mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-14 11:32:34 +00:00
cd52a7a381
Apparently, the style needs to be agreed upon first. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240390 91177308-0d34-0410-b5e6-96231b3b80d8
1349 lines
49 KiB
C++
1349 lines
49 KiB
C++
// Replace mux instructions with the corresponding legal instructions.
|
|
// It is meant to work post-SSA, but still on virtual registers. It was
|
|
// originally placed between register coalescing and machine instruction
|
|
// scheduler.
|
|
// In this place in the optimization sequence, live interval analysis had
|
|
// been performed, and the live intervals should be preserved. A large part
|
|
// of the code deals with preserving the liveness information.
|
|
//
|
|
// Liveness tracking aside, the main functionality of this pass is divided
|
|
// into two steps. The first step is to replace an instruction
|
|
// vreg0 = C2_mux vreg0, vreg1, vreg2
|
|
// with a pair of conditional transfers
|
|
// vreg0 = A2_tfrt vreg0, vreg1
|
|
// vreg0 = A2_tfrf vreg0, vreg2
|
|
// It is the intention that the execution of this pass could be terminated
|
|
// after this step, and the code generated would be functionally correct.
|
|
//
|
|
// If the uses of the source values vreg1 and vreg2 are kills, and their
|
|
// definitions are predicable, then in the second step, the conditional
|
|
// transfers will then be rewritten as predicated instructions. E.g.
|
|
// vreg0 = A2_or vreg1, vreg2
|
|
// vreg3 = A2_tfrt vreg99, vreg0<kill>
|
|
// will be rewritten as
|
|
// vreg3 = A2_port vreg99, vreg1, vreg2
|
|
//
|
|
// This replacement has two variants: "up" and "down". Consider this case:
|
|
// vreg0 = A2_or vreg1, vreg2
|
|
// ... [intervening instructions] ...
|
|
// vreg3 = A2_tfrt vreg99, vreg0<kill>
|
|
// variant "up":
|
|
// vreg3 = A2_port vreg99, vreg1, vreg2
|
|
// ... [intervening instructions, vreg0->vreg3] ...
|
|
// [deleted]
|
|
// variant "down":
|
|
// [deleted]
|
|
// ... [intervening instructions] ...
|
|
// vreg3 = A2_port vreg99, vreg1, vreg2
|
|
//
|
|
// Both, one or none of these variants may be valid, and checks are made
|
|
// to rule out inapplicable variants.
|
|
//
|
|
// As an additional optimization, before either of the two steps above is
|
|
// executed, the pass attempts to coalesce the target register with one of
|
|
// the source registers, e.g. given an instruction
|
|
// vreg3 = C2_mux vreg0, vreg1, vreg2
|
|
// vreg3 will be coalesced with either vreg1 or vreg2. If this succeeds,
|
|
// the instruction would then be (for example)
|
|
// vreg3 = C2_mux vreg0, vreg3, vreg2
|
|
// and, under certain circumstances, this could result in only one predicated
|
|
// instruction:
|
|
// vreg3 = A2_tfrf vreg0, vreg2
|
|
//
|
|
|
|
#define DEBUG_TYPE "expand-condsets"
|
|
#include "HexagonTargetMachine.h"
|
|
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/LiveInterval.h"
|
|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<unsigned> OptTfrLimit("expand-condsets-tfr-limit",
|
|
cl::init(~0U), cl::Hidden, cl::desc("Max number of mux expansions"));
|
|
static cl::opt<unsigned> OptCoaLimit("expand-condsets-coa-limit",
|
|
cl::init(~0U), cl::Hidden, cl::desc("Max number of segment coalescings"));
|
|
|
|
namespace llvm {
|
|
void initializeHexagonExpandCondsetsPass(PassRegistry&);
|
|
FunctionPass *createHexagonExpandCondsets();
|
|
}
|
|
|
|
namespace {
|
|
class HexagonExpandCondsets : public MachineFunctionPass {
|
|
public:
|
|
static char ID;
|
|
HexagonExpandCondsets() :
|
|
MachineFunctionPass(ID), HII(0), TRI(0), MRI(0),
|
|
LIS(0), CoaLimitActive(false),
|
|
TfrLimitActive(false), CoaCounter(0), TfrCounter(0) {
|
|
if (OptCoaLimit.getPosition())
|
|
CoaLimitActive = true, CoaLimit = OptCoaLimit;
|
|
if (OptTfrLimit.getPosition())
|
|
TfrLimitActive = true, TfrLimit = OptTfrLimit;
|
|
initializeHexagonExpandCondsetsPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
virtual const char *getPassName() const {
|
|
return "Hexagon Expand Condsets";
|
|
}
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired<LiveIntervals>();
|
|
AU.addPreserved<LiveIntervals>();
|
|
AU.addPreserved<SlotIndexes>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
virtual bool runOnMachineFunction(MachineFunction &MF);
|
|
|
|
private:
|
|
const HexagonInstrInfo *HII;
|
|
const TargetRegisterInfo *TRI;
|
|
MachineRegisterInfo *MRI;
|
|
LiveIntervals *LIS;
|
|
|
|
bool CoaLimitActive, TfrLimitActive;
|
|
unsigned CoaLimit, TfrLimit, CoaCounter, TfrCounter;
|
|
|
|
struct RegisterRef {
|
|
RegisterRef(const MachineOperand &Op) : Reg(Op.getReg()),
|
|
Sub(Op.getSubReg()) {}
|
|
RegisterRef(unsigned R = 0, unsigned S = 0) : Reg(R), Sub(S) {}
|
|
bool operator== (RegisterRef RR) const {
|
|
return Reg == RR.Reg && Sub == RR.Sub;
|
|
}
|
|
bool operator!= (RegisterRef RR) const { return !operator==(RR); }
|
|
unsigned Reg, Sub;
|
|
};
|
|
|
|
typedef DenseMap<unsigned,unsigned> ReferenceMap;
|
|
enum { Sub_Low = 0x1, Sub_High = 0x2, Sub_None = (Sub_Low | Sub_High) };
|
|
enum { Exec_Then = 0x10, Exec_Else = 0x20 };
|
|
unsigned getMaskForSub(unsigned Sub);
|
|
bool isCondset(const MachineInstr *MI);
|
|
|
|
void addRefToMap(RegisterRef RR, ReferenceMap &Map, unsigned Exec);
|
|
bool isRefInMap(RegisterRef, ReferenceMap &Map, unsigned Exec);
|
|
|
|
LiveInterval::iterator nextSegment(LiveInterval &LI, SlotIndex S);
|
|
LiveInterval::iterator prevSegment(LiveInterval &LI, SlotIndex S);
|
|
void makeDefined(unsigned Reg, SlotIndex S, bool SetDef);
|
|
void makeUndead(unsigned Reg, SlotIndex S);
|
|
void shrinkToUses(unsigned Reg, LiveInterval &LI);
|
|
void updateKillFlags(unsigned Reg, LiveInterval &LI);
|
|
void terminateSegment(LiveInterval::iterator LT, SlotIndex S,
|
|
LiveInterval &LI);
|
|
void addInstrToLiveness(MachineInstr *MI);
|
|
void removeInstrFromLiveness(MachineInstr *MI);
|
|
|
|
unsigned getCondTfrOpcode(const MachineOperand &SO, bool Cond);
|
|
MachineInstr *genTfrFor(MachineOperand &SrcOp, unsigned DstR,
|
|
unsigned DstSR, const MachineOperand &PredOp, bool Cond);
|
|
bool split(MachineInstr *MI);
|
|
bool splitInBlock(MachineBasicBlock &B);
|
|
|
|
bool isPredicable(MachineInstr *MI);
|
|
MachineInstr *getReachingDefForPred(RegisterRef RD,
|
|
MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond);
|
|
bool canMoveOver(MachineInstr *MI, ReferenceMap &Defs, ReferenceMap &Uses);
|
|
bool canMoveMemTo(MachineInstr *MI, MachineInstr *ToI, bool IsDown);
|
|
void predicateAt(RegisterRef RD, MachineInstr *MI,
|
|
MachineBasicBlock::iterator Where, unsigned PredR, bool Cond);
|
|
void renameInRange(RegisterRef RO, RegisterRef RN, unsigned PredR,
|
|
bool Cond, MachineBasicBlock::iterator First,
|
|
MachineBasicBlock::iterator Last);
|
|
bool predicate(MachineInstr *TfrI, bool Cond);
|
|
bool predicateInBlock(MachineBasicBlock &B);
|
|
|
|
void postprocessUndefImplicitUses(MachineBasicBlock &B);
|
|
void removeImplicitUses(MachineInstr *MI);
|
|
void removeImplicitUses(MachineBasicBlock &B);
|
|
|
|
bool isIntReg(RegisterRef RR, unsigned &BW);
|
|
bool isIntraBlocks(LiveInterval &LI);
|
|
bool coalesceRegisters(RegisterRef R1, RegisterRef R2);
|
|
bool coalesceSegments(MachineFunction &MF);
|
|
};
|
|
}
|
|
|
|
char HexagonExpandCondsets::ID = 0;
|
|
|
|
|
|
unsigned HexagonExpandCondsets::getMaskForSub(unsigned Sub) {
|
|
switch (Sub) {
|
|
case Hexagon::subreg_loreg:
|
|
return Sub_Low;
|
|
case Hexagon::subreg_hireg:
|
|
return Sub_High;
|
|
case Hexagon::NoSubRegister:
|
|
return Sub_None;
|
|
}
|
|
llvm_unreachable("Invalid subregister");
|
|
}
|
|
|
|
|
|
bool HexagonExpandCondsets::isCondset(const MachineInstr *MI) {
|
|
unsigned Opc = MI->getOpcode();
|
|
switch (Opc) {
|
|
case Hexagon::C2_mux:
|
|
case Hexagon::C2_muxii:
|
|
case Hexagon::C2_muxir:
|
|
case Hexagon::C2_muxri:
|
|
case Hexagon::MUX64_rr:
|
|
return true;
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
void HexagonExpandCondsets::addRefToMap(RegisterRef RR, ReferenceMap &Map,
|
|
unsigned Exec) {
|
|
unsigned Mask = getMaskForSub(RR.Sub) | Exec;
|
|
ReferenceMap::iterator F = Map.find(RR.Reg);
|
|
if (F == Map.end())
|
|
Map.insert(std::make_pair(RR.Reg, Mask));
|
|
else
|
|
F->second |= Mask;
|
|
}
|
|
|
|
|
|
bool HexagonExpandCondsets::isRefInMap(RegisterRef RR, ReferenceMap &Map,
|
|
unsigned Exec) {
|
|
ReferenceMap::iterator F = Map.find(RR.Reg);
|
|
if (F == Map.end())
|
|
return false;
|
|
unsigned Mask = getMaskForSub(RR.Sub) | Exec;
|
|
if (Mask & F->second)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
|
|
LiveInterval::iterator HexagonExpandCondsets::nextSegment(LiveInterval &LI,
|
|
SlotIndex S) {
|
|
for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
|
|
if (I->start >= S)
|
|
return I;
|
|
}
|
|
return LI.end();
|
|
}
|
|
|
|
|
|
LiveInterval::iterator HexagonExpandCondsets::prevSegment(LiveInterval &LI,
|
|
SlotIndex S) {
|
|
LiveInterval::iterator P = LI.end();
|
|
for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
|
|
if (I->end > S)
|
|
return P;
|
|
P = I;
|
|
}
|
|
return P;
|
|
}
|
|
|
|
|
|
/// Find the implicit use of register Reg in slot index S, and make sure
|
|
/// that the "defined" flag is set to SetDef. While the mux expansion is
|
|
/// going on, predicated instructions will have implicit uses of the
|
|
/// registers that are being defined. This is to keep any preceding
|
|
/// definitions live. If there is no preceding definition, the implicit
|
|
/// use will be marked as "undef", otherwise it will be "defined". This
|
|
/// function is used to update the flag.
|
|
void HexagonExpandCondsets::makeDefined(unsigned Reg, SlotIndex S,
|
|
bool SetDef) {
|
|
if (!S.isRegister())
|
|
return;
|
|
MachineInstr *MI = LIS->getInstructionFromIndex(S);
|
|
assert(MI && "Expecting instruction");
|
|
for (auto &Op : MI->operands()) {
|
|
if (!Op.isReg() || !Op.isUse() || Op.getReg() != Reg)
|
|
continue;
|
|
bool IsDef = !Op.isUndef();
|
|
if (Op.isImplicit() && IsDef != SetDef)
|
|
Op.setIsUndef(!SetDef);
|
|
}
|
|
}
|
|
|
|
|
|
void HexagonExpandCondsets::makeUndead(unsigned Reg, SlotIndex S) {
|
|
// If S is a block boundary, then there can still be a dead def reaching
|
|
// this point. Instead of traversing the CFG, queue start points of all
|
|
// live segments that begin with a register, and end at a block boundary.
|
|
// This may "resurrect" some truly dead definitions, but doing so is
|
|
// harmless.
|
|
SmallVector<MachineInstr*,8> Defs;
|
|
if (S.isBlock()) {
|
|
LiveInterval &LI = LIS->getInterval(Reg);
|
|
for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
|
|
if (!I->start.isRegister() || !I->end.isBlock())
|
|
continue;
|
|
MachineInstr *MI = LIS->getInstructionFromIndex(I->start);
|
|
Defs.push_back(MI);
|
|
}
|
|
} else if (S.isRegister()) {
|
|
MachineInstr *MI = LIS->getInstructionFromIndex(S);
|
|
Defs.push_back(MI);
|
|
}
|
|
|
|
for (unsigned i = 0, n = Defs.size(); i < n; ++i) {
|
|
MachineInstr *MI = Defs[i];
|
|
for (auto &Op : MI->operands()) {
|
|
if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
|
|
continue;
|
|
Op.setIsDead(false);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// Shrink the segments in the live interval for a given register to the last
|
|
/// use before each subsequent def. Unlike LiveIntervals::shrinkToUses, this
|
|
/// function will not mark any definitions of Reg as dead. The reason for this
|
|
/// is that this function is used while a MUX instruction is being expanded,
|
|
/// or while a conditional copy is undergoing predication. During these
|
|
/// processes, there may be defs present in the instruction sequence that have
|
|
/// not yet been removed, or there may be missing uses that have not yet been
|
|
/// added. We want to utilize LiveIntervals::shrinkToUses as much as possible,
|
|
/// but since it does not extend any intervals that are too short, we need to
|
|
/// pre-emptively extend them here in anticipation of further changes.
|
|
void HexagonExpandCondsets::shrinkToUses(unsigned Reg, LiveInterval &LI) {
|
|
SmallVector<MachineInstr*,4> Deads;
|
|
LIS->shrinkToUses(&LI, &Deads);
|
|
// Need to undo the deadification made by "shrinkToUses". It's easier to
|
|
// do it here, since we have a list of all instructions that were just
|
|
// marked as dead.
|
|
for (unsigned i = 0, n = Deads.size(); i < n; ++i) {
|
|
MachineInstr *MI = Deads[i];
|
|
// Clear the "dead" flag.
|
|
for (auto &Op : MI->operands()) {
|
|
if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
|
|
continue;
|
|
Op.setIsDead(false);
|
|
}
|
|
// Extend the live segment to the beginning of the next one.
|
|
LiveInterval::iterator End = LI.end();
|
|
SlotIndex S = LIS->getInstructionIndex(MI).getRegSlot();
|
|
LiveInterval::iterator T = LI.FindSegmentContaining(S);
|
|
assert(T != End);
|
|
LiveInterval::iterator N = std::next(T);
|
|
if (N != End)
|
|
T->end = N->start;
|
|
else
|
|
T->end = LIS->getMBBEndIdx(MI->getParent());
|
|
}
|
|
updateKillFlags(Reg, LI);
|
|
}
|
|
|
|
|
|
/// Given an updated live interval LI for register Reg, update the kill flags
|
|
/// in instructions using Reg to reflect the liveness changes.
|
|
void HexagonExpandCondsets::updateKillFlags(unsigned Reg, LiveInterval &LI) {
|
|
MRI->clearKillFlags(Reg);
|
|
for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
|
|
SlotIndex EX = I->end;
|
|
if (!EX.isRegister())
|
|
continue;
|
|
MachineInstr *MI = LIS->getInstructionFromIndex(EX);
|
|
for (auto &Op : MI->operands()) {
|
|
if (!Op.isReg() || !Op.isUse() || Op.getReg() != Reg)
|
|
continue;
|
|
// Only set the kill flag on the first encountered use of Reg in this
|
|
// instruction.
|
|
Op.setIsKill(true);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// When adding a new instruction to liveness, the newly added definition
|
|
/// will start a new live segment. This may happen at a position that falls
|
|
/// within an existing live segment. In such case that live segment needs to
|
|
/// be truncated to make room for the new segment. Ultimately, the truncation
|
|
/// will occur at the last use, but for now the segment can be terminated
|
|
/// right at the place where the new segment will start. The segments will be
|
|
/// shrunk-to-uses later.
|
|
void HexagonExpandCondsets::terminateSegment(LiveInterval::iterator LT,
|
|
SlotIndex S, LiveInterval &LI) {
|
|
// Terminate the live segment pointed to by LT within a live interval LI.
|
|
if (LT == LI.end())
|
|
return;
|
|
|
|
VNInfo *OldVN = LT->valno;
|
|
SlotIndex EX = LT->end;
|
|
LT->end = S;
|
|
// If LT does not end at a block boundary, the termination is done.
|
|
if (!EX.isBlock())
|
|
return;
|
|
|
|
// If LT ended at a block boundary, it's possible that its value number
|
|
// is picked up at the beginning other blocks. Create a new value number
|
|
// and change such blocks to use it instead.
|
|
VNInfo *NewVN = 0;
|
|
for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
|
|
if (!I->start.isBlock() || I->valno != OldVN)
|
|
continue;
|
|
// Generate on-demand a new value number that is defined by the
|
|
// block beginning (i.e. -phi).
|
|
if (!NewVN)
|
|
NewVN = LI.getNextValue(I->start, LIS->getVNInfoAllocator());
|
|
I->valno = NewVN;
|
|
}
|
|
}
|
|
|
|
|
|
/// Add the specified instruction to live intervals. This function is used
|
|
/// to update the live intervals while the program code is being changed.
|
|
/// Neither the expansion of a MUX, nor the predication are atomic, and this
|
|
/// function is used to update the live intervals while these transformations
|
|
/// are being done.
|
|
void HexagonExpandCondsets::addInstrToLiveness(MachineInstr *MI) {
|
|
SlotIndex MX = LIS->isNotInMIMap(MI) ? LIS->InsertMachineInstrInMaps(MI)
|
|
: LIS->getInstructionIndex(MI);
|
|
DEBUG(dbgs() << "adding liveness info for instr\n " << MX << " " << *MI);
|
|
|
|
MX = MX.getRegSlot();
|
|
bool Predicated = HII->isPredicated(MI);
|
|
MachineBasicBlock *MB = MI->getParent();
|
|
|
|
// Strip all implicit uses from predicated instructions. They will be
|
|
// added again, according to the updated information.
|
|
if (Predicated)
|
|
removeImplicitUses(MI);
|
|
|
|
// For each def in MI we need to insert a new live segment starting at MX
|
|
// into the interval. If there already exists a live segment in the interval
|
|
// that contains MX, we need to terminate it at MX.
|
|
SmallVector<RegisterRef,2> Defs;
|
|
for (auto &Op : MI->operands())
|
|
if (Op.isReg() && Op.isDef())
|
|
Defs.push_back(RegisterRef(Op));
|
|
|
|
for (unsigned i = 0, n = Defs.size(); i < n; ++i) {
|
|
unsigned DefR = Defs[i].Reg;
|
|
LiveInterval &LID = LIS->getInterval(DefR);
|
|
DEBUG(dbgs() << "adding def " << PrintReg(DefR, TRI)
|
|
<< " with interval\n " << LID << "\n");
|
|
// If MX falls inside of an existing live segment, terminate it.
|
|
LiveInterval::iterator LT = LID.FindSegmentContaining(MX);
|
|
if (LT != LID.end())
|
|
terminateSegment(LT, MX, LID);
|
|
DEBUG(dbgs() << "after terminating segment\n " << LID << "\n");
|
|
|
|
// Create a new segment starting from MX.
|
|
LiveInterval::iterator P = prevSegment(LID, MX), N = nextSegment(LID, MX);
|
|
SlotIndex EX;
|
|
VNInfo *VN = LID.getNextValue(MX, LIS->getVNInfoAllocator());
|
|
if (N == LID.end()) {
|
|
// There is no live segment after MX. End this segment at the end of
|
|
// the block.
|
|
EX = LIS->getMBBEndIdx(MB);
|
|
} else {
|
|
// If the next segment starts at the block boundary, end the new segment
|
|
// at the boundary of the preceding block (i.e. the previous index).
|
|
// Otherwise, end the segment at the beginning of the next segment. In
|
|
// either case it will be "shrunk-to-uses" later.
|
|
EX = N->start.isBlock() ? N->start.getPrevIndex() : N->start;
|
|
}
|
|
if (Predicated) {
|
|
// Predicated instruction will have an implicit use of the defined
|
|
// register. This is necessary so that this definition will not make
|
|
// any previous definitions dead. If there are no previous live
|
|
// segments, still add the implicit use, but make it "undef".
|
|
// Because of the implicit use, the preceding definition is not
|
|
// dead. Mark is as such (if necessary).
|
|
MachineOperand ImpUse = MachineOperand::CreateReg(DefR, false, true);
|
|
ImpUse.setSubReg(Defs[i].Sub);
|
|
bool Undef = false;
|
|
if (P == LID.end())
|
|
Undef = true;
|
|
else {
|
|
// If the previous segment extends to the end of the previous block,
|
|
// the end index may actually be the beginning of this block. If
|
|
// the previous segment ends at a block boundary, move it back by one,
|
|
// to get the proper block for it.
|
|
SlotIndex PE = P->end.isBlock() ? P->end.getPrevIndex() : P->end;
|
|
MachineBasicBlock *PB = LIS->getMBBFromIndex(PE);
|
|
if (PB != MB && !LIS->isLiveInToMBB(LID, MB))
|
|
Undef = true;
|
|
}
|
|
if (!Undef) {
|
|
makeUndead(DefR, P->valno->def);
|
|
// We are adding a live use, so extend the previous segment to
|
|
// include it.
|
|
P->end = MX;
|
|
} else {
|
|
ImpUse.setIsUndef(true);
|
|
}
|
|
|
|
if (!MI->readsRegister(DefR))
|
|
MI->addOperand(ImpUse);
|
|
if (N != LID.end())
|
|
makeDefined(DefR, N->start, true);
|
|
}
|
|
LiveRange::Segment NR = LiveRange::Segment(MX, EX, VN);
|
|
LID.addSegment(NR);
|
|
DEBUG(dbgs() << "added a new segment " << NR << "\n " << LID << "\n");
|
|
shrinkToUses(DefR, LID);
|
|
DEBUG(dbgs() << "updated imp-uses: " << *MI);
|
|
LID.verify();
|
|
}
|
|
|
|
// For each use in MI:
|
|
// - If there is no live segment that contains MX for the used register,
|
|
// extend the previous one. Ignore implicit uses.
|
|
for (auto &Op : MI->operands()) {
|
|
if (!Op.isReg() || !Op.isUse() || Op.isImplicit() || Op.isUndef())
|
|
continue;
|
|
unsigned UseR = Op.getReg();
|
|
LiveInterval &LIU = LIS->getInterval(UseR);
|
|
// Find the last segment P that starts before MX.
|
|
LiveInterval::iterator P = LIU.FindSegmentContaining(MX);
|
|
if (P == LIU.end())
|
|
P = prevSegment(LIU, MX);
|
|
|
|
assert(P != LIU.end() && "MI uses undefined register?");
|
|
SlotIndex EX = P->end;
|
|
// If P contains MX, there is not much to do.
|
|
if (EX > MX) {
|
|
Op.setIsKill(false);
|
|
continue;
|
|
}
|
|
// Otherwise, extend P to "next(MX)".
|
|
P->end = MX.getNextIndex();
|
|
Op.setIsKill(true);
|
|
// Get the old "kill" instruction, and remove the kill flag.
|
|
if (MachineInstr *KI = LIS->getInstructionFromIndex(MX))
|
|
KI->clearRegisterKills(UseR, nullptr);
|
|
shrinkToUses(UseR, LIU);
|
|
LIU.verify();
|
|
}
|
|
}
|
|
|
|
|
|
/// Update the live interval information to reflect the removal of the given
|
|
/// instruction from the program. As with "addInstrToLiveness", this function
|
|
/// is called while the program code is being changed.
|
|
void HexagonExpandCondsets::removeInstrFromLiveness(MachineInstr *MI) {
|
|
SlotIndex MX = LIS->getInstructionIndex(MI).getRegSlot();
|
|
DEBUG(dbgs() << "removing instr\n " << MX << " " << *MI);
|
|
|
|
// For each def in MI:
|
|
// If MI starts a live segment, merge this segment with the previous segment.
|
|
//
|
|
for (auto &Op : MI->operands()) {
|
|
if (!Op.isReg() || !Op.isDef())
|
|
continue;
|
|
unsigned DefR = Op.getReg();
|
|
LiveInterval &LID = LIS->getInterval(DefR);
|
|
LiveInterval::iterator LT = LID.FindSegmentContaining(MX);
|
|
assert(LT != LID.end() && "Expecting live segments");
|
|
DEBUG(dbgs() << "removing def at " << MX << " of " << PrintReg(DefR, TRI)
|
|
<< " with interval\n " << LID << "\n");
|
|
if (LT->start != MX)
|
|
continue;
|
|
|
|
VNInfo *MVN = LT->valno;
|
|
if (LT != LID.begin()) {
|
|
// If the current live segment is not the first, the task is easy. If
|
|
// the previous segment continues into the current block, extend it to
|
|
// the end of the current one, and merge the value numbers.
|
|
// Otherwise, remove the current segment, and make the end of it "undef".
|
|
LiveInterval::iterator P = std::prev(LT);
|
|
SlotIndex PE = P->end.isBlock() ? P->end.getPrevIndex() : P->end;
|
|
MachineBasicBlock *MB = MI->getParent();
|
|
MachineBasicBlock *PB = LIS->getMBBFromIndex(PE);
|
|
if (PB != MB && !LIS->isLiveInToMBB(LID, MB)) {
|
|
makeDefined(DefR, LT->end, false);
|
|
LID.removeSegment(*LT);
|
|
} else {
|
|
// Make the segments adjacent, so that merge-vn can also merge the
|
|
// segments.
|
|
P->end = LT->start;
|
|
makeUndead(DefR, P->valno->def);
|
|
LID.MergeValueNumberInto(MVN, P->valno);
|
|
}
|
|
} else {
|
|
LiveInterval::iterator N = std::next(LT);
|
|
LiveInterval::iterator RmB = LT, RmE = N;
|
|
while (N != LID.end()) {
|
|
// Iterate until the first register-based definition is found
|
|
// (i.e. skip all block-boundary entries).
|
|
LiveInterval::iterator Next = std::next(N);
|
|
if (N->start.isRegister()) {
|
|
makeDefined(DefR, N->start, false);
|
|
break;
|
|
}
|
|
if (N->end.isRegister()) {
|
|
makeDefined(DefR, N->end, false);
|
|
RmE = Next;
|
|
break;
|
|
}
|
|
RmE = Next;
|
|
N = Next;
|
|
}
|
|
// Erase the segments in one shot to avoid invalidating iterators.
|
|
LID.segments.erase(RmB, RmE);
|
|
}
|
|
|
|
bool VNUsed = false;
|
|
for (LiveInterval::iterator I = LID.begin(), E = LID.end(); I != E; ++I) {
|
|
if (I->valno != MVN)
|
|
continue;
|
|
VNUsed = true;
|
|
break;
|
|
}
|
|
if (!VNUsed)
|
|
MVN->markUnused();
|
|
|
|
DEBUG(dbgs() << "new interval: ");
|
|
if (!LID.empty()) {
|
|
DEBUG(dbgs() << LID << "\n");
|
|
LID.verify();
|
|
} else {
|
|
DEBUG(dbgs() << "<empty>\n");
|
|
LIS->removeInterval(DefR);
|
|
}
|
|
}
|
|
|
|
// For uses there is nothing to do. The intervals will be updated via
|
|
// shrinkToUses.
|
|
SmallVector<unsigned,4> Uses;
|
|
for (auto &Op : MI->operands()) {
|
|
if (!Op.isReg() || !Op.isUse())
|
|
continue;
|
|
unsigned R = Op.getReg();
|
|
if (!TargetRegisterInfo::isVirtualRegister(R))
|
|
continue;
|
|
Uses.push_back(R);
|
|
}
|
|
LIS->RemoveMachineInstrFromMaps(MI);
|
|
MI->eraseFromParent();
|
|
for (unsigned i = 0, n = Uses.size(); i < n; ++i) {
|
|
LiveInterval &LI = LIS->getInterval(Uses[i]);
|
|
shrinkToUses(Uses[i], LI);
|
|
}
|
|
}
|
|
|
|
|
|
/// Get the opcode for a conditional transfer of the value in SO (source
|
|
/// operand). The condition (true/false) is given in Cond.
|
|
unsigned HexagonExpandCondsets::getCondTfrOpcode(const MachineOperand &SO,
|
|
bool Cond) {
|
|
using namespace Hexagon;
|
|
if (SO.isReg()) {
|
|
unsigned PhysR;
|
|
RegisterRef RS = SO;
|
|
if (TargetRegisterInfo::isVirtualRegister(RS.Reg)) {
|
|
const TargetRegisterClass *VC = MRI->getRegClass(RS.Reg);
|
|
assert(VC->begin() != VC->end() && "Empty register class");
|
|
PhysR = *VC->begin();
|
|
} else {
|
|
assert(TargetRegisterInfo::isPhysicalRegister(RS.Reg));
|
|
PhysR = RS.Reg;
|
|
}
|
|
unsigned PhysS = (RS.Sub == 0) ? PhysR : TRI->getSubReg(PhysR, RS.Sub);
|
|
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysS);
|
|
switch (RC->getSize()) {
|
|
case 4:
|
|
return Cond ? A2_tfrt : A2_tfrf;
|
|
case 8:
|
|
return Cond ? A2_tfrpt : A2_tfrpf;
|
|
}
|
|
llvm_unreachable("Invalid register operand");
|
|
}
|
|
if (SO.isImm() || SO.isFPImm())
|
|
return Cond ? C2_cmoveit : C2_cmoveif;
|
|
llvm_unreachable("Unexpected source operand");
|
|
}
|
|
|
|
|
|
/// Generate a conditional transfer, copying the value SrcOp to the
|
|
/// destination register DstR:DstSR, and using the predicate register from
|
|
/// PredOp. The Cond argument specifies whether the predicate is to be
|
|
/// if(PredOp), or if(!PredOp).
|
|
MachineInstr *HexagonExpandCondsets::genTfrFor(MachineOperand &SrcOp,
|
|
unsigned DstR, unsigned DstSR, const MachineOperand &PredOp, bool Cond) {
|
|
MachineInstr *MI = SrcOp.getParent();
|
|
MachineBasicBlock &B = *MI->getParent();
|
|
MachineBasicBlock::iterator At = MI;
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
|
|
// Don't avoid identity copies here (i.e. if the source and the destination
|
|
// are the same registers). It is actually better to generate them here,
|
|
// since this would cause the copy to potentially be predicated in the next
|
|
// step. The predication will remove such a copy if it is unable to
|
|
/// predicate.
|
|
|
|
unsigned Opc = getCondTfrOpcode(SrcOp, Cond);
|
|
MachineInstr *TfrI = BuildMI(B, At, DL, HII->get(Opc))
|
|
.addReg(DstR, RegState::Define, DstSR)
|
|
.addOperand(PredOp)
|
|
.addOperand(SrcOp);
|
|
// We don't want any kills yet.
|
|
TfrI->clearKillInfo();
|
|
DEBUG(dbgs() << "created an initial copy: " << *TfrI);
|
|
return TfrI;
|
|
}
|
|
|
|
|
|
/// Replace a MUX instruction MI with a pair A2_tfrt/A2_tfrf. This function
|
|
/// performs all necessary changes to complete the replacement.
|
|
bool HexagonExpandCondsets::split(MachineInstr *MI) {
|
|
if (TfrLimitActive) {
|
|
if (TfrCounter >= TfrLimit)
|
|
return false;
|
|
TfrCounter++;
|
|
}
|
|
DEBUG(dbgs() << "\nsplitting BB#" << MI->getParent()->getNumber()
|
|
<< ": " << *MI);
|
|
MachineOperand &MD = MI->getOperand(0); // Definition
|
|
MachineOperand &MP = MI->getOperand(1); // Predicate register
|
|
assert(MD.isDef());
|
|
unsigned DR = MD.getReg(), DSR = MD.getSubReg();
|
|
|
|
// First, create the two invididual conditional transfers, and add each
|
|
// of them to the live intervals information. Do that first and then remove
|
|
// the old instruction from live intervals.
|
|
if (MachineInstr *TfrT = genTfrFor(MI->getOperand(2), DR, DSR, MP, true))
|
|
addInstrToLiveness(TfrT);
|
|
if (MachineInstr *TfrF = genTfrFor(MI->getOperand(3), DR, DSR, MP, false))
|
|
addInstrToLiveness(TfrF);
|
|
removeInstrFromLiveness(MI);
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/// Split all MUX instructions in the given block into pairs of contitional
|
|
/// transfers.
|
|
bool HexagonExpandCondsets::splitInBlock(MachineBasicBlock &B) {
|
|
bool Changed = false;
|
|
MachineBasicBlock::iterator I, E, NextI;
|
|
for (I = B.begin(), E = B.end(); I != E; I = NextI) {
|
|
NextI = std::next(I);
|
|
if (isCondset(I))
|
|
Changed |= split(I);
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
|
|
bool HexagonExpandCondsets::isPredicable(MachineInstr *MI) {
|
|
if (HII->isPredicated(MI) || !HII->isPredicable(MI))
|
|
return false;
|
|
if (MI->hasUnmodeledSideEffects() || MI->mayStore())
|
|
return false;
|
|
// Reject instructions with multiple defs (e.g. post-increment loads).
|
|
bool HasDef = false;
|
|
for (auto &Op : MI->operands()) {
|
|
if (!Op.isReg() || !Op.isDef())
|
|
continue;
|
|
if (HasDef)
|
|
return false;
|
|
HasDef = true;
|
|
}
|
|
for (auto &Mo : MI->memoperands())
|
|
if (Mo->isVolatile())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
|
|
/// Find the reaching definition for a predicated use of RD. The RD is used
|
|
/// under the conditions given by PredR and Cond, and this function will ignore
|
|
/// definitions that set RD under the opposite conditions.
|
|
MachineInstr *HexagonExpandCondsets::getReachingDefForPred(RegisterRef RD,
|
|
MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond) {
|
|
MachineBasicBlock &B = *UseIt->getParent();
|
|
MachineBasicBlock::iterator I = UseIt, S = B.begin();
|
|
if (I == S)
|
|
return 0;
|
|
|
|
bool PredValid = true;
|
|
do {
|
|
--I;
|
|
MachineInstr *MI = &*I;
|
|
// Check if this instruction can be ignored, i.e. if it is predicated
|
|
// on the complementary condition.
|
|
if (PredValid && HII->isPredicated(MI)) {
|
|
if (MI->readsRegister(PredR) && (Cond != HII->isPredicatedTrue(MI)))
|
|
continue;
|
|
}
|
|
|
|
// Check the defs. If the PredR is defined, invalidate it. If RD is
|
|
// defined, return the instruction or 0, depending on the circumstances.
|
|
for (auto &Op : MI->operands()) {
|
|
if (!Op.isReg() || !Op.isDef())
|
|
continue;
|
|
RegisterRef RR = Op;
|
|
if (RR.Reg == PredR) {
|
|
PredValid = false;
|
|
continue;
|
|
}
|
|
if (RR.Reg != RD.Reg)
|
|
continue;
|
|
// If the "Reg" part agrees, there is still the subregister to check.
|
|
// If we are looking for vreg1:loreg, we can skip vreg1:hireg, but
|
|
// not vreg1 (w/o subregisters).
|
|
if (RR.Sub == RD.Sub)
|
|
return MI;
|
|
if (RR.Sub == 0 || RD.Sub == 0)
|
|
return 0;
|
|
// We have different subregisters, so we can continue looking.
|
|
}
|
|
} while (I != S);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/// Check if the instruction MI can be safely moved over a set of instructions
|
|
/// whose side-effects (in terms of register defs and uses) are expressed in
|
|
/// the maps Defs and Uses. These maps reflect the conditional defs and uses
|
|
/// that depend on the same predicate register to allow moving instructions
|
|
/// over instructions predicated on the opposite condition.
|
|
bool HexagonExpandCondsets::canMoveOver(MachineInstr *MI, ReferenceMap &Defs,
|
|
ReferenceMap &Uses) {
|
|
// In order to be able to safely move MI over instructions that define
|
|
// "Defs" and use "Uses", no def operand from MI can be defined or used
|
|
// and no use operand can be defined.
|
|
for (auto &Op : MI->operands()) {
|
|
if (!Op.isReg())
|
|
continue;
|
|
RegisterRef RR = Op;
|
|
// For physical register we would need to check register aliases, etc.
|
|
// and we don't want to bother with that. It would be of little value
|
|
// before the actual register rewriting (from virtual to physical).
|
|
if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
|
|
return false;
|
|
// No redefs for any operand.
|
|
if (isRefInMap(RR, Defs, Exec_Then))
|
|
return false;
|
|
// For defs, there cannot be uses.
|
|
if (Op.isDef() && isRefInMap(RR, Uses, Exec_Then))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/// Check if the instruction accessing memory (TheI) can be moved to the
|
|
/// location ToI.
|
|
bool HexagonExpandCondsets::canMoveMemTo(MachineInstr *TheI, MachineInstr *ToI,
|
|
bool IsDown) {
|
|
bool IsLoad = TheI->mayLoad(), IsStore = TheI->mayStore();
|
|
if (!IsLoad && !IsStore)
|
|
return true;
|
|
if (HII->areMemAccessesTriviallyDisjoint(TheI, ToI))
|
|
return true;
|
|
if (TheI->hasUnmodeledSideEffects())
|
|
return false;
|
|
|
|
MachineBasicBlock::iterator StartI = IsDown ? TheI : ToI;
|
|
MachineBasicBlock::iterator EndI = IsDown ? ToI : TheI;
|
|
bool Ordered = TheI->hasOrderedMemoryRef();
|
|
|
|
// Search for aliased memory reference in (StartI, EndI).
|
|
for (MachineBasicBlock::iterator I = std::next(StartI); I != EndI; ++I) {
|
|
MachineInstr *MI = &*I;
|
|
if (MI->hasUnmodeledSideEffects())
|
|
return false;
|
|
bool L = MI->mayLoad(), S = MI->mayStore();
|
|
if (!L && !S)
|
|
continue;
|
|
if (Ordered && MI->hasOrderedMemoryRef())
|
|
return false;
|
|
|
|
bool Conflict = (L && IsStore) || S;
|
|
if (Conflict)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/// Generate a predicated version of MI (where the condition is given via
|
|
/// PredR and Cond) at the point indicated by Where.
|
|
void HexagonExpandCondsets::predicateAt(RegisterRef RD, MachineInstr *MI,
|
|
MachineBasicBlock::iterator Where, unsigned PredR, bool Cond) {
|
|
// The problem with updating live intervals is that we can move one def
|
|
// past another def. In particular, this can happen when moving an A2_tfrt
|
|
// over an A2_tfrf defining the same register. From the point of view of
|
|
// live intervals, these two instructions are two separate definitions,
|
|
// and each one starts another live segment. LiveIntervals's "handleMove"
|
|
// does not allow such moves, so we need to handle it ourselves. To avoid
|
|
// invalidating liveness data while we are using it, the move will be
|
|
// implemented in 4 steps: (1) add a clone of the instruction MI at the
|
|
// target location, (2) update liveness, (3) delete the old instruction,
|
|
// and (4) update liveness again.
|
|
|
|
MachineBasicBlock &B = *MI->getParent();
|
|
DebugLoc DL = Where->getDebugLoc(); // "Where" points to an instruction.
|
|
unsigned Opc = MI->getOpcode();
|
|
unsigned PredOpc = HII->getCondOpcode(Opc, !Cond);
|
|
MachineInstrBuilder MB = BuildMI(B, Where, DL, HII->get(PredOpc));
|
|
unsigned Ox = 0, NP = MI->getNumOperands();
|
|
// Skip all defs from MI first.
|
|
while (Ox < NP) {
|
|
MachineOperand &MO = MI->getOperand(Ox);
|
|
if (!MO.isReg() || !MO.isDef())
|
|
break;
|
|
Ox++;
|
|
}
|
|
// Add the new def, then the predicate register, then the rest of the
|
|
// operands.
|
|
MB.addReg(RD.Reg, RegState::Define, RD.Sub);
|
|
MB.addReg(PredR);
|
|
while (Ox < NP) {
|
|
MachineOperand &MO = MI->getOperand(Ox);
|
|
if (!MO.isReg() || !MO.isImplicit())
|
|
MB.addOperand(MO);
|
|
Ox++;
|
|
}
|
|
|
|
MachineFunction &MF = *B.getParent();
|
|
MachineInstr::mmo_iterator I = MI->memoperands_begin();
|
|
unsigned NR = std::distance(I, MI->memoperands_end());
|
|
MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(NR);
|
|
for (unsigned i = 0; i < NR; ++i)
|
|
MemRefs[i] = *I++;
|
|
MB.setMemRefs(MemRefs, MemRefs+NR);
|
|
|
|
MachineInstr *NewI = MB;
|
|
NewI->clearKillInfo();
|
|
addInstrToLiveness(NewI);
|
|
}
|
|
|
|
|
|
/// In the range [First, Last], rename all references to the "old" register RO
|
|
/// to the "new" register RN, but only in instructions predicated on the given
|
|
/// condition.
|
|
void HexagonExpandCondsets::renameInRange(RegisterRef RO, RegisterRef RN,
|
|
unsigned PredR, bool Cond, MachineBasicBlock::iterator First,
|
|
MachineBasicBlock::iterator Last) {
|
|
MachineBasicBlock::iterator End = std::next(Last);
|
|
for (MachineBasicBlock::iterator I = First; I != End; ++I) {
|
|
MachineInstr *MI = &*I;
|
|
// Do not touch instructions that are not predicated, or are predicated
|
|
// on the opposite condition.
|
|
if (!HII->isPredicated(MI))
|
|
continue;
|
|
if (!MI->readsRegister(PredR) || (Cond != HII->isPredicatedTrue(MI)))
|
|
continue;
|
|
|
|
for (auto &Op : MI->operands()) {
|
|
if (!Op.isReg() || RO != RegisterRef(Op))
|
|
continue;
|
|
Op.setReg(RN.Reg);
|
|
Op.setSubReg(RN.Sub);
|
|
// In practice, this isn't supposed to see any defs.
|
|
assert(!Op.isDef() && "Not expecting a def");
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// For a given conditional copy, predicate the definition of the source of
|
|
/// the copy under the given condition (using the same predicate register as
|
|
/// the copy).
|
|
bool HexagonExpandCondsets::predicate(MachineInstr *TfrI, bool Cond) {
|
|
// TfrI - A2_tfr[tf] Instruction (not A2_tfrsi).
|
|
unsigned Opc = TfrI->getOpcode();
|
|
(void)Opc;
|
|
assert(Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf);
|
|
DEBUG(dbgs() << "\nattempt to predicate if-" << (Cond ? "true" : "false")
|
|
<< ": " << *TfrI);
|
|
|
|
MachineOperand &MD = TfrI->getOperand(0);
|
|
MachineOperand &MP = TfrI->getOperand(1);
|
|
MachineOperand &MS = TfrI->getOperand(2);
|
|
// The source operand should be a <kill>. This is not strictly necessary,
|
|
// but it makes things a lot simpler. Otherwise, we would need to rename
|
|
// some registers, which would complicate the transformation considerably.
|
|
if (!MS.isKill())
|
|
return false;
|
|
|
|
RegisterRef RT(MS);
|
|
unsigned PredR = MP.getReg();
|
|
MachineInstr *DefI = getReachingDefForPred(RT, TfrI, PredR, Cond);
|
|
if (!DefI || !isPredicable(DefI))
|
|
return false;
|
|
|
|
DEBUG(dbgs() << "Source def: " << *DefI);
|
|
|
|
// Collect the information about registers defined and used between the
|
|
// DefI and the TfrI.
|
|
// Map: reg -> bitmask of subregs
|
|
ReferenceMap Uses, Defs;
|
|
MachineBasicBlock::iterator DefIt = DefI, TfrIt = TfrI;
|
|
|
|
// Check if the predicate register is valid between DefI and TfrI.
|
|
// If it is, we can then ignore instructions predicated on the negated
|
|
// conditions when collecting def and use information.
|
|
bool PredValid = true;
|
|
for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) {
|
|
if (!I->modifiesRegister(PredR, 0))
|
|
continue;
|
|
PredValid = false;
|
|
break;
|
|
}
|
|
|
|
for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) {
|
|
MachineInstr *MI = &*I;
|
|
// If this instruction is predicated on the same register, it could
|
|
// potentially be ignored.
|
|
// By default assume that the instruction executes on the same condition
|
|
// as TfrI (Exec_Then), and also on the opposite one (Exec_Else).
|
|
unsigned Exec = Exec_Then | Exec_Else;
|
|
if (PredValid && HII->isPredicated(MI) && MI->readsRegister(PredR))
|
|
Exec = (Cond == HII->isPredicatedTrue(MI)) ? Exec_Then : Exec_Else;
|
|
|
|
for (auto &Op : MI->operands()) {
|
|
if (!Op.isReg())
|
|
continue;
|
|
// We don't want to deal with physical registers. The reason is that
|
|
// they can be aliased with other physical registers. Aliased virtual
|
|
// registers must share the same register number, and can only differ
|
|
// in the subregisters, which we are keeping track of. Physical
|
|
// registers ters no longer have subregisters---their super- and
|
|
// subregisters are other physical registers, and we are not checking
|
|
// that.
|
|
RegisterRef RR = Op;
|
|
if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
|
|
return false;
|
|
|
|
ReferenceMap &Map = Op.isDef() ? Defs : Uses;
|
|
addRefToMap(RR, Map, Exec);
|
|
}
|
|
}
|
|
|
|
// The situation:
|
|
// RT = DefI
|
|
// ...
|
|
// RD = TfrI ..., RT
|
|
|
|
// If the register-in-the-middle (RT) is used or redefined between
|
|
// DefI and TfrI, we may not be able proceed with this transformation.
|
|
// We can ignore a def that will not execute together with TfrI, and a
|
|
// use that will. If there is such a use (that does execute together with
|
|
// TfrI), we will not be able to move DefI down. If there is a use that
|
|
// executed if TfrI's condition is false, then RT must be available
|
|
// unconditionally (cannot be predicated).
|
|
// Essentially, we need to be able to rename RT to RD in this segment.
|
|
if (isRefInMap(RT, Defs, Exec_Then) || isRefInMap(RT, Uses, Exec_Else))
|
|
return false;
|
|
RegisterRef RD = MD;
|
|
// If the predicate register is defined between DefI and TfrI, the only
|
|
// potential thing to do would be to move the DefI down to TfrI, and then
|
|
// predicate. The reaching def (DefI) must be movable down to the location
|
|
// of the TfrI.
|
|
// If the target register of the TfrI (RD) is not used or defined between
|
|
// DefI and TfrI, consider moving TfrI up to DefI.
|
|
bool CanUp = canMoveOver(TfrI, Defs, Uses);
|
|
bool CanDown = canMoveOver(DefI, Defs, Uses);
|
|
// The TfrI does not access memory, but DefI could. Check if it's safe
|
|
// to move DefI down to TfrI.
|
|
if (DefI->mayLoad() || DefI->mayStore())
|
|
if (!canMoveMemTo(DefI, TfrI, true))
|
|
CanDown = false;
|
|
|
|
DEBUG(dbgs() << "Can move up: " << (CanUp ? "yes" : "no")
|
|
<< ", can move down: " << (CanDown ? "yes\n" : "no\n"));
|
|
MachineBasicBlock::iterator PastDefIt = std::next(DefIt);
|
|
if (CanUp)
|
|
predicateAt(RD, DefI, PastDefIt, PredR, Cond);
|
|
else if (CanDown)
|
|
predicateAt(RD, DefI, TfrIt, PredR, Cond);
|
|
else
|
|
return false;
|
|
|
|
if (RT != RD)
|
|
renameInRange(RT, RD, PredR, Cond, PastDefIt, TfrIt);
|
|
|
|
// Delete the user of RT first (it should work either way, but this order
|
|
// of deleting is more natural).
|
|
removeInstrFromLiveness(TfrI);
|
|
removeInstrFromLiveness(DefI);
|
|
return true;
|
|
}
|
|
|
|
|
|
/// Predicate all cases of conditional copies in the specified block.
|
|
bool HexagonExpandCondsets::predicateInBlock(MachineBasicBlock &B) {
|
|
bool Changed = false;
|
|
MachineBasicBlock::iterator I, E, NextI;
|
|
for (I = B.begin(), E = B.end(); I != E; I = NextI) {
|
|
NextI = std::next(I);
|
|
unsigned Opc = I->getOpcode();
|
|
if (Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf) {
|
|
bool Done = predicate(I, (Opc == Hexagon::A2_tfrt));
|
|
if (!Done) {
|
|
// If we didn't predicate I, we may need to remove it in case it is
|
|
// an "identity" copy, e.g. vreg1 = A2_tfrt vreg2, vreg1.
|
|
if (RegisterRef(I->getOperand(0)) == RegisterRef(I->getOperand(2)))
|
|
removeInstrFromLiveness(I);
|
|
}
|
|
Changed |= Done;
|
|
}
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
|
|
void HexagonExpandCondsets::removeImplicitUses(MachineInstr *MI) {
|
|
for (unsigned i = MI->getNumOperands(); i > 0; --i) {
|
|
MachineOperand &MO = MI->getOperand(i-1);
|
|
if (MO.isReg() && MO.isUse() && MO.isImplicit())
|
|
MI->RemoveOperand(i-1);
|
|
}
|
|
}
|
|
|
|
|
|
void HexagonExpandCondsets::removeImplicitUses(MachineBasicBlock &B) {
|
|
for (MachineBasicBlock::iterator I = B.begin(), E = B.end(); I != E; ++I) {
|
|
MachineInstr *MI = &*I;
|
|
if (HII->isPredicated(MI))
|
|
removeImplicitUses(MI);
|
|
}
|
|
}
|
|
|
|
|
|
void HexagonExpandCondsets::postprocessUndefImplicitUses(MachineBasicBlock &B) {
|
|
// Implicit uses that are "undef" are only meaningful (outside of the
|
|
// internals of this pass) when the instruction defines a subregister,
|
|
// and the implicit-undef use applies to the defined register. In such
|
|
// cases, the proper way to record the information in the IR is to mark
|
|
// the definition as "undef", which will be interpreted as "read-undef".
|
|
typedef SmallSet<unsigned,2> RegisterSet;
|
|
for (MachineBasicBlock::iterator I = B.begin(), E = B.end(); I != E; ++I) {
|
|
MachineInstr *MI = &*I;
|
|
RegisterSet Undefs;
|
|
for (unsigned i = MI->getNumOperands(); i > 0; --i) {
|
|
MachineOperand &MO = MI->getOperand(i-1);
|
|
if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.isUndef()) {
|
|
MI->RemoveOperand(i-1);
|
|
Undefs.insert(MO.getReg());
|
|
}
|
|
}
|
|
for (auto &Op : MI->operands()) {
|
|
if (!Op.isReg() || !Op.isDef() || !Op.getSubReg())
|
|
continue;
|
|
if (Undefs.count(Op.getReg()))
|
|
Op.setIsUndef(true);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
bool HexagonExpandCondsets::isIntReg(RegisterRef RR, unsigned &BW) {
|
|
if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
|
|
return false;
|
|
const TargetRegisterClass *RC = MRI->getRegClass(RR.Reg);
|
|
if (RC == &Hexagon::IntRegsRegClass) {
|
|
BW = 32;
|
|
return true;
|
|
}
|
|
if (RC == &Hexagon::DoubleRegsRegClass) {
|
|
BW = (RR.Sub != 0) ? 32 : 64;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool HexagonExpandCondsets::isIntraBlocks(LiveInterval &LI) {
|
|
for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
|
|
LiveRange::Segment &LR = *I;
|
|
// Range must start at a register...
|
|
if (!LR.start.isRegister())
|
|
return false;
|
|
// ...and end in a register or in a dead slot.
|
|
if (!LR.end.isRegister() && !LR.end.isDead())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
bool HexagonExpandCondsets::coalesceRegisters(RegisterRef R1, RegisterRef R2) {
|
|
if (CoaLimitActive) {
|
|
if (CoaCounter >= CoaLimit)
|
|
return false;
|
|
CoaCounter++;
|
|
}
|
|
unsigned BW1, BW2;
|
|
if (!isIntReg(R1, BW1) || !isIntReg(R2, BW2) || BW1 != BW2)
|
|
return false;
|
|
if (MRI->isLiveIn(R1.Reg))
|
|
return false;
|
|
if (MRI->isLiveIn(R2.Reg))
|
|
return false;
|
|
|
|
LiveInterval &L1 = LIS->getInterval(R1.Reg);
|
|
LiveInterval &L2 = LIS->getInterval(R2.Reg);
|
|
bool Overlap = L1.overlaps(L2);
|
|
|
|
DEBUG(dbgs() << "compatible registers: ("
|
|
<< (Overlap ? "overlap" : "disjoint") << ")\n "
|
|
<< PrintReg(R1.Reg, TRI, R1.Sub) << " " << L1 << "\n "
|
|
<< PrintReg(R2.Reg, TRI, R2.Sub) << " " << L2 << "\n");
|
|
if (R1.Sub || R2.Sub)
|
|
return false;
|
|
if (Overlap)
|
|
return false;
|
|
|
|
// Coalescing could have a negative impact on scheduling, so try to limit
|
|
// to some reasonable extent. Only consider coalescing segments, when one
|
|
// of them does not cross basic block boundaries.
|
|
if (!isIntraBlocks(L1) && !isIntraBlocks(L2))
|
|
return false;
|
|
|
|
MRI->replaceRegWith(R2.Reg, R1.Reg);
|
|
|
|
// Move all live segments from L2 to L1.
|
|
typedef DenseMap<VNInfo*,VNInfo*> ValueInfoMap;
|
|
ValueInfoMap VM;
|
|
for (LiveInterval::iterator I = L2.begin(), E = L2.end(); I != E; ++I) {
|
|
VNInfo *NewVN, *OldVN = I->valno;
|
|
ValueInfoMap::iterator F = VM.find(OldVN);
|
|
if (F == VM.end()) {
|
|
NewVN = L1.getNextValue(I->valno->def, LIS->getVNInfoAllocator());
|
|
VM.insert(std::make_pair(OldVN, NewVN));
|
|
} else {
|
|
NewVN = F->second;
|
|
}
|
|
L1.addSegment(LiveRange::Segment(I->start, I->end, NewVN));
|
|
}
|
|
while (L2.begin() != L2.end())
|
|
L2.removeSegment(*L2.begin());
|
|
|
|
updateKillFlags(R1.Reg, L1);
|
|
DEBUG(dbgs() << "coalesced: " << L1 << "\n");
|
|
L1.verify();
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/// Attempt to coalesce one of the source registers to a MUX intruction with
|
|
/// the destination register. This could lead to having only one predicated
|
|
/// instruction in the end instead of two.
|
|
bool HexagonExpandCondsets::coalesceSegments(MachineFunction &MF) {
|
|
SmallVector<MachineInstr*,16> Condsets;
|
|
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
|
|
MachineBasicBlock &B = *I;
|
|
for (MachineBasicBlock::iterator J = B.begin(), F = B.end(); J != F; ++J) {
|
|
MachineInstr *MI = &*J;
|
|
if (!isCondset(MI))
|
|
continue;
|
|
MachineOperand &S1 = MI->getOperand(2), &S2 = MI->getOperand(3);
|
|
if (!S1.isReg() && !S2.isReg())
|
|
continue;
|
|
Condsets.push_back(MI);
|
|
}
|
|
}
|
|
|
|
bool Changed = false;
|
|
for (unsigned i = 0, n = Condsets.size(); i < n; ++i) {
|
|
MachineInstr *CI = Condsets[i];
|
|
RegisterRef RD = CI->getOperand(0);
|
|
RegisterRef RP = CI->getOperand(1);
|
|
MachineOperand &S1 = CI->getOperand(2), &S2 = CI->getOperand(3);
|
|
bool Done = false;
|
|
// Consider this case:
|
|
// vreg1 = instr1 ...
|
|
// vreg2 = instr2 ...
|
|
// vreg0 = C2_mux ..., vreg1, vreg2
|
|
// If vreg0 was coalesced with vreg1, we could end up with the following
|
|
// code:
|
|
// vreg0 = instr1 ...
|
|
// vreg2 = instr2 ...
|
|
// vreg0 = A2_tfrf ..., vreg2
|
|
// which will later become:
|
|
// vreg0 = instr1 ...
|
|
// vreg0 = instr2_cNotPt ...
|
|
// i.e. there will be an unconditional definition (instr1) of vreg0
|
|
// followed by a conditional one. The output dependency was there before
|
|
// and it unavoidable, but if instr1 is predicable, we will no longer be
|
|
// able to predicate it here.
|
|
// To avoid this scenario, don't coalesce the destination register with
|
|
// a source register that is defined by a predicable instruction.
|
|
if (S1.isReg()) {
|
|
RegisterRef RS = S1;
|
|
MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, true);
|
|
if (!RDef || !HII->isPredicable(RDef))
|
|
Done = coalesceRegisters(RD, RegisterRef(S1));
|
|
}
|
|
if (!Done && S2.isReg()) {
|
|
RegisterRef RS = S2;
|
|
MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, false);
|
|
if (!RDef || !HII->isPredicable(RDef))
|
|
Done = coalesceRegisters(RD, RegisterRef(S2));
|
|
}
|
|
Changed |= Done;
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
|
|
bool HexagonExpandCondsets::runOnMachineFunction(MachineFunction &MF) {
|
|
HII = static_cast<const HexagonInstrInfo*>(MF.getSubtarget().getInstrInfo());
|
|
TRI = MF.getSubtarget().getRegisterInfo();
|
|
LIS = &getAnalysis<LiveIntervals>();
|
|
MRI = &MF.getRegInfo();
|
|
|
|
bool Changed = false;
|
|
|
|
// Try to coalesce the target of a mux with one of its sources.
|
|
// This could eliminate a register copy in some circumstances.
|
|
Changed |= coalesceSegments(MF);
|
|
|
|
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
|
|
// First, simply split all muxes into a pair of conditional transfers
|
|
// and update the live intervals to reflect the new arrangement.
|
|
// This is done mainly to make the live interval update simpler, than it
|
|
// would be while trying to predicate instructions at the same time.
|
|
Changed |= splitInBlock(*I);
|
|
// Traverse all blocks and collapse predicable instructions feeding
|
|
// conditional transfers into predicated instructions.
|
|
// Walk over all the instructions again, so we may catch pre-existing
|
|
// cases that were not created in the previous step.
|
|
Changed |= predicateInBlock(*I);
|
|
}
|
|
|
|
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
|
|
postprocessUndefImplicitUses(*I);
|
|
return Changed;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Public Constructor Functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static void initializePassOnce(PassRegistry &Registry) {
|
|
const char *Name = "Hexagon Expand Condsets";
|
|
PassInfo *PI = new PassInfo(Name, "expand-condsets",
|
|
&HexagonExpandCondsets::ID, 0, false, false);
|
|
Registry.registerPass(*PI, true);
|
|
}
|
|
|
|
void llvm::initializeHexagonExpandCondsetsPass(PassRegistry &Registry) {
|
|
CALL_ONCE_INITIALIZATION(initializePassOnce)
|
|
}
|
|
|
|
|
|
FunctionPass *llvm::createHexagonExpandCondsets() {
|
|
return new HexagonExpandCondsets();
|
|
}
|