mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-30 02:32:08 +00:00
02b88a4586
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@22889 91177308-0d34-0410-b5e6-96231b3b80d8
758 lines
29 KiB
C++
758 lines
29 KiB
C++
//===-- PPC32ISelDAGToDAG.cpp - PPC32 pattern matching inst selector ------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by Chris Lattner and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines a pattern matching instruction selector for 32 bit PowerPC,
|
|
// converting from a legalized dag to a PPC dag.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PowerPC.h"
|
|
#include "PPC32TargetMachine.h"
|
|
#include "PPC32ISelLowering.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/SelectionDAGISel.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
Statistic<> Recorded("ppc-codegen", "Number of recording ops emitted");
|
|
Statistic<> FusedFP ("ppc-codegen", "Number of fused fp operations");
|
|
Statistic<> FrameOff("ppc-codegen", "Number of frame idx offsets collapsed");
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// PPC32DAGToDAGISel - PPC32 specific code to select PPC32 machine
|
|
/// instructions for SelectionDAG operations.
|
|
///
|
|
class PPC32DAGToDAGISel : public SelectionDAGISel {
|
|
PPC32TargetLowering PPC32Lowering;
|
|
|
|
public:
|
|
PPC32DAGToDAGISel(TargetMachine &TM)
|
|
: SelectionDAGISel(PPC32Lowering), PPC32Lowering(TM) {}
|
|
|
|
/// getI32Imm - Return a target constant with the specified value, of type
|
|
/// i32.
|
|
inline SDOperand getI32Imm(unsigned Imm) {
|
|
return CurDAG->getTargetConstant(Imm, MVT::i32);
|
|
}
|
|
|
|
// Select - Convert the specified operand from a target-independent to a
|
|
// target-specific node if it hasn't already been changed.
|
|
SDOperand Select(SDOperand Op);
|
|
|
|
SDNode *SelectIntImmediateExpr(SDOperand LHS, SDOperand RHS,
|
|
unsigned OCHi, unsigned OCLo,
|
|
bool IsArithmetic = false,
|
|
bool Negate = false);
|
|
SDNode *SelectBitfieldInsert(SDNode *N);
|
|
|
|
/// InstructionSelectBasicBlock - This callback is invoked by
|
|
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
|
|
virtual void InstructionSelectBasicBlock(SelectionDAG &DAG) {
|
|
DEBUG(BB->dump());
|
|
// Select target instructions for the DAG.
|
|
Select(DAG.getRoot());
|
|
DAG.RemoveDeadNodes();
|
|
|
|
// Emit machine code to BB.
|
|
ScheduleAndEmitDAG(DAG);
|
|
}
|
|
|
|
virtual const char *getPassName() const {
|
|
return "PowerPC DAG->DAG Pattern Instruction Selection";
|
|
}
|
|
};
|
|
}
|
|
|
|
// isIntImmediate - This method tests to see if a constant operand.
|
|
// If so Imm will receive the 32 bit value.
|
|
static bool isIntImmediate(SDNode *N, unsigned& Imm) {
|
|
if (N->getOpcode() == ISD::Constant) {
|
|
Imm = cast<ConstantSDNode>(N)->getValue();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// isOprShiftImm - Returns true if the specified operand is a shift opcode with
|
|
// a immediate shift count less than 32.
|
|
static bool isOprShiftImm(SDNode *N, unsigned& Opc, unsigned& SH) {
|
|
Opc = N->getOpcode();
|
|
return (Opc == ISD::SHL || Opc == ISD::SRL || Opc == ISD::SRA) &&
|
|
isIntImmediate(N->getOperand(1).Val, SH) && SH < 32;
|
|
}
|
|
|
|
// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
|
|
// any number of 0s on either side. The 1s are allowed to wrap from LSB to
|
|
// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
|
|
// not, since all 1s are not contiguous.
|
|
static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
|
|
if (isShiftedMask_32(Val)) {
|
|
// look for the first non-zero bit
|
|
MB = CountLeadingZeros_32(Val);
|
|
// look for the first zero bit after the run of ones
|
|
ME = CountLeadingZeros_32((Val - 1) ^ Val);
|
|
return true;
|
|
} else if (isShiftedMask_32(Val = ~Val)) { // invert mask
|
|
// effectively look for the first zero bit
|
|
ME = CountLeadingZeros_32(Val) - 1;
|
|
// effectively look for the first one bit after the run of zeros
|
|
MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1;
|
|
return true;
|
|
}
|
|
// no run present
|
|
return false;
|
|
}
|
|
|
|
// isRotateAndMask - Returns true if Mask and Shift can be folded in to a rotate
|
|
// and mask opcode and mask operation.
|
|
static bool isRotateAndMask(SDNode *N, unsigned Mask, bool IsShiftMask,
|
|
unsigned &SH, unsigned &MB, unsigned &ME) {
|
|
unsigned Shift = 32;
|
|
unsigned Indeterminant = ~0; // bit mask marking indeterminant results
|
|
unsigned Opcode = N->getOpcode();
|
|
if (!isIntImmediate(N->getOperand(1).Val, Shift) || (Shift > 31))
|
|
return false;
|
|
|
|
if (Opcode == ISD::SHL) {
|
|
// apply shift left to mask if it comes first
|
|
if (IsShiftMask) Mask = Mask << Shift;
|
|
// determine which bits are made indeterminant by shift
|
|
Indeterminant = ~(0xFFFFFFFFu << Shift);
|
|
} else if (Opcode == ISD::SRA || Opcode == ISD::SRL) {
|
|
// apply shift right to mask if it comes first
|
|
if (IsShiftMask) Mask = Mask >> Shift;
|
|
// determine which bits are made indeterminant by shift
|
|
Indeterminant = ~(0xFFFFFFFFu >> Shift);
|
|
// adjust for the left rotate
|
|
Shift = 32 - Shift;
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
// if the mask doesn't intersect any Indeterminant bits
|
|
if (Mask && !(Mask & Indeterminant)) {
|
|
SH = Shift;
|
|
// make sure the mask is still a mask (wrap arounds may not be)
|
|
return isRunOfOnes(Mask, MB, ME);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// isOpcWithIntImmediate - This method tests to see if the node is a specific
|
|
// opcode and that it has a immediate integer right operand.
|
|
// If so Imm will receive the 32 bit value.
|
|
static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
|
|
return N->getOpcode() == Opc && isIntImmediate(N->getOperand(1).Val, Imm);
|
|
}
|
|
|
|
// isOprNot - Returns true if the specified operand is an xor with immediate -1.
|
|
static bool isOprNot(SDNode *N) {
|
|
unsigned Imm;
|
|
return isOpcWithIntImmediate(N, ISD::XOR, Imm) && (signed)Imm == -1;
|
|
}
|
|
|
|
// Immediate constant composers.
|
|
// Lo16 - grabs the lo 16 bits from a 32 bit constant.
|
|
// Hi16 - grabs the hi 16 bits from a 32 bit constant.
|
|
// HA16 - computes the hi bits required if the lo bits are add/subtracted in
|
|
// arithmethically.
|
|
static unsigned Lo16(unsigned x) { return x & 0x0000FFFF; }
|
|
static unsigned Hi16(unsigned x) { return Lo16(x >> 16); }
|
|
static unsigned HA16(unsigned x) { return Hi16((signed)x - (signed short)x); }
|
|
|
|
// isIntImmediate - This method tests to see if a constant operand.
|
|
// If so Imm will receive the 32 bit value.
|
|
static bool isIntImmediate(SDOperand N, unsigned& Imm) {
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
|
|
Imm = (unsigned)CN->getSignExtended();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// SelectBitfieldInsert - turn an or of two masked values into
|
|
/// the rotate left word immediate then mask insert (rlwimi) instruction.
|
|
/// Returns true on success, false if the caller still needs to select OR.
|
|
///
|
|
/// Patterns matched:
|
|
/// 1. or shl, and 5. or and, and
|
|
/// 2. or and, shl 6. or shl, shr
|
|
/// 3. or shr, and 7. or shr, shl
|
|
/// 4. or and, shr
|
|
SDNode *PPC32DAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
|
|
bool IsRotate = false;
|
|
unsigned TgtMask = 0xFFFFFFFF, InsMask = 0xFFFFFFFF, SH = 0;
|
|
unsigned Value;
|
|
|
|
SDOperand Op0 = N->getOperand(0);
|
|
SDOperand Op1 = N->getOperand(1);
|
|
|
|
unsigned Op0Opc = Op0.getOpcode();
|
|
unsigned Op1Opc = Op1.getOpcode();
|
|
|
|
// Verify that we have the correct opcodes
|
|
if (ISD::SHL != Op0Opc && ISD::SRL != Op0Opc && ISD::AND != Op0Opc)
|
|
return false;
|
|
if (ISD::SHL != Op1Opc && ISD::SRL != Op1Opc && ISD::AND != Op1Opc)
|
|
return false;
|
|
|
|
// Generate Mask value for Target
|
|
if (isIntImmediate(Op0.getOperand(1), Value)) {
|
|
switch(Op0Opc) {
|
|
case ISD::SHL: TgtMask <<= Value; break;
|
|
case ISD::SRL: TgtMask >>= Value; break;
|
|
case ISD::AND: TgtMask &= Value; break;
|
|
}
|
|
} else {
|
|
return 0;
|
|
}
|
|
|
|
// Generate Mask value for Insert
|
|
if (isIntImmediate(Op1.getOperand(1), Value)) {
|
|
switch(Op1Opc) {
|
|
case ISD::SHL:
|
|
SH = Value;
|
|
InsMask <<= SH;
|
|
if (Op0Opc == ISD::SRL) IsRotate = true;
|
|
break;
|
|
case ISD::SRL:
|
|
SH = Value;
|
|
InsMask >>= SH;
|
|
SH = 32-SH;
|
|
if (Op0Opc == ISD::SHL) IsRotate = true;
|
|
break;
|
|
case ISD::AND:
|
|
InsMask &= Value;
|
|
break;
|
|
}
|
|
} else {
|
|
return 0;
|
|
}
|
|
|
|
// If both of the inputs are ANDs and one of them has a logical shift by
|
|
// constant as its input, make that AND the inserted value so that we can
|
|
// combine the shift into the rotate part of the rlwimi instruction
|
|
bool IsAndWithShiftOp = false;
|
|
if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
|
|
if (Op1.getOperand(0).getOpcode() == ISD::SHL ||
|
|
Op1.getOperand(0).getOpcode() == ISD::SRL) {
|
|
if (isIntImmediate(Op1.getOperand(0).getOperand(1), Value)) {
|
|
SH = Op1.getOperand(0).getOpcode() == ISD::SHL ? Value : 32 - Value;
|
|
IsAndWithShiftOp = true;
|
|
}
|
|
} else if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
|
|
Op0.getOperand(0).getOpcode() == ISD::SRL) {
|
|
if (isIntImmediate(Op0.getOperand(0).getOperand(1), Value)) {
|
|
std::swap(Op0, Op1);
|
|
std::swap(TgtMask, InsMask);
|
|
SH = Op1.getOperand(0).getOpcode() == ISD::SHL ? Value : 32 - Value;
|
|
IsAndWithShiftOp = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Verify that the Target mask and Insert mask together form a full word mask
|
|
// and that the Insert mask is a run of set bits (which implies both are runs
|
|
// of set bits). Given that, Select the arguments and generate the rlwimi
|
|
// instruction.
|
|
unsigned MB, ME;
|
|
if (((TgtMask & InsMask) == 0) && isRunOfOnes(InsMask, MB, ME)) {
|
|
bool fullMask = (TgtMask ^ InsMask) == 0xFFFFFFFF;
|
|
bool Op0IsAND = Op0Opc == ISD::AND;
|
|
// Check for rotlwi / rotrwi here, a special case of bitfield insert
|
|
// where both bitfield halves are sourced from the same value.
|
|
if (IsRotate && fullMask &&
|
|
N->getOperand(0).getOperand(0) == N->getOperand(1).getOperand(0)) {
|
|
Op0 = CurDAG->getTargetNode(PPC::RLWINM, MVT::i32,
|
|
Select(N->getOperand(0).getOperand(0)),
|
|
getI32Imm(SH), getI32Imm(0), getI32Imm(31));
|
|
return Op0.Val;
|
|
}
|
|
SDOperand Tmp1 = (Op0IsAND && fullMask) ? Select(Op0.getOperand(0))
|
|
: Select(Op0);
|
|
SDOperand Tmp2 = IsAndWithShiftOp ? Select(Op1.getOperand(0).getOperand(0))
|
|
: Select(Op1.getOperand(0));
|
|
Op0 = CurDAG->getTargetNode(PPC::RLWIMI, MVT::i32, Tmp1, Tmp2,
|
|
getI32Imm(SH), getI32Imm(MB), getI32Imm(ME));
|
|
return Op0.Val;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// SelectIntImmediateExpr - Choose code for integer operations with an immediate
|
|
// operand.
|
|
SDNode *PPC32DAGToDAGISel::SelectIntImmediateExpr(SDOperand LHS, SDOperand RHS,
|
|
unsigned OCHi, unsigned OCLo,
|
|
bool IsArithmetic,
|
|
bool Negate) {
|
|
// Check to make sure this is a constant.
|
|
ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS);
|
|
// Exit if not a constant.
|
|
if (!CN) return 0;
|
|
// Extract immediate.
|
|
unsigned C = (unsigned)CN->getValue();
|
|
// Negate if required (ISD::SUB).
|
|
if (Negate) C = -C;
|
|
// Get the hi and lo portions of constant.
|
|
unsigned Hi = IsArithmetic ? HA16(C) : Hi16(C);
|
|
unsigned Lo = Lo16(C);
|
|
|
|
// If two instructions are needed and usage indicates it would be better to
|
|
// load immediate into a register, bail out.
|
|
if (Hi && Lo && CN->use_size() > 2) return false;
|
|
|
|
// Select the first operand.
|
|
SDOperand Opr0 = Select(LHS);
|
|
|
|
if (Lo) // Add in the lo-part.
|
|
Opr0 = CurDAG->getTargetNode(OCLo, MVT::i32, Opr0, getI32Imm(Lo));
|
|
if (Hi) // Add in the hi-part.
|
|
Opr0 = CurDAG->getTargetNode(OCHi, MVT::i32, Opr0, getI32Imm(Hi));
|
|
return Opr0.Val;
|
|
}
|
|
|
|
|
|
// Select - Convert the specified operand from a target-independent to a
|
|
// target-specific node if it hasn't already been changed.
|
|
SDOperand PPC32DAGToDAGISel::Select(SDOperand Op) {
|
|
SDNode *N = Op.Val;
|
|
if (N->getOpcode() >= ISD::BUILTIN_OP_END)
|
|
return Op; // Already selected.
|
|
|
|
switch (N->getOpcode()) {
|
|
default:
|
|
std::cerr << "Cannot yet select: ";
|
|
N->dump();
|
|
std::cerr << "\n";
|
|
abort();
|
|
case ISD::EntryToken: // These leaves remain the same.
|
|
case ISD::UNDEF:
|
|
return Op;
|
|
case ISD::TokenFactor: {
|
|
SDOperand New;
|
|
if (N->getNumOperands() == 2) {
|
|
SDOperand Op0 = Select(N->getOperand(0));
|
|
SDOperand Op1 = Select(N->getOperand(1));
|
|
New = CurDAG->getNode(ISD::TokenFactor, MVT::Other, Op0, Op1);
|
|
} else {
|
|
std::vector<SDOperand> Ops;
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
|
|
Ops.push_back(Select(N->getOperand(0)));
|
|
New = CurDAG->getNode(ISD::TokenFactor, MVT::Other, Ops);
|
|
}
|
|
|
|
if (New.Val != N) {
|
|
CurDAG->ReplaceAllUsesWith(N, New.Val);
|
|
N = New.Val;
|
|
}
|
|
break;
|
|
}
|
|
case ISD::CopyFromReg: {
|
|
SDOperand Chain = Select(N->getOperand(0));
|
|
if (Chain == N->getOperand(0)) return Op; // No change
|
|
SDOperand New = CurDAG->getCopyFromReg(Chain,
|
|
cast<RegisterSDNode>(N->getOperand(1))->getReg(), N->getValueType(0));
|
|
return New.getValue(Op.ResNo);
|
|
}
|
|
case ISD::CopyToReg: {
|
|
SDOperand Chain = Select(N->getOperand(0));
|
|
SDOperand Reg = N->getOperand(1);
|
|
SDOperand Val = Select(N->getOperand(2));
|
|
if (Chain != N->getOperand(0) || Val != N->getOperand(2)) {
|
|
SDOperand New = CurDAG->getNode(ISD::CopyToReg, MVT::Other,
|
|
Chain, Reg, Val);
|
|
CurDAG->ReplaceAllUsesWith(N, New.Val);
|
|
N = New.Val;
|
|
}
|
|
break;
|
|
}
|
|
case ISD::Constant: {
|
|
assert(N->getValueType(0) == MVT::i32);
|
|
unsigned v = (unsigned)cast<ConstantSDNode>(N)->getValue();
|
|
unsigned Hi = HA16(v);
|
|
unsigned Lo = Lo16(v);
|
|
if (Hi && Lo) {
|
|
SDOperand Top = CurDAG->getTargetNode(PPC::LIS, MVT::i32,
|
|
getI32Imm(v >> 16));
|
|
CurDAG->SelectNodeTo(N, MVT::i32, PPC::ORI, Top, getI32Imm(v & 0xFFFF));
|
|
} else if (Lo) {
|
|
CurDAG->SelectNodeTo(N, MVT::i32, PPC::LI, getI32Imm(v));
|
|
} else {
|
|
CurDAG->SelectNodeTo(N, MVT::i32, PPC::LIS, getI32Imm(v >> 16));
|
|
}
|
|
break;
|
|
}
|
|
case ISD::SIGN_EXTEND_INREG:
|
|
switch(cast<VTSDNode>(N->getOperand(1))->getVT()) {
|
|
default: assert(0 && "Illegal type in SIGN_EXTEND_INREG"); break;
|
|
case MVT::i16:
|
|
CurDAG->SelectNodeTo(N, MVT::i32, PPC::EXTSH, Select(N->getOperand(0)));
|
|
break;
|
|
case MVT::i8:
|
|
CurDAG->SelectNodeTo(N, MVT::i32, PPC::EXTSB, Select(N->getOperand(0)));
|
|
break;
|
|
}
|
|
break;
|
|
case ISD::CTLZ:
|
|
assert(N->getValueType(0) == MVT::i32);
|
|
CurDAG->SelectNodeTo(N, MVT::i32, PPC::CNTLZW, Select(N->getOperand(0)));
|
|
break;
|
|
case ISD::ADD: {
|
|
MVT::ValueType Ty = N->getValueType(0);
|
|
if (Ty == MVT::i32) {
|
|
if (SDNode *I = SelectIntImmediateExpr(N->getOperand(0), N->getOperand(1),
|
|
PPC::ADDIS, PPC::ADDI, true)) {
|
|
CurDAG->ReplaceAllUsesWith(N, I);
|
|
N = I;
|
|
} else {
|
|
CurDAG->SelectNodeTo(N, Ty, PPC::ADD, Select(N->getOperand(0)),
|
|
Select(N->getOperand(1)));
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (!NoExcessFPPrecision) { // Match FMA ops
|
|
if (N->getOperand(0).getOpcode() == ISD::MUL &&
|
|
N->getOperand(0).Val->hasOneUse()) {
|
|
++FusedFP; // Statistic
|
|
CurDAG->SelectNodeTo(N, Ty, Ty == MVT::f64 ? PPC::FMADD : PPC::FMADDS,
|
|
Select(N->getOperand(0).getOperand(0)),
|
|
Select(N->getOperand(0).getOperand(1)),
|
|
Select(N->getOperand(1)));
|
|
break;
|
|
} else if (N->getOperand(1).getOpcode() == ISD::MUL &&
|
|
N->getOperand(1).hasOneUse()) {
|
|
++FusedFP; // Statistic
|
|
CurDAG->SelectNodeTo(N, Ty, Ty == MVT::f64 ? PPC::FMADD : PPC::FMADDS,
|
|
Select(N->getOperand(1).getOperand(0)),
|
|
Select(N->getOperand(1).getOperand(1)),
|
|
Select(N->getOperand(0)));
|
|
break;
|
|
}
|
|
}
|
|
|
|
CurDAG->SelectNodeTo(N, Ty, Ty == MVT::f64 ? PPC::FADD : PPC::FADDS,
|
|
Select(N->getOperand(0)), Select(N->getOperand(1)));
|
|
break;
|
|
}
|
|
case ISD::SUB: {
|
|
MVT::ValueType Ty = N->getValueType(0);
|
|
if (Ty == MVT::i32) {
|
|
unsigned Imm;
|
|
if (isIntImmediate(N->getOperand(0), Imm) && isInt16(Imm)) {
|
|
CurDAG->SelectNodeTo(N, Ty, PPC::SUBFIC, Select(N->getOperand(1)),
|
|
getI32Imm(Lo16(Imm)));
|
|
break;
|
|
}
|
|
if (SDNode *I = SelectIntImmediateExpr(N->getOperand(0), N->getOperand(1),
|
|
PPC::ADDIS, PPC::ADDI, true, true)) {
|
|
CurDAG->ReplaceAllUsesWith(N, I);
|
|
N = I;
|
|
} else {
|
|
CurDAG->SelectNodeTo(N, Ty, PPC::SUBF, Select(N->getOperand(1)),
|
|
Select(N->getOperand(0)));
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (!NoExcessFPPrecision) { // Match FMA ops
|
|
if (N->getOperand(0).getOpcode() == ISD::MUL &&
|
|
N->getOperand(0).Val->hasOneUse()) {
|
|
++FusedFP; // Statistic
|
|
CurDAG->SelectNodeTo(N, Ty, Ty == MVT::f64 ? PPC::FMSUB : PPC::FMSUBS,
|
|
Select(N->getOperand(0).getOperand(0)),
|
|
Select(N->getOperand(0).getOperand(1)),
|
|
Select(N->getOperand(1)));
|
|
break;
|
|
} else if (N->getOperand(1).getOpcode() == ISD::MUL &&
|
|
N->getOperand(1).Val->hasOneUse()) {
|
|
++FusedFP; // Statistic
|
|
CurDAG->SelectNodeTo(N, Ty, Ty == MVT::f64 ? PPC::FNMSUB : PPC::FNMSUBS,
|
|
Select(N->getOperand(1).getOperand(0)),
|
|
Select(N->getOperand(1).getOperand(1)),
|
|
Select(N->getOperand(0)));
|
|
break;
|
|
}
|
|
}
|
|
CurDAG->SelectNodeTo(N, Ty, Ty == MVT::f64 ? PPC::FSUB : PPC::FSUBS,
|
|
Select(N->getOperand(0)),
|
|
Select(N->getOperand(1)));
|
|
break;
|
|
}
|
|
case ISD::MUL: {
|
|
unsigned Imm, Opc;
|
|
if (isIntImmediate(N->getOperand(1), Imm) && isInt16(Imm)) {
|
|
CurDAG->SelectNodeTo(N, N->getValueType(0), PPC::MULLI,
|
|
Select(N->getOperand(0)), getI32Imm(Lo16(Imm)));
|
|
break;
|
|
}
|
|
switch (N->getValueType(0)) {
|
|
default: assert(0 && "Unhandled multiply type!");
|
|
case MVT::i32: Opc = PPC::MULLW; break;
|
|
case MVT::f32: Opc = PPC::FMULS; break;
|
|
case MVT::f64: Opc = PPC::FMUL; break;
|
|
}
|
|
CurDAG->SelectNodeTo(N, N->getValueType(0), Opc, Select(N->getOperand(0)),
|
|
Select(N->getOperand(1)));
|
|
break;
|
|
}
|
|
case ISD::MULHS:
|
|
assert(N->getValueType(0) == MVT::i32);
|
|
CurDAG->SelectNodeTo(N, MVT::i32, PPC::MULHW, Select(N->getOperand(0)),
|
|
Select(N->getOperand(1)));
|
|
break;
|
|
case ISD::MULHU:
|
|
assert(N->getValueType(0) == MVT::i32);
|
|
CurDAG->SelectNodeTo(N, MVT::i32, PPC::MULHWU, Select(N->getOperand(0)),
|
|
Select(N->getOperand(1)));
|
|
break;
|
|
case ISD::AND: {
|
|
unsigned Imm;
|
|
// If this is an and of a value rotated between 0 and 31 bits and then and'd
|
|
// with a mask, emit rlwinm
|
|
if (isIntImmediate(N->getOperand(1), Imm) && (isShiftedMask_32(Imm) ||
|
|
isShiftedMask_32(~Imm))) {
|
|
SDOperand Val;
|
|
unsigned SH, MB, ME;
|
|
if (isRotateAndMask(N->getOperand(0).Val, Imm, false, SH, MB, ME)) {
|
|
Val = Select(N->getOperand(0).getOperand(0));
|
|
} else {
|
|
Val = Select(N->getOperand(0));
|
|
isRunOfOnes(Imm, MB, ME);
|
|
SH = 0;
|
|
}
|
|
CurDAG->SelectNodeTo(N, MVT::i32, PPC::RLWINM, Val, getI32Imm(SH),
|
|
getI32Imm(MB), getI32Imm(ME));
|
|
break;
|
|
}
|
|
// If this is an and with an immediate that isn't a mask, then codegen it as
|
|
// high and low 16 bit immediate ands.
|
|
if (SDNode *I = SelectIntImmediateExpr(N->getOperand(0),
|
|
N->getOperand(1),
|
|
PPC::ANDISo, PPC::ANDIo)) {
|
|
CurDAG->ReplaceAllUsesWith(N, I);
|
|
N = I;
|
|
break;
|
|
}
|
|
// Finally, check for the case where we are being asked to select
|
|
// and (not(a), b) or and (a, not(b)) which can be selected as andc.
|
|
if (isOprNot(N->getOperand(0).Val))
|
|
CurDAG->SelectNodeTo(N, MVT::i32, PPC::ANDC, Select(N->getOperand(1)),
|
|
Select(N->getOperand(0).getOperand(0)));
|
|
else if (isOprNot(N->getOperand(1).Val))
|
|
CurDAG->SelectNodeTo(N, MVT::i32, PPC::ANDC, Select(N->getOperand(0)),
|
|
Select(N->getOperand(1).getOperand(0)));
|
|
else
|
|
CurDAG->SelectNodeTo(N, MVT::i32, PPC::AND, Select(N->getOperand(0)),
|
|
Select(N->getOperand(1)));
|
|
break;
|
|
}
|
|
case ISD::OR:
|
|
if (SDNode *I = SelectBitfieldInsert(N)) {
|
|
CurDAG->ReplaceAllUsesWith(N, I);
|
|
N = I;
|
|
break;
|
|
}
|
|
if (SDNode *I = SelectIntImmediateExpr(N->getOperand(0),
|
|
N->getOperand(1),
|
|
PPC::ORIS, PPC::ORI)) {
|
|
CurDAG->ReplaceAllUsesWith(N, I);
|
|
N = I;
|
|
break;
|
|
}
|
|
// Finally, check for the case where we are being asked to select
|
|
// 'or (not(a), b)' or 'or (a, not(b))' which can be selected as orc.
|
|
if (isOprNot(N->getOperand(0).Val))
|
|
CurDAG->SelectNodeTo(N, MVT::i32, PPC::ORC, Select(N->getOperand(1)),
|
|
Select(N->getOperand(0).getOperand(0)));
|
|
else if (isOprNot(N->getOperand(1).Val))
|
|
CurDAG->SelectNodeTo(N, MVT::i32, PPC::ORC, Select(N->getOperand(0)),
|
|
Select(N->getOperand(1).getOperand(0)));
|
|
else
|
|
CurDAG->SelectNodeTo(N, MVT::i32, PPC::OR, Select(N->getOperand(0)),
|
|
Select(N->getOperand(1)));
|
|
break;
|
|
case ISD::XOR:
|
|
// Check whether or not this node is a logical 'not'. This is represented
|
|
// by llvm as a xor with the constant value -1 (all bits set). If this is a
|
|
// 'not', then fold 'or' into 'nor', and so forth for the supported ops.
|
|
if (isOprNot(N)) {
|
|
unsigned Opc;
|
|
SDOperand Val = Select(N->getOperand(0));
|
|
switch (Val.getTargetOpcode()) {
|
|
default: Opc = 0; break;
|
|
case PPC::OR: Opc = PPC::NOR; break;
|
|
case PPC::AND: Opc = PPC::NAND; break;
|
|
case PPC::XOR: Opc = PPC::EQV; break;
|
|
}
|
|
if (Opc)
|
|
CurDAG->SelectNodeTo(N, MVT::i32, Opc, Val.getOperand(0),
|
|
Val.getOperand(1));
|
|
else
|
|
CurDAG->SelectNodeTo(N, MVT::i32, PPC::NOR, Val, Val);
|
|
break;
|
|
}
|
|
// If this is a xor with an immediate other than -1, then codegen it as high
|
|
// and low 16 bit immediate xors.
|
|
if (SDNode *I = SelectIntImmediateExpr(N->getOperand(0),
|
|
N->getOperand(1),
|
|
PPC::XORIS, PPC::XORI)) {
|
|
CurDAG->ReplaceAllUsesWith(N, I);
|
|
N = I;
|
|
break;
|
|
}
|
|
// Finally, check for the case where we are being asked to select
|
|
// xor (not(a), b) which is equivalent to not(xor a, b), which is eqv
|
|
if (isOprNot(N->getOperand(0).Val))
|
|
CurDAG->SelectNodeTo(N, MVT::i32, PPC::EQV,
|
|
Select(N->getOperand(0).getOperand(0)),
|
|
Select(N->getOperand(1)));
|
|
else
|
|
CurDAG->SelectNodeTo(N, MVT::i32, PPC::XOR, Select(N->getOperand(0)),
|
|
Select(N->getOperand(1)));
|
|
break;
|
|
case ISD::SHL: {
|
|
unsigned Imm, SH, MB, ME;
|
|
if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
|
|
isRotateAndMask(N, Imm, true, SH, MB, ME))
|
|
CurDAG->SelectNodeTo(N, MVT::i32, PPC::RLWINM,
|
|
Select(N->getOperand(0).getOperand(0)),
|
|
getI32Imm(SH), getI32Imm(MB), getI32Imm(ME));
|
|
else if (isIntImmediate(N->getOperand(1), Imm))
|
|
CurDAG->SelectNodeTo(N, MVT::i32, PPC::RLWINM, Select(N->getOperand(0)),
|
|
getI32Imm(Imm), getI32Imm(0), getI32Imm(31-Imm));
|
|
else
|
|
CurDAG->SelectNodeTo(N, MVT::i32, PPC::SLW, Select(N->getOperand(0)),
|
|
Select(N->getOperand(1)));
|
|
break;
|
|
}
|
|
case ISD::SRL: {
|
|
unsigned Imm, SH, MB, ME;
|
|
if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
|
|
isRotateAndMask(N, Imm, true, SH, MB, ME))
|
|
CurDAG->SelectNodeTo(N, MVT::i32, PPC::RLWINM,
|
|
Select(N->getOperand(0).getOperand(0)),
|
|
getI32Imm(SH), getI32Imm(MB), getI32Imm(ME));
|
|
else if (isIntImmediate(N->getOperand(1), Imm))
|
|
CurDAG->SelectNodeTo(N, MVT::i32, PPC::RLWINM, Select(N->getOperand(0)),
|
|
getI32Imm(32-Imm), getI32Imm(Imm), getI32Imm(31));
|
|
else
|
|
CurDAG->SelectNodeTo(N, MVT::i32, PPC::SRW, Select(N->getOperand(0)),
|
|
Select(N->getOperand(1)));
|
|
break;
|
|
}
|
|
case ISD::SRA: {
|
|
unsigned Imm, SH, MB, ME;
|
|
if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
|
|
isRotateAndMask(N, Imm, true, SH, MB, ME))
|
|
CurDAG->SelectNodeTo(N, MVT::i32, PPC::RLWINM,
|
|
Select(N->getOperand(0).getOperand(0)),
|
|
getI32Imm(SH), getI32Imm(MB), getI32Imm(ME));
|
|
else if (isIntImmediate(N->getOperand(1), Imm))
|
|
CurDAG->SelectNodeTo(N, MVT::i32, PPC::SRAWI, Select(N->getOperand(0)),
|
|
getI32Imm(Imm));
|
|
else
|
|
CurDAG->SelectNodeTo(N, MVT::i32, PPC::SRAW, Select(N->getOperand(0)),
|
|
Select(N->getOperand(1)));
|
|
break;
|
|
}
|
|
case ISD::FABS:
|
|
CurDAG->SelectNodeTo(N, N->getValueType(0), PPC::FABS,
|
|
Select(N->getOperand(0)));
|
|
break;
|
|
case ISD::FP_EXTEND:
|
|
assert(MVT::f64 == N->getValueType(0) &&
|
|
MVT::f32 == N->getOperand(0).getValueType() && "Illegal FP_EXTEND");
|
|
CurDAG->SelectNodeTo(N, MVT::f64, PPC::FMR, Select(N->getOperand(0)));
|
|
break;
|
|
case ISD::FP_ROUND:
|
|
assert(MVT::f32 == N->getValueType(0) &&
|
|
MVT::f64 == N->getOperand(0).getValueType() && "Illegal FP_ROUND");
|
|
CurDAG->SelectNodeTo(N, MVT::f32, PPC::FRSP, Select(N->getOperand(0)));
|
|
break;
|
|
case ISD::FNEG: {
|
|
SDOperand Val = Select(N->getOperand(0));
|
|
MVT::ValueType Ty = N->getValueType(0);
|
|
if (Val.Val->hasOneUse()) {
|
|
unsigned Opc;
|
|
switch (Val.getTargetOpcode()) {
|
|
default: Opc = 0; break;
|
|
case PPC::FABS: Opc = PPC::FNABS; break;
|
|
case PPC::FMADD: Opc = PPC::FNMADD; break;
|
|
case PPC::FMADDS: Opc = PPC::FNMADDS; break;
|
|
case PPC::FMSUB: Opc = PPC::FNMSUB; break;
|
|
case PPC::FMSUBS: Opc = PPC::FNMSUBS; break;
|
|
}
|
|
// If we inverted the opcode, then emit the new instruction with the
|
|
// inverted opcode and the original instruction's operands. Otherwise,
|
|
// fall through and generate a fneg instruction.
|
|
if (Opc) {
|
|
if (PPC::FNABS == Opc)
|
|
CurDAG->SelectNodeTo(N, Ty, Opc, Val.getOperand(0));
|
|
else
|
|
CurDAG->SelectNodeTo(N, Ty, Opc, Val.getOperand(0),
|
|
Val.getOperand(1), Val.getOperand(2));
|
|
break;
|
|
}
|
|
}
|
|
CurDAG->SelectNodeTo(N, Ty, PPC::FNEG, Val);
|
|
break;
|
|
}
|
|
case ISD::FSQRT: {
|
|
MVT::ValueType Ty = N->getValueType(0);
|
|
CurDAG->SelectNodeTo(N, Ty, Ty == MVT::f64 ? PPC::FSQRT : PPC::FSQRTS,
|
|
Select(N->getOperand(0)));
|
|
break;
|
|
}
|
|
case ISD::RET: {
|
|
SDOperand Chain = Select(N->getOperand(0)); // Token chain.
|
|
|
|
if (N->getNumOperands() > 1) {
|
|
SDOperand Val = Select(N->getOperand(1));
|
|
switch (N->getOperand(1).getValueType()) {
|
|
default: assert(0 && "Unknown return type!");
|
|
case MVT::f64:
|
|
case MVT::f32:
|
|
Chain = CurDAG->getCopyToReg(Chain, PPC::F1, Val);
|
|
break;
|
|
case MVT::i32:
|
|
Chain = CurDAG->getCopyToReg(Chain, PPC::R3, Val);
|
|
break;
|
|
}
|
|
|
|
if (N->getNumOperands() > 2) {
|
|
assert(N->getOperand(1).getValueType() == MVT::i32 &&
|
|
N->getOperand(2).getValueType() == MVT::i32 &&
|
|
N->getNumOperands() == 2 && "Unknown two-register ret value!");
|
|
Val = Select(N->getOperand(2));
|
|
Chain = CurDAG->getCopyToReg(Chain, PPC::R4, Val);
|
|
}
|
|
}
|
|
|
|
// Finally, select this to a blr (return) instruction.
|
|
CurDAG->SelectNodeTo(N, MVT::Other, PPC::BLR, Chain);
|
|
break;
|
|
}
|
|
}
|
|
return SDOperand(N, 0);
|
|
}
|
|
|
|
|
|
/// createPPC32ISelDag - This pass converts a legalized DAG into a
|
|
/// PowerPC-specific DAG, ready for instruction scheduling.
|
|
///
|
|
FunctionPass *llvm::createPPC32ISelDag(TargetMachine &TM) {
|
|
return new PPC32DAGToDAGISel(TM);
|
|
}
|
|
|