Hal Finkel 827307b95f Use PPC reciprocal estimates with Newton iteration in fast-math mode
When unsafe FP math operations are enabled, we can use the fre[s] and
frsqrte[s] instructions, which generate reciprocal (sqrt) estimates, together
with some Newton iteration, in order to quickly generate floating-point
division and sqrt results. All of these instructions are separately optional,
and so each has its own feature flag (except for the Altivec instructions,
which are covered under the existing Altivec flag). Doing this is not only
faster than using the IEEE-compliant fdiv/fsqrt instructions, but allows these
computations to be pipelined with other computations in order to hide their
overall latency.

I've also added a couple of missing fnmsub patterns which turned out to be
missing (but are necessary for good code generation of the Newton iterations).
Altivec needs a similar fix, but that will probably be more complicated because
fneg is expanded for Altivec's v4f32.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178617 91177308-0d34-0410-b5e6-96231b3b80d8
2013-04-03 04:01:11 +00:00
2013-04-02 20:02:36 +00:00
2013-04-03 01:07:53 +00:00
2013-03-18 17:47:33 +00:00
2013-03-18 17:47:33 +00:00
2013-02-22 19:19:41 +00:00

Low Level Virtual Machine (LLVM)
================================

This directory and its subdirectories contain source code for the Low Level
Virtual Machine, a toolkit for the construction of highly optimized compilers,
optimizers, and runtime environments.

LLVM is open source software. You may freely distribute it under the terms of
the license agreement found in LICENSE.txt.

Please see the documentation provided in docs/ for further
assistance with LLVM, and in particular docs/GettingStarted.rst for getting
started with LLVM and docs/README.txt for an overview of LLVM's
documentation setup.

If you're writing a package for LLVM, see docs/Packaging.rst for our
suggestions.
Description
LLVM backend for 6502
Readme 277 MiB
Languages
C++ 48.7%
LLVM 38.5%
Assembly 10.2%
C 0.9%
Python 0.4%
Other 1.2%