ARMSubtarget *Subtarget) {
if (V == 0)
return true;
if (!VT.isSimple())
return false;
if (Subtarget->isThumb1Only())
return isLegalT1AddressImmediate(V, VT);
else if (Subtarget->isThumb2())
return isLegalT2AddressImmediate(V, VT, Subtarget);
// ARM mode.
if (V < 0)
V = - V;
switch (VT.getSimpleVT().SimpleTy) {
default: return false;
case MVT::i1:
case MVT::i8:
case MVT::i32:
// +- imm12
return V == (V & ((1LL << 12) - 1));
case MVT::i16:
// +- imm8
return V == (V & ((1LL << 8) - 1));
case MVT::f32:
case MVT::f64:
if (!Subtarget->hasVFP2()) // FIXME: NEON?
return false;
if ((V & 3) != 0)
return false;
V >>= 2;
return V == (V & ((1LL << 8) - 1));
}
}
bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
EVT VT) const {
int Scale = AM.Scale;
if (Scale < 0)
return false;
switch (VT.getSimpleVT().SimpleTy) {
default: return false;
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32:
if (Scale == 1)
return true;
// r + r << imm
Scale = Scale & ~1;
return Scale == 2 || Scale == 4 || Scale == 8;
case MVT::i64:
// r + r
if (((unsigned)AM.HasBaseReg + Scale) <= 2)
return true;
return false;
case MVT::isVoid:
// Note, we allow "void" uses (basically, uses that aren't loads or
// stores), because arm allows folding a scale into many arithmetic
// operations. This should be made more precise and revisited later.
// Allow r << imm, but the imm has to be a multiple of two.
if (Scale & 1) return false;
return isPowerOf2_32(Scale);
}
}
/// isLegalAddressingMode - Return true if the addressing mode represented
/// by AM is legal for this target, for a load/store of the specified type.
bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
const Type *Ty) const {
EVT VT = getValueType(Ty, true);
if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
return false;
// Can never fold addr of global into load/store.
if (AM.BaseGV)
return false;
switch (AM.Scale) {
case 0: // no scale reg, must be "r+i" or "r", or "i".
break;
case 1:
if (Subtarget->isThumb1Only())
return false;
// FALL THROUGH.
default:
// ARM doesn't support any R+R*scale+imm addr modes.
if (AM.BaseOffs)
return false;
if (!VT.isSimple())
return false;
if (Subtarget->isThumb2())
return isLegalT2ScaledAddressingMode(AM, VT);
int Scale = AM.Scale;
switch (VT.getSimpleVT().SimpleTy) {
default: return false;
case MVT::i1:
case MVT::i8:
case MVT::i32:
if (Scale < 0) Scale = -Scale;
if (Scale == 1)
return true;
// r + r << imm
return isPowerOf2_32(Scale & ~1);
case MVT::i16:
case MVT::i64:
// r + r
if (((unsigned)AM.HasBaseReg + Scale) <= 2)
return true;
return false;
case MVT::isVoid:
// Note, we allow "void" uses (basically, uses that aren't loads or
// stores), because arm allows folding a scale into many arithmetic
// operations. This should be made more precise and revisited later.
// Allow r << imm, but the imm has to be a multiple of two.
if (Scale & 1) return false;
return isPowerOf2_32(Scale);
}
break;
}
return true;
}
/// isLegalICmpImmediate - Return true if the specified immediate is legal
/// icmp immediate, that is the target has icmp instructions which can compare
/// a register against the immediate without having to materialize the
/// immediate into a register.
bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
if (!Subtarget->isThumb())
return ARM_AM::getSOImmVal(Imm) != -1;
if (Subtarget->isThumb2())
return ARM_AM::getT2SOImmVal(Imm) != -1;
return Imm >= 0 && Imm <= 255;
}
static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
bool isSEXTLoad, SDValue &Base,
SDValue &Offset, bool &isInc,
SelectionDAG &DAG) {
if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
return false;
if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
// AddressingMode 3
Base = Ptr->getOperand(0);
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
int RHSC = (int)RHS->getZExtValue();
if (RHSC < 0 && RHSC > -256) {
assert(Ptr->getOpcode() == ISD::ADD);
isInc = false;
Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
return true;
}
}
isInc = (Ptr->getOpcode() == ISD::ADD);
Offset = Ptr->getOperand(1);
return true;
} else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
// AddressingMode 2
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
int RHSC = (int)RHS->getZExtValue();
if (RHSC < 0 && RHSC > -0x1000) {
assert(Ptr->getOpcode() == ISD::ADD);
isInc = false;
Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
Base = Ptr->getOperand(0);
return true;
}
}
if (Ptr->getOpcode() == ISD::ADD) {
isInc = true;
ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0));
if (ShOpcVal != ARM_AM::no_shift) {
Base = Ptr->getOperand(1);
Offset = Ptr->getOperand(0);
} else {
Base = Ptr->getOperand(0);
Offset = Ptr->getOperand(1);
}
return true;
}
isInc = (Ptr->getOpcode() == ISD::ADD);
Base = Ptr->getOperand(0);
Offset = Ptr->getOperand(1);
return true;
}
// FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
return false;
}
static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
bool isSEXTLoad, SDValue &Base,
SDValue &Offset, bool &isInc,
SelectionDAG &DAG) {
if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
return false;
Base = Ptr->getOperand(0);
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
int RHSC = (int)RHS->getZExtValue();
if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
assert(Ptr->getOpcode() == ISD::ADD);
isInc = false;
Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
return true;
} else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
isInc = Ptr->getOpcode() == ISD::ADD;
Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
return true;
}
}
return false;
}
/// getPreIndexedAddressParts - returns true by value, base pointer and
/// offset pointer and addressing mode by reference if the node's address
/// can be legally represented as pre-indexed load / store address.
bool
ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
SDValue &Offset,
ISD::MemIndexedMode &AM,
SelectionDAG &DAG) const {
if (Subtarget->isThumb1Only())
return false;
EVT VT;
SDValue Ptr;
bool isSEXTLoad = false;
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
Ptr = LD->getBasePtr();
VT = LD->getMemoryVT();
isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
Ptr = ST->getBasePtr();
VT = ST->getMemoryVT();
} else
return false;
bool isInc;
bool isLegal = false;
if (Subtarget->isThumb2())
isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
Offset, isInc, DAG);
else
isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
Offset, isInc, DAG);
if (!isLegal)
return false;
AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
return true;
}
/// getPostIndexedAddressParts - returns true by value, base pointer and
/// offset pointer and addressing mode by reference if this node can be
/// combined with a load / store to form a post-indexed load / store.
bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
SDValue &Base,
SDValue &Offset,
ISD::MemIndexedMode &AM,
SelectionDAG &DAG) const {
if (Subtarget->isThumb1Only())
return false;
EVT VT;
SDValue Ptr;
bool isSEXTLoad = false;
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
VT = LD->getMemoryVT();
isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
VT = ST->getMemoryVT();
} else
return false;
bool isInc;
bool isLegal = false;
if (Subtarget->isThumb2())
isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
isInc, DAG);
else
isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
isInc, DAG);
if (!isLegal)
return false;
AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
return true;
}
void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
const APInt &Mask,
APInt &KnownZero,
APInt &KnownOne,
const SelectionDAG &DAG,
unsigned Depth) const {
KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
switch (Op.getOpcode()) {
default: break;
case ARMISD::CMOV: {
// Bits are known zero/one if known on the LHS and RHS.
DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
if (KnownZero == 0 && KnownOne == 0) return;
APInt KnownZeroRHS, KnownOneRHS;
DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
KnownZeroRHS, KnownOneRHS, Depth+1);
KnownZero &= KnownZeroRHS;
KnownOne &= KnownOneRHS;
return;
}
}
}
//===----------------------------------------------------------------------===//
// ARM Inline Assembly Support
//===----------------------------------------------------------------------===//
/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
ARMTargetLowering::ConstraintType
ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
default: break;
case 'l': return C_RegisterClass;
case 'w': return C_RegisterClass;
}
}
return TargetLowering::getConstraintType(Constraint);
}
std::pair<unsigned, const TargetRegisterClass*>
ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
EVT VT) const {
if (Constraint.size() == 1) {
// GCC ARM Constraint Letters
switch (Constraint[0]) {
case 'l':
if (Subtarget->isThumb())
return std::make_pair(0U, ARM::tGPRRegisterClass);
else
return std::make_pair(0U, ARM::GPRRegisterClass);
case 'r':
return std::make_pair(0U, ARM::GPRRegisterClass);
case 'w':
if (VT == MVT::f32)
return std::make_pair(0U, ARM::SPRRegisterClass);
if (VT.getSizeInBits() == 64)
return std::make_pair(0U, ARM::DPRRegisterClass);
if (VT.getSizeInBits() == 128)
return std::make_pair(0U, ARM::QPRRegisterClass);
break;
}
}
if (StringRef("{cc}").equals_lower(Constraint))
return std::make_pair(0U, ARM::CCRRegisterClass);
return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
}
std::vector<unsigned> ARMTargetLowering::
getRegClassForInlineAsmConstraint(const std::string &Constraint,
EVT VT) const {
if (Constraint.size() != 1)
return std::vector<unsigned>();
switch (Constraint[0]) { // GCC ARM Constraint Letters
default: break;
case 'l':
return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
ARM::R4, ARM::R5, ARM::R6, ARM::R7,
0);
case 'r':
return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
ARM::R4, ARM::R5, ARM::R6, ARM::R7,
ARM::R8, ARM::R9, ARM::R10, ARM::R11,
ARM::R12, ARM::LR, 0);
case 'w':
if (VT == MVT::f32)
return make_vector<unsigned>(ARM::S0, ARM::S1, ARM::S2, ARM::S3,
ARM::S4, ARM::S5, ARM::S6, ARM::S7,
ARM::S8, ARM::S9, ARM::S10, ARM::S11,
ARM::S12,ARM::S13,ARM::S14,ARM::S15,
ARM::S16,ARM::S17,ARM::S18,ARM::S19,
ARM::S20,ARM::S21,ARM::S22,ARM::S23,
ARM::S24,ARM::S25,ARM::S26,ARM::S27,
ARM::S28,ARM::S29,ARM::S30,ARM::S31, 0);
if (VT.getSizeInBits() == 64)
return make_vector<unsigned>(ARM::D0, ARM::D1, ARM::D2, ARM::D3,
ARM::D4, ARM::D5, ARM::D6, ARM::D7,
ARM::D8, ARM::D9, ARM::D10,ARM::D11,
ARM::D12,ARM::D13,ARM::D14,ARM::D15, 0);
if (VT.getSizeInBits() == 128)
return make_vector<unsigned>(ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3,
ARM::Q4, ARM::Q5, ARM::Q6, ARM::Q7, 0);
break;
}
return std::vector<unsigned>();
}
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
/// vector. If it is invalid, don't add anything to Ops.
void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
char Constraint,
bool hasMemory,
std::vector<SDValue>&Ops,
SelectionDAG &DAG) const {
SDValue Result(0, 0);
switch (Constraint) {
default: break;
case 'I': case 'J': case 'K': case 'L':
case 'M': case 'N': case 'O':
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
if (!C)
return;
int64_t CVal64 = C->getSExtValue();
int CVal = (int) CVal64;
// None of these constraints allow values larger than 32 bits. Check
// that the value fits in an int.
if (CVal != CVal64)
return;
switch (Constraint) {
case 'I':
if (Subtarget->isThumb1Only()) {
// This must be a constant between 0 and 255, for ADD
// immediates.
if (CVal >= 0 && CVal <= 255)
break;
} else if (Subtarget->isThumb2()) {
// A constant that can be used as an immediate value in a
// data-processing instruction.
if (ARM_AM::getT2SOImmVal(CVal) != -1)
break;
} else {
// A constant that can be used as an immediate value in a
// data-processing instruction.
if (ARM_AM::getSOImmVal(CVal) != -1)
break;
}
return;
case 'J':
if (Subtarget->isThumb()) { // FIXME thumb2
// This must be a constant between -255 and -1, for negated ADD
// immediates. This can be used in GCC with an "n" modifier that
// prints the negated value, for use with SUB instructions. It is
// not useful otherwise but is implemented for compatibility.
if (CVal >= -255 && CVal <= -1)
break;
} else {
// This must be a constant between -4095 and 4095. It is not clear
// what this constraint is intended for. Implemented for
// compatibility with GCC.
if (CVal >= -4095 && CVal <= 4095)
break;
}
return;
case 'K':
if (Subtarget->isThumb1Only()) {
// A 32-bit value where only one byte has a nonzero value. Exclude
// zero to match GCC. This constraint is used by GCC internally for
// constants that can be loaded with a move/shift combination.
// It is not useful otherwise but is implemented for compatibility.
if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
break;
} else if (Subtarget->isThumb2()) {
// A constant whose bitwise inverse can be used as an immediate
// value in a data-processing instruction. This can be used in GCC
// with a "B" modifier that prints the inverted value, for use with
// BIC and MVN instructions. It is not useful otherwise but is
// implemented for compatibility.
if (ARM_AM::getT2SOImmVal(~CVal) != -1)
break;
} else {
// A constant whose bitwise inverse can be used as an immediate
// value in a data-processing instruction. This can be used in GCC
// with a "B" modifier that prints the inverted value, for use with
// BIC and MVN instructions. It is not useful otherwise but is
// implemented for compatibility.
if (ARM_AM::getSOImmVal(~CVal) != -1)
break;
}
return;
case 'L':
if (Subtarget->isThumb1Only()) {
// This must be a constant between -7 and 7,
// for 3-operand ADD/SUB immediate instructions.
if (CVal >= -7 && CVal < 7)
break;
} else if (Subtarget->isThumb2()) {
// A constant whose negation can be used as an immediate value in a
// data-processing instruction. This can be used in GCC with an "n"
// modifier that prints the negated value, for use with SUB
// instructions. It is not useful otherwise but is implemented for
// compatibility.
if (ARM_AM::getT2SOImmVal(-CVal) != -1)
break;
} else {
// A constant whose negation can be used as an immediate value in a
// data-processing instruction. This can be used in GCC with an "n"
// modifier that prints the negated value, for use with SUB
// instructions. It is not useful otherwise but is implemented for
// compatibility.
if (ARM_AM::getSOImmVal(-CVal) != -1)
break;
}
return;
case 'M':
if (Subtarget->isThumb()) { // FIXME thumb2
// This must be a multiple of 4 between 0 and 1020, for
// ADD sp + immediate.
if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
break;
} else {
// A power of two or a constant between 0 and 32. This is used in
// GCC for the shift amount on shifted register operands, but it is
// useful in general for any shift amounts.
if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
break;
}
return;
case 'N':
if (Subtarget->isThumb()) { // FIXME thumb2
// This must be a constant between 0 and 31, for shift amounts.
if (CVal >= 0 && CVal <= 31)
break;
}
return;
case 'O':
if (Subtarget->isThumb()) { // FIXME thumb2
// This must be a multiple of 4 between -508 and 508, for
// ADD/SUB sp = sp + immediate.
if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
break;
}
return;
}
Result = DAG.getTargetConstant(CVal, Op.getValueType());
break;
}
if (Result.getNode()) {
Ops.push_back(Result);
return;
}
return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
Ops, DAG);
}
bool
ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
// The ARM target isn't yet aware of offsets.
return false;
}
int ARM::getVFPf32Imm(const APFloat &FPImm) {
APInt Imm = FPImm.bitcastToAPInt();
uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127; // -126 to 127
int64_t Mantissa = Imm.getZExtValue() & 0x7fffff; // 23 bits
// We can handle 4 bits of mantissa.
// mantissa = (16+UInt(e:f:g:h))/16.
if (Mantissa & 0x7ffff)
return -1;
Mantissa >>= 19;
if ((Mantissa & 0xf) != Mantissa)
return -1;
// We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
if (Exp < -3 || Exp > 4)
return -1;
Exp = ((Exp+3) & 0x7) ^ 4;
return ((int)Sign << 7) | (Exp << 4) | Mantissa;
}
int ARM::getVFPf64Imm(const APFloat &FPImm) {
APInt Imm = FPImm.bitcastToAPInt();
uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023
uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffLL;
// We can handle 4 bits of mantissa.
// mantissa = (16+UInt(e:f:g:h))/16.
if (Mantissa & 0xffffffffffffLL)
return -1;
Mantissa >>= 48;
if ((Mantissa & 0xf) != Mantissa)
return -1;
// We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
if (Exp < -3 || Exp > 4)
return -1;
Exp = ((Exp+3) & 0x7) ^ 4;
return ((int)Sign << 7) | (Exp << 4) | Mantissa;
}
/// isFPImmLegal - Returns true if the target can instruction select the
/// specified FP immediate natively. If false, the legalizer will
/// materialize the FP immediate as a load from a constant pool.
bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
if (!Subtarget->hasVFP3())
return false;
if (VT == MVT::f32)
return ARM::getVFPf32Imm(Imm) != -1;
if (VT == MVT::f64)
return ARM::getVFPf64Imm(Imm) != -1;
return false;
}