llvm-6502/lib/Analysis/Expressions.cpp
2001-07-25 22:47:32 +00:00

284 lines
11 KiB
C++

//===- Expressions.cpp - Expression Analysis Utilities ----------------------=//
//
// This file defines a package of expression analysis utilties:
//
// ClassifyExpression: Analyze an expression to determine the complexity of the
// expression, and which other variables it depends on.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/Expressions.h"
#include "llvm/Optimizations/ConstantHandling.h"
#include "llvm/ConstantPool.h"
#include "llvm/Method.h"
#include "llvm/BasicBlock.h"
using namespace opt; // Get all the constant handling stuff
using namespace analysis;
class DefVal {
const ConstPoolInt * const Val;
ConstantPool &CP;
const Type * const Ty;
protected:
inline DefVal(const ConstPoolInt *val, ConstantPool &cp, const Type *ty)
: Val(val), CP(cp), Ty(ty) {}
public:
inline const Type *getType() const { return Ty; }
inline ConstantPool &getCP() const { return CP; }
inline const ConstPoolInt *getVal() const { return Val; }
inline operator const ConstPoolInt * () const { return Val; }
inline const ConstPoolInt *operator->() const { return Val; }
};
struct DefZero : public DefVal {
inline DefZero(const ConstPoolInt *val, ConstantPool &cp, const Type *ty)
: DefVal(val, cp, ty) {}
inline DefZero(const ConstPoolInt *val)
: DefVal(val, (ConstantPool&)val->getParent()->getConstantPool(),
val->getType()) {}
};
struct DefOne : public DefVal {
inline DefOne(const ConstPoolInt *val, ConstantPool &cp, const Type *ty)
: DefVal(val, cp, ty) {}
};
// getIntegralConstant - Wrapper around the ConstPoolInt member of the same
// name. This method first checks to see if the desired constant is already in
// the constant pool. If it is, it is quickly recycled, otherwise a new one
// is allocated and added to the constant pool.
//
static ConstPoolInt *getIntegralConstant(ConstantPool &CP, unsigned char V,
const Type *Ty) {
// FIXME: Lookup prexisting constant in table!
ConstPoolInt *CPI = ConstPoolInt::get(Ty, V);
CP.insert(CPI);
return CPI;
}
static ConstPoolInt *getUnsignedConstant(ConstantPool &CP, uint64_t V,
const Type *Ty) {
// FIXME: Lookup prexisting constant in table!
if (Ty->isPointerType()) Ty = Type::ULongTy;
ConstPoolInt *CPI;
CPI = Ty->isSigned() ? new ConstPoolSInt(Ty, V) : new ConstPoolUInt(Ty, V);
CP.insert(CPI);
return CPI;
}
// Add - Helper function to make later code simpler. Basically it just adds
// the two constants together, inserts the result into the constant pool, and
// returns it. Of course life is not simple, and this is no exception. Factors
// that complicate matters:
// 1. Either argument may be null. If this is the case, the null argument is
// treated as either 0 (if DefOne = false) or 1 (if DefOne = true)
// 2. Types get in the way. We want to do arithmetic operations without
// regard for the underlying types. It is assumed that the constants are
// integral constants. The new value takes the type of the left argument.
// 3. If DefOne is true, a null return value indicates a value of 1, if DefOne
// is false, a null return value indicates a value of 0.
//
static const ConstPoolInt *Add(ConstantPool &CP, const ConstPoolInt *Arg1,
const ConstPoolInt *Arg2, bool DefOne) {
assert(Arg1 && Arg2 && "No null arguments should exist now!");
assert(Arg1->getType() == Arg2->getType() && "Types must be compatible!");
// Actually perform the computation now!
ConstPoolVal *Result = *Arg1 + *Arg2;
assert(Result && Result->getType() == Arg1->getType() &&
"Couldn't perform addition!");
ConstPoolInt *ResultI = (ConstPoolInt*)Result;
// Check to see if the result is one of the special cases that we want to
// recognize...
if (ResultI->equalsInt(DefOne ? 1 : 0)) {
// Yes it is, simply delete the constant and return null.
delete ResultI;
return 0;
}
CP.insert(ResultI);
return ResultI;
}
inline const ConstPoolInt *operator+(const DefZero &L, const DefZero &R) {
if (L == 0) return R;
if (R == 0) return L;
return Add(L.getCP(), L, R, false);
}
inline const ConstPoolInt *operator+(const DefOne &L, const DefOne &R) {
if (L == 0) {
if (R == 0)
return getIntegralConstant(L.getCP(), 2, L.getType());
else
return Add(L.getCP(), getIntegralConstant(L.getCP(), 1, L.getType()),
R, true);
} else if (R == 0) {
return Add(L.getCP(), L,
getIntegralConstant(L.getCP(), 1, L.getType()), true);
}
return Add(L.getCP(), L, R, true);
}
// Mul - Helper function to make later code simpler. Basically it just
// multiplies the two constants together, inserts the result into the constant
// pool, and returns it. Of course life is not simple, and this is no
// exception. Factors that complicate matters:
// 1. Either argument may be null. If this is the case, the null argument is
// treated as either 0 (if DefOne = false) or 1 (if DefOne = true)
// 2. Types get in the way. We want to do arithmetic operations without
// regard for the underlying types. It is assumed that the constants are
// integral constants.
// 3. If DefOne is true, a null return value indicates a value of 1, if DefOne
// is false, a null return value indicates a value of 0.
//
inline const ConstPoolInt *Mul(ConstantPool &CP, const ConstPoolInt *Arg1,
const ConstPoolInt *Arg2, bool DefOne = false) {
assert(Arg1 && Arg2 && "No null arguments should exist now!");
assert(Arg1->getType() == Arg2->getType() && "Types must be compatible!");
// Actually perform the computation now!
ConstPoolVal *Result = *Arg1 * *Arg2;
assert(Result && Result->getType() == Arg1->getType() &&
"Couldn't perform mult!");
ConstPoolInt *ResultI = (ConstPoolInt*)Result;
// Check to see if the result is one of the special cases that we want to
// recognize...
if (ResultI->equalsInt(DefOne ? 1 : 0)) {
// Yes it is, simply delete the constant and return null.
delete ResultI;
return 0;
}
CP.insert(ResultI);
return ResultI;
}
inline const ConstPoolInt *operator*(const DefZero &L, const DefZero &R) {
if (L == 0 || R == 0) return 0;
return Mul(L.getCP(), L, R, false);
}
inline const ConstPoolInt *operator*(const DefOne &L, const DefZero &R) {
if (R == 0) return getIntegralConstant(L.getCP(), 0, L.getType());
if (L == 0) return R->equalsInt(1) ? 0 : R.getVal();
return Mul(L.getCP(), L, R, false);
}
inline const ConstPoolInt *operator*(const DefZero &L, const DefOne &R) {
return R*L;
}
// ClassifyExpression: Analyze an expression to determine the complexity of the
// expression, and which other values it depends on.
//
// Note that this analysis cannot get into infinite loops because it treats PHI
// nodes as being an unknown linear expression.
//
ExprType analysis::ClassifyExpression(Value *Expr) {
assert(Expr != 0 && "Can't classify a null expression!");
switch (Expr->getValueType()) {
case Value::InstructionVal: break; // Instruction... hmmm... investigate.
case Value::TypeVal: case Value::BasicBlockVal:
case Value::MethodVal: case Value::ModuleVal:
assert(0 && "Unexpected expression type to classify!");
case Value::MethodArgumentVal: // Method arg: nothing known, return var
return Expr;
case Value::ConstantVal: // Constant value, just return constant
ConstPoolVal *CPV = Expr->castConstantAsserting();
if (CPV->getType()->isIntegral()) { // It's an integral constant!
ConstPoolInt *CPI = (ConstPoolInt*)Expr;
return ExprType(CPI->equalsInt(0) ? 0 : (ConstPoolInt*)Expr);
}
return Expr;
}
Instruction *I = Expr->castInstructionAsserting();
ConstantPool &CP = I->getParent()->getParent()->getConstantPool();
const Type *Ty = I->getType();
switch (I->getOpcode()) { // Handle each instruction type seperately
case Instruction::Add: {
ExprType Left (ClassifyExpression(I->getOperand(0)));
ExprType Right(ClassifyExpression(I->getOperand(1)));
if (Left.ExprTy > Right.ExprTy)
swap(Left, Right); // Make left be simpler than right
switch (Left.ExprTy) {
case ExprType::Constant:
return ExprType(Right.Scale, Right.Var,
DefZero(Right.Offset,CP,Ty) + DefZero(Left.Offset, CP,Ty));
case ExprType::Linear: // RHS side must be linear or scaled
case ExprType::ScaledLinear: // RHS must be scaled
if (Left.Var != Right.Var) // Are they the same variables?
return ExprType(I); // if not, we don't know anything!
return ExprType(DefOne(Left.Scale ,CP,Ty) + DefOne(Right.Scale , CP,Ty),
Left.Var,
DefZero(Left.Offset,CP,Ty) + DefZero(Right.Offset, CP,Ty));
}
} // end case Instruction::Add
case Instruction::Shl: {
ExprType Right(ClassifyExpression(I->getOperand(1)));
if (Right.ExprTy != ExprType::Constant) break;
ExprType Left(ClassifyExpression(I->getOperand(0)));
if (Right.Offset == 0) return Left; // shl x, 0 = x
assert(Right.Offset->getType() == Type::UByteTy &&
"Shift amount must always be a unsigned byte!");
uint64_t ShiftAmount = ((ConstPoolUInt*)Right.Offset)->getValue();
ConstPoolInt *Multiplier = getUnsignedConstant(CP, 1ULL << ShiftAmount, Ty);
return ExprType(DefOne(Left.Scale, CP, Ty) * Multiplier,
Left.Var,
DefZero(Left.Offset, CP, Ty) * Multiplier);
} // end case Instruction::Shl
case Instruction::Mul: {
ExprType Left (ClassifyExpression(I->getOperand(0)));
ExprType Right(ClassifyExpression(I->getOperand(1)));
if (Left.ExprTy > Right.ExprTy)
swap(Left, Right); // Make left be simpler than right
if (Left.ExprTy != ExprType::Constant) // RHS must be > constant
return I; // Quadratic eqn! :(
const ConstPoolInt *Offs = Left.Offset;
if (Offs == 0) return ExprType();
return ExprType(DefOne(Right.Scale, CP, Ty) * Offs,
Right.Var,
DefZero(Right.Offset, CP, Ty) * Offs);
} // end case Instruction::Mul
case Instruction::Cast: {
ExprType Src(ClassifyExpression(I->getOperand(0)));
if (Src.ExprTy != ExprType::Constant)
return I;
const ConstPoolInt *Offs = Src.Offset;
if (Offs == 0) return ExprType();
if (I->getType()->isPointerType())
return Offs; // Pointer types do not lose precision
assert(I->getType()->isIntegral() && "Can only handle integral types!");
const ConstPoolVal *CPV = ConstRules::get(*Offs)->castTo(Offs, I->getType());
if (!CPV) return I;
assert(CPV->getType()->isIntegral() && "Must have an integral type!");
return (ConstPoolInt*)CPV;
} // end case Instruction::Cast
// TODO: Handle SUB, SHR?
} // end switch
// Otherwise, I don't know anything about this value!
return I;
}