llvm-6502/tools/bugpoint/CrashDebugger.cpp
Chandler Carruth 56e1394c88 [cleanup] Move the Dominators.h and Verifier.h headers into the IR
directory. These passes are already defined in the IR library, and it
doesn't make any sense to have the headers in Analysis.

Long term, I think there is going to be a much better way to divide
these matters. The dominators code should be fully separated into the
abstract graph algorithm and have that put in Support where it becomes
obvious that evn Clang's CFGBlock's can use it. Then the verifier can
manually construct dominance information from the Support-driven
interface while the Analysis library can provide a pass which both
caches, reconstructs, and supports a nice update API.

But those are very long term, and so I don't want to leave the really
confusing structure until that day arrives.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199082 91177308-0d34-0410-b5e6-96231b3b80d8
2014-01-13 09:26:24 +00:00

671 lines
23 KiB
C++

//===- CrashDebugger.cpp - Debug compilation crashes ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the bugpoint internals that narrow down compilation crashes
//
//===----------------------------------------------------------------------===//
#include "BugDriver.h"
#include "ListReducer.h"
#include "ToolRunner.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ValueSymbolTable.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Pass.h"
#include "llvm/PassManager.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FileUtilities.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include <set>
using namespace llvm;
namespace {
cl::opt<bool>
KeepMain("keep-main",
cl::desc("Force function reduction to keep main"),
cl::init(false));
cl::opt<bool>
NoGlobalRM ("disable-global-remove",
cl::desc("Do not remove global variables"),
cl::init(false));
}
namespace llvm {
class ReducePassList : public ListReducer<std::string> {
BugDriver &BD;
public:
ReducePassList(BugDriver &bd) : BD(bd) {}
// doTest - Return true iff running the "removed" passes succeeds, and
// running the "Kept" passes fail when run on the output of the "removed"
// passes. If we return true, we update the current module of bugpoint.
//
virtual TestResult doTest(std::vector<std::string> &Removed,
std::vector<std::string> &Kept,
std::string &Error);
};
}
ReducePassList::TestResult
ReducePassList::doTest(std::vector<std::string> &Prefix,
std::vector<std::string> &Suffix,
std::string &Error) {
std::string PrefixOutput;
Module *OrigProgram = 0;
if (!Prefix.empty()) {
outs() << "Checking to see if these passes crash: "
<< getPassesString(Prefix) << ": ";
if (BD.runPasses(BD.getProgram(), Prefix, PrefixOutput))
return KeepPrefix;
OrigProgram = BD.Program;
BD.Program = ParseInputFile(PrefixOutput, BD.getContext());
if (BD.Program == 0) {
errs() << BD.getToolName() << ": Error reading bitcode file '"
<< PrefixOutput << "'!\n";
exit(1);
}
sys::fs::remove(PrefixOutput);
}
outs() << "Checking to see if these passes crash: "
<< getPassesString(Suffix) << ": ";
if (BD.runPasses(BD.getProgram(), Suffix)) {
delete OrigProgram; // The suffix crashes alone...
return KeepSuffix;
}
// Nothing failed, restore state...
if (OrigProgram) {
delete BD.Program;
BD.Program = OrigProgram;
}
return NoFailure;
}
namespace {
/// ReduceCrashingGlobalVariables - This works by removing the global
/// variable's initializer and seeing if the program still crashes. If it
/// does, then we keep that program and try again.
///
class ReduceCrashingGlobalVariables : public ListReducer<GlobalVariable*> {
BugDriver &BD;
bool (*TestFn)(const BugDriver &, Module *);
public:
ReduceCrashingGlobalVariables(BugDriver &bd,
bool (*testFn)(const BugDriver &, Module *))
: BD(bd), TestFn(testFn) {}
virtual TestResult doTest(std::vector<GlobalVariable*> &Prefix,
std::vector<GlobalVariable*> &Kept,
std::string &Error) {
if (!Kept.empty() && TestGlobalVariables(Kept))
return KeepSuffix;
if (!Prefix.empty() && TestGlobalVariables(Prefix))
return KeepPrefix;
return NoFailure;
}
bool TestGlobalVariables(std::vector<GlobalVariable*> &GVs);
};
}
bool
ReduceCrashingGlobalVariables::TestGlobalVariables(
std::vector<GlobalVariable*> &GVs) {
// Clone the program to try hacking it apart...
ValueToValueMapTy VMap;
Module *M = CloneModule(BD.getProgram(), VMap);
// Convert list to set for fast lookup...
std::set<GlobalVariable*> GVSet;
for (unsigned i = 0, e = GVs.size(); i != e; ++i) {
GlobalVariable* CMGV = cast<GlobalVariable>(VMap[GVs[i]]);
assert(CMGV && "Global Variable not in module?!");
GVSet.insert(CMGV);
}
outs() << "Checking for crash with only these global variables: ";
PrintGlobalVariableList(GVs);
outs() << ": ";
// Loop over and delete any global variables which we aren't supposed to be
// playing with...
for (Module::global_iterator I = M->global_begin(), E = M->global_end();
I != E; ++I)
if (I->hasInitializer() && !GVSet.count(I)) {
I->setInitializer(0);
I->setLinkage(GlobalValue::ExternalLinkage);
}
// Try running the hacked up program...
if (TestFn(BD, M)) {
BD.setNewProgram(M); // It crashed, keep the trimmed version...
// Make sure to use global variable pointers that point into the now-current
// module.
GVs.assign(GVSet.begin(), GVSet.end());
return true;
}
delete M;
return false;
}
namespace {
/// ReduceCrashingFunctions reducer - This works by removing functions and
/// seeing if the program still crashes. If it does, then keep the newer,
/// smaller program.
///
class ReduceCrashingFunctions : public ListReducer<Function*> {
BugDriver &BD;
bool (*TestFn)(const BugDriver &, Module *);
public:
ReduceCrashingFunctions(BugDriver &bd,
bool (*testFn)(const BugDriver &, Module *))
: BD(bd), TestFn(testFn) {}
virtual TestResult doTest(std::vector<Function*> &Prefix,
std::vector<Function*> &Kept,
std::string &Error) {
if (!Kept.empty() && TestFuncs(Kept))
return KeepSuffix;
if (!Prefix.empty() && TestFuncs(Prefix))
return KeepPrefix;
return NoFailure;
}
bool TestFuncs(std::vector<Function*> &Prefix);
};
}
bool ReduceCrashingFunctions::TestFuncs(std::vector<Function*> &Funcs) {
// If main isn't present, claim there is no problem.
if (KeepMain && std::find(Funcs.begin(), Funcs.end(),
BD.getProgram()->getFunction("main")) ==
Funcs.end())
return false;
// Clone the program to try hacking it apart...
ValueToValueMapTy VMap;
Module *M = CloneModule(BD.getProgram(), VMap);
// Convert list to set for fast lookup...
std::set<Function*> Functions;
for (unsigned i = 0, e = Funcs.size(); i != e; ++i) {
Function *CMF = cast<Function>(VMap[Funcs[i]]);
assert(CMF && "Function not in module?!");
assert(CMF->getFunctionType() == Funcs[i]->getFunctionType() && "wrong ty");
assert(CMF->getName() == Funcs[i]->getName() && "wrong name");
Functions.insert(CMF);
}
outs() << "Checking for crash with only these functions: ";
PrintFunctionList(Funcs);
outs() << ": ";
// Loop over and delete any functions which we aren't supposed to be playing
// with...
for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
if (!I->isDeclaration() && !Functions.count(I))
DeleteFunctionBody(I);
// Try running the hacked up program...
if (TestFn(BD, M)) {
BD.setNewProgram(M); // It crashed, keep the trimmed version...
// Make sure to use function pointers that point into the now-current
// module.
Funcs.assign(Functions.begin(), Functions.end());
return true;
}
delete M;
return false;
}
namespace {
/// ReduceCrashingBlocks reducer - This works by setting the terminators of
/// all terminators except the specified basic blocks to a 'ret' instruction,
/// then running the simplify-cfg pass. This has the effect of chopping up
/// the CFG really fast which can reduce large functions quickly.
///
class ReduceCrashingBlocks : public ListReducer<const BasicBlock*> {
BugDriver &BD;
bool (*TestFn)(const BugDriver &, Module *);
public:
ReduceCrashingBlocks(BugDriver &bd,
bool (*testFn)(const BugDriver &, Module *))
: BD(bd), TestFn(testFn) {}
virtual TestResult doTest(std::vector<const BasicBlock*> &Prefix,
std::vector<const BasicBlock*> &Kept,
std::string &Error) {
if (!Kept.empty() && TestBlocks(Kept))
return KeepSuffix;
if (!Prefix.empty() && TestBlocks(Prefix))
return KeepPrefix;
return NoFailure;
}
bool TestBlocks(std::vector<const BasicBlock*> &Prefix);
};
}
bool ReduceCrashingBlocks::TestBlocks(std::vector<const BasicBlock*> &BBs) {
// Clone the program to try hacking it apart...
ValueToValueMapTy VMap;
Module *M = CloneModule(BD.getProgram(), VMap);
// Convert list to set for fast lookup...
SmallPtrSet<BasicBlock*, 8> Blocks;
for (unsigned i = 0, e = BBs.size(); i != e; ++i)
Blocks.insert(cast<BasicBlock>(VMap[BBs[i]]));
outs() << "Checking for crash with only these blocks:";
unsigned NumPrint = Blocks.size();
if (NumPrint > 10) NumPrint = 10;
for (unsigned i = 0, e = NumPrint; i != e; ++i)
outs() << " " << BBs[i]->getName();
if (NumPrint < Blocks.size())
outs() << "... <" << Blocks.size() << " total>";
outs() << ": ";
// Loop over and delete any hack up any blocks that are not listed...
for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
for (Function::iterator BB = I->begin(), E = I->end(); BB != E; ++BB)
if (!Blocks.count(BB) && BB->getTerminator()->getNumSuccessors()) {
// Loop over all of the successors of this block, deleting any PHI nodes
// that might include it.
for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
(*SI)->removePredecessor(BB);
TerminatorInst *BBTerm = BB->getTerminator();
if (!BB->getTerminator()->getType()->isVoidTy())
BBTerm->replaceAllUsesWith(Constant::getNullValue(BBTerm->getType()));
// Replace the old terminator instruction.
BB->getInstList().pop_back();
new UnreachableInst(BB->getContext(), BB);
}
// The CFG Simplifier pass may delete one of the basic blocks we are
// interested in. If it does we need to take the block out of the list. Make
// a "persistent mapping" by turning basic blocks into <function, name> pairs.
// This won't work well if blocks are unnamed, but that is just the risk we
// have to take.
std::vector<std::pair<std::string, std::string> > BlockInfo;
for (SmallPtrSet<BasicBlock*, 8>::iterator I = Blocks.begin(),
E = Blocks.end(); I != E; ++I)
BlockInfo.push_back(std::make_pair((*I)->getParent()->getName(),
(*I)->getName()));
// Now run the CFG simplify pass on the function...
std::vector<std::string> Passes;
Passes.push_back("simplifycfg");
Passes.push_back("verify");
Module *New = BD.runPassesOn(M, Passes);
delete M;
if (!New) {
errs() << "simplifycfg failed!\n";
exit(1);
}
M = New;
// Try running on the hacked up program...
if (TestFn(BD, M)) {
BD.setNewProgram(M); // It crashed, keep the trimmed version...
// Make sure to use basic block pointers that point into the now-current
// module, and that they don't include any deleted blocks.
BBs.clear();
const ValueSymbolTable &GST = M->getValueSymbolTable();
for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) {
Function *F = cast<Function>(GST.lookup(BlockInfo[i].first));
ValueSymbolTable &ST = F->getValueSymbolTable();
Value* V = ST.lookup(BlockInfo[i].second);
if (V && V->getType() == Type::getLabelTy(V->getContext()))
BBs.push_back(cast<BasicBlock>(V));
}
return true;
}
delete M; // It didn't crash, try something else.
return false;
}
namespace {
/// ReduceCrashingInstructions reducer - This works by removing the specified
/// non-terminator instructions and replacing them with undef.
///
class ReduceCrashingInstructions : public ListReducer<const Instruction*> {
BugDriver &BD;
bool (*TestFn)(const BugDriver &, Module *);
public:
ReduceCrashingInstructions(BugDriver &bd,
bool (*testFn)(const BugDriver &, Module *))
: BD(bd), TestFn(testFn) {}
virtual TestResult doTest(std::vector<const Instruction*> &Prefix,
std::vector<const Instruction*> &Kept,
std::string &Error) {
if (!Kept.empty() && TestInsts(Kept))
return KeepSuffix;
if (!Prefix.empty() && TestInsts(Prefix))
return KeepPrefix;
return NoFailure;
}
bool TestInsts(std::vector<const Instruction*> &Prefix);
};
}
bool ReduceCrashingInstructions::TestInsts(std::vector<const Instruction*>
&Insts) {
// Clone the program to try hacking it apart...
ValueToValueMapTy VMap;
Module *M = CloneModule(BD.getProgram(), VMap);
// Convert list to set for fast lookup...
SmallPtrSet<Instruction*, 64> Instructions;
for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
assert(!isa<TerminatorInst>(Insts[i]));
Instructions.insert(cast<Instruction>(VMap[Insts[i]]));
}
outs() << "Checking for crash with only " << Instructions.size();
if (Instructions.size() == 1)
outs() << " instruction: ";
else
outs() << " instructions: ";
for (Module::iterator MI = M->begin(), ME = M->end(); MI != ME; ++MI)
for (Function::iterator FI = MI->begin(), FE = MI->end(); FI != FE; ++FI)
for (BasicBlock::iterator I = FI->begin(), E = FI->end(); I != E;) {
Instruction *Inst = I++;
if (!Instructions.count(Inst) && !isa<TerminatorInst>(Inst) &&
!isa<LandingPadInst>(Inst)) {
if (!Inst->getType()->isVoidTy())
Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
Inst->eraseFromParent();
}
}
// Verify that this is still valid.
PassManager Passes;
Passes.add(createVerifierPass());
Passes.run(*M);
// Try running on the hacked up program...
if (TestFn(BD, M)) {
BD.setNewProgram(M); // It crashed, keep the trimmed version...
// Make sure to use instruction pointers that point into the now-current
// module, and that they don't include any deleted blocks.
Insts.clear();
for (SmallPtrSet<Instruction*, 64>::const_iterator I = Instructions.begin(),
E = Instructions.end(); I != E; ++I)
Insts.push_back(*I);
return true;
}
delete M; // It didn't crash, try something else.
return false;
}
/// DebugACrash - Given a predicate that determines whether a component crashes
/// on a program, try to destructively reduce the program while still keeping
/// the predicate true.
static bool DebugACrash(BugDriver &BD,
bool (*TestFn)(const BugDriver &, Module *),
std::string &Error) {
// See if we can get away with nuking some of the global variable initializers
// in the program...
if (!NoGlobalRM &&
BD.getProgram()->global_begin() != BD.getProgram()->global_end()) {
// Now try to reduce the number of global variable initializers in the
// module to something small.
Module *M = CloneModule(BD.getProgram());
bool DeletedInit = false;
for (Module::global_iterator I = M->global_begin(), E = M->global_end();
I != E; ++I)
if (I->hasInitializer()) {
I->setInitializer(0);
I->setLinkage(GlobalValue::ExternalLinkage);
DeletedInit = true;
}
if (!DeletedInit) {
delete M; // No change made...
} else {
// See if the program still causes a crash...
outs() << "\nChecking to see if we can delete global inits: ";
if (TestFn(BD, M)) { // Still crashes?
BD.setNewProgram(M);
outs() << "\n*** Able to remove all global initializers!\n";
} else { // No longer crashes?
outs() << " - Removing all global inits hides problem!\n";
delete M;
std::vector<GlobalVariable*> GVs;
for (Module::global_iterator I = BD.getProgram()->global_begin(),
E = BD.getProgram()->global_end(); I != E; ++I)
if (I->hasInitializer())
GVs.push_back(I);
if (GVs.size() > 1 && !BugpointIsInterrupted) {
outs() << "\n*** Attempting to reduce the number of global "
<< "variables in the testcase\n";
unsigned OldSize = GVs.size();
ReduceCrashingGlobalVariables(BD, TestFn).reduceList(GVs, Error);
if (!Error.empty())
return true;
if (GVs.size() < OldSize)
BD.EmitProgressBitcode(BD.getProgram(), "reduced-global-variables");
}
}
}
}
// Now try to reduce the number of functions in the module to something small.
std::vector<Function*> Functions;
for (Module::iterator I = BD.getProgram()->begin(),
E = BD.getProgram()->end(); I != E; ++I)
if (!I->isDeclaration())
Functions.push_back(I);
if (Functions.size() > 1 && !BugpointIsInterrupted) {
outs() << "\n*** Attempting to reduce the number of functions "
"in the testcase\n";
unsigned OldSize = Functions.size();
ReduceCrashingFunctions(BD, TestFn).reduceList(Functions, Error);
if (Functions.size() < OldSize)
BD.EmitProgressBitcode(BD.getProgram(), "reduced-function");
}
// Attempt to delete entire basic blocks at a time to speed up
// convergence... this actually works by setting the terminator of the blocks
// to a return instruction then running simplifycfg, which can potentially
// shrinks the code dramatically quickly
//
if (!DisableSimplifyCFG && !BugpointIsInterrupted) {
std::vector<const BasicBlock*> Blocks;
for (Module::const_iterator I = BD.getProgram()->begin(),
E = BD.getProgram()->end(); I != E; ++I)
for (Function::const_iterator FI = I->begin(), E = I->end(); FI !=E; ++FI)
Blocks.push_back(FI);
unsigned OldSize = Blocks.size();
ReduceCrashingBlocks(BD, TestFn).reduceList(Blocks, Error);
if (Blocks.size() < OldSize)
BD.EmitProgressBitcode(BD.getProgram(), "reduced-blocks");
}
// Attempt to delete instructions using bisection. This should help out nasty
// cases with large basic blocks where the problem is at one end.
if (!BugpointIsInterrupted) {
std::vector<const Instruction*> Insts;
for (Module::const_iterator MI = BD.getProgram()->begin(),
ME = BD.getProgram()->end(); MI != ME; ++MI)
for (Function::const_iterator FI = MI->begin(), FE = MI->end(); FI != FE;
++FI)
for (BasicBlock::const_iterator I = FI->begin(), E = FI->end();
I != E; ++I)
if (!isa<TerminatorInst>(I))
Insts.push_back(I);
ReduceCrashingInstructions(BD, TestFn).reduceList(Insts, Error);
}
// FIXME: This should use the list reducer to converge faster by deleting
// larger chunks of instructions at a time!
unsigned Simplification = 2;
do {
if (BugpointIsInterrupted) break;
--Simplification;
outs() << "\n*** Attempting to reduce testcase by deleting instruc"
<< "tions: Simplification Level #" << Simplification << '\n';
// Now that we have deleted the functions that are unnecessary for the
// program, try to remove instructions that are not necessary to cause the
// crash. To do this, we loop through all of the instructions in the
// remaining functions, deleting them (replacing any values produced with
// nulls), and then running ADCE and SimplifyCFG. If the transformed input
// still triggers failure, keep deleting until we cannot trigger failure
// anymore.
//
unsigned InstructionsToSkipBeforeDeleting = 0;
TryAgain:
// Loop over all of the (non-terminator) instructions remaining in the
// function, attempting to delete them.
unsigned CurInstructionNum = 0;
for (Module::const_iterator FI = BD.getProgram()->begin(),
E = BD.getProgram()->end(); FI != E; ++FI)
if (!FI->isDeclaration())
for (Function::const_iterator BI = FI->begin(), E = FI->end(); BI != E;
++BI)
for (BasicBlock::const_iterator I = BI->begin(), E = --BI->end();
I != E; ++I, ++CurInstructionNum) {
if (InstructionsToSkipBeforeDeleting) {
--InstructionsToSkipBeforeDeleting;
} else {
if (BugpointIsInterrupted) goto ExitLoops;
if (isa<LandingPadInst>(I))
continue;
outs() << "Checking instruction: " << *I;
Module *M = BD.deleteInstructionFromProgram(I, Simplification);
// Find out if the pass still crashes on this pass...
if (TestFn(BD, M)) {
// Yup, it does, we delete the old module, and continue trying
// to reduce the testcase...
BD.setNewProgram(M);
InstructionsToSkipBeforeDeleting = CurInstructionNum;
goto TryAgain; // I wish I had a multi-level break here!
}
// This pass didn't crash without this instruction, try the next
// one.
delete M;
}
}
if (InstructionsToSkipBeforeDeleting) {
InstructionsToSkipBeforeDeleting = 0;
goto TryAgain;
}
} while (Simplification);
ExitLoops:
// Try to clean up the testcase by running funcresolve and globaldce...
if (!BugpointIsInterrupted) {
outs() << "\n*** Attempting to perform final cleanups: ";
Module *M = CloneModule(BD.getProgram());
M = BD.performFinalCleanups(M, true);
// Find out if the pass still crashes on the cleaned up program...
if (TestFn(BD, M)) {
BD.setNewProgram(M); // Yup, it does, keep the reduced version...
} else {
delete M;
}
}
BD.EmitProgressBitcode(BD.getProgram(), "reduced-simplified");
return false;
}
static bool TestForOptimizerCrash(const BugDriver &BD, Module *M) {
return BD.runPasses(M);
}
/// debugOptimizerCrash - This method is called when some pass crashes on input.
/// It attempts to prune down the testcase to something reasonable, and figure
/// out exactly which pass is crashing.
///
bool BugDriver::debugOptimizerCrash(const std::string &ID) {
outs() << "\n*** Debugging optimizer crash!\n";
std::string Error;
// Reduce the list of passes which causes the optimizer to crash...
if (!BugpointIsInterrupted)
ReducePassList(*this).reduceList(PassesToRun, Error);
assert(Error.empty());
outs() << "\n*** Found crashing pass"
<< (PassesToRun.size() == 1 ? ": " : "es: ")
<< getPassesString(PassesToRun) << '\n';
EmitProgressBitcode(Program, ID);
bool Success = DebugACrash(*this, TestForOptimizerCrash, Error);
assert(Error.empty());
return Success;
}
static bool TestForCodeGenCrash(const BugDriver &BD, Module *M) {
std::string Error;
BD.compileProgram(M, &Error);
if (!Error.empty()) {
errs() << "<crash>\n";
return true; // Tool is still crashing.
}
errs() << '\n';
return false;
}
/// debugCodeGeneratorCrash - This method is called when the code generator
/// crashes on an input. It attempts to reduce the input as much as possible
/// while still causing the code generator to crash.
bool BugDriver::debugCodeGeneratorCrash(std::string &Error) {
errs() << "*** Debugging code generator crash!\n";
return DebugACrash(*this, TestForCodeGenCrash, Error);
}