llvm-6502/lib/Target/X86/X86InstrSSE.td
Dan Gohman 82a87a0172 Replace M_REMATERIALIZIBLE and the newly-added isOtherReMaterializableLoad
with a general target hook to identify rematerializable instructions. Some
instructions are only rematerializable with specific operands, such as loads
from constant pools, while others are always rematerializable. This hook
allows both to be identified as being rematerializable with the same
mechanism.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@37644 91177308-0d34-0410-b5e6-96231b3b80d8
2007-06-19 01:48:05 +00:00

2416 lines
117 KiB
C++

//====- X86InstrSSE.td - Describe the X86 Instruction Set -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Evan Cheng and is distributed under the University
// of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the X86 SSE instruction set, defining the instructions,
// and properties of the instructions which are needed for code generation,
// machine code emission, and analysis.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// SSE specific DAG Nodes.
//===----------------------------------------------------------------------===//
def SDTX86FPShiftOp : SDTypeProfile<1, 2, [ SDTCisSameAs<0, 1>,
SDTCisFP<0>, SDTCisInt<2> ]>;
def X86loadp : SDNode<"X86ISD::LOAD_PACK", SDTLoad, [SDNPHasChain]>;
def X86loadu : SDNode<"X86ISD::LOAD_UA", SDTLoad, [SDNPHasChain]>;
def X86fmin : SDNode<"X86ISD::FMIN", SDTFPBinOp>;
def X86fmax : SDNode<"X86ISD::FMAX", SDTFPBinOp>;
def X86fand : SDNode<"X86ISD::FAND", SDTFPBinOp,
[SDNPCommutative, SDNPAssociative]>;
def X86for : SDNode<"X86ISD::FOR", SDTFPBinOp,
[SDNPCommutative, SDNPAssociative]>;
def X86fxor : SDNode<"X86ISD::FXOR", SDTFPBinOp,
[SDNPCommutative, SDNPAssociative]>;
def X86fsrl : SDNode<"X86ISD::FSRL", SDTX86FPShiftOp>;
def X86comi : SDNode<"X86ISD::COMI", SDTX86CmpTest,
[SDNPHasChain, SDNPOutFlag]>;
def X86ucomi : SDNode<"X86ISD::UCOMI", SDTX86CmpTest,
[SDNPHasChain, SDNPOutFlag]>;
def X86s2vec : SDNode<"X86ISD::S2VEC", SDTypeProfile<1, 1, []>, []>;
def X86pextrw : SDNode<"X86ISD::PEXTRW", SDTypeProfile<1, 2, []>, []>;
def X86pinsrw : SDNode<"X86ISD::PINSRW", SDTypeProfile<1, 3, []>, []>;
//===----------------------------------------------------------------------===//
// SSE 'Special' Instructions
//===----------------------------------------------------------------------===//
def IMPLICIT_DEF_VR128 : I<0, Pseudo, (ops VR128:$dst),
"#IMPLICIT_DEF $dst",
[(set VR128:$dst, (v4f32 (undef)))]>,
Requires<[HasSSE1]>;
def IMPLICIT_DEF_FR32 : I<0, Pseudo, (ops FR32:$dst),
"#IMPLICIT_DEF $dst",
[(set FR32:$dst, (undef))]>, Requires<[HasSSE2]>;
def IMPLICIT_DEF_FR64 : I<0, Pseudo, (ops FR64:$dst),
"#IMPLICIT_DEF $dst",
[(set FR64:$dst, (undef))]>, Requires<[HasSSE2]>;
//===----------------------------------------------------------------------===//
// SSE Complex Patterns
//===----------------------------------------------------------------------===//
// These are 'extloads' from a scalar to the low element of a vector, zeroing
// the top elements. These are used for the SSE 'ss' and 'sd' instruction
// forms.
def sse_load_f32 : ComplexPattern<v4f32, 4, "SelectScalarSSELoad", [],
[SDNPHasChain]>;
def sse_load_f64 : ComplexPattern<v2f64, 4, "SelectScalarSSELoad", [],
[SDNPHasChain]>;
def ssmem : Operand<v4f32> {
let PrintMethod = "printf32mem";
let MIOperandInfo = (ops ptr_rc, i8imm, ptr_rc, i32imm);
}
def sdmem : Operand<v2f64> {
let PrintMethod = "printf64mem";
let MIOperandInfo = (ops ptr_rc, i8imm, ptr_rc, i32imm);
}
//===----------------------------------------------------------------------===//
// SSE pattern fragments
//===----------------------------------------------------------------------===//
def X86loadpf32 : PatFrag<(ops node:$ptr), (f32 (X86loadp node:$ptr))>;
def X86loadpf64 : PatFrag<(ops node:$ptr), (f64 (X86loadp node:$ptr))>;
def loadv4f32 : PatFrag<(ops node:$ptr), (v4f32 (load node:$ptr))>;
def loadv2f64 : PatFrag<(ops node:$ptr), (v2f64 (load node:$ptr))>;
def loadv2i32 : PatFrag<(ops node:$ptr), (v2i32 (load node:$ptr))>;
def loadv2i64 : PatFrag<(ops node:$ptr), (v2i64 (load node:$ptr))>;
def bc_v4f32 : PatFrag<(ops node:$in), (v4f32 (bitconvert node:$in))>;
def bc_v2f64 : PatFrag<(ops node:$in), (v2f64 (bitconvert node:$in))>;
def bc_v16i8 : PatFrag<(ops node:$in), (v16i8 (bitconvert node:$in))>;
def bc_v8i16 : PatFrag<(ops node:$in), (v8i16 (bitconvert node:$in))>;
def bc_v4i32 : PatFrag<(ops node:$in), (v4i32 (bitconvert node:$in))>;
def bc_v2i64 : PatFrag<(ops node:$in), (v2i64 (bitconvert node:$in))>;
def fp32imm0 : PatLeaf<(f32 fpimm), [{
return N->isExactlyValue(+0.0);
}]>;
def PSxLDQ_imm : SDNodeXForm<imm, [{
// Transformation function: imm >> 3
return getI32Imm(N->getValue() >> 3);
}]>;
// SHUFFLE_get_shuf_imm xform function: convert vector_shuffle mask to PSHUF*,
// SHUFP* etc. imm.
def SHUFFLE_get_shuf_imm : SDNodeXForm<build_vector, [{
return getI8Imm(X86::getShuffleSHUFImmediate(N));
}]>;
// SHUFFLE_get_pshufhw_imm xform function: convert vector_shuffle mask to
// PSHUFHW imm.
def SHUFFLE_get_pshufhw_imm : SDNodeXForm<build_vector, [{
return getI8Imm(X86::getShufflePSHUFHWImmediate(N));
}]>;
// SHUFFLE_get_pshuflw_imm xform function: convert vector_shuffle mask to
// PSHUFLW imm.
def SHUFFLE_get_pshuflw_imm : SDNodeXForm<build_vector, [{
return getI8Imm(X86::getShufflePSHUFLWImmediate(N));
}]>;
def SSE_splat_mask : PatLeaf<(build_vector), [{
return X86::isSplatMask(N);
}], SHUFFLE_get_shuf_imm>;
def SSE_splat_lo_mask : PatLeaf<(build_vector), [{
return X86::isSplatLoMask(N);
}]>;
def MOVHLPS_shuffle_mask : PatLeaf<(build_vector), [{
return X86::isMOVHLPSMask(N);
}]>;
def MOVHLPS_v_undef_shuffle_mask : PatLeaf<(build_vector), [{
return X86::isMOVHLPS_v_undef_Mask(N);
}]>;
def MOVHP_shuffle_mask : PatLeaf<(build_vector), [{
return X86::isMOVHPMask(N);
}]>;
def MOVLP_shuffle_mask : PatLeaf<(build_vector), [{
return X86::isMOVLPMask(N);
}]>;
def MOVL_shuffle_mask : PatLeaf<(build_vector), [{
return X86::isMOVLMask(N);
}]>;
def MOVSHDUP_shuffle_mask : PatLeaf<(build_vector), [{
return X86::isMOVSHDUPMask(N);
}]>;
def MOVSLDUP_shuffle_mask : PatLeaf<(build_vector), [{
return X86::isMOVSLDUPMask(N);
}]>;
def UNPCKL_shuffle_mask : PatLeaf<(build_vector), [{
return X86::isUNPCKLMask(N);
}]>;
def UNPCKH_shuffle_mask : PatLeaf<(build_vector), [{
return X86::isUNPCKHMask(N);
}]>;
def UNPCKL_v_undef_shuffle_mask : PatLeaf<(build_vector), [{
return X86::isUNPCKL_v_undef_Mask(N);
}]>;
def UNPCKH_v_undef_shuffle_mask : PatLeaf<(build_vector), [{
return X86::isUNPCKH_v_undef_Mask(N);
}]>;
def PSHUFD_shuffle_mask : PatLeaf<(build_vector), [{
return X86::isPSHUFDMask(N);
}], SHUFFLE_get_shuf_imm>;
def PSHUFHW_shuffle_mask : PatLeaf<(build_vector), [{
return X86::isPSHUFHWMask(N);
}], SHUFFLE_get_pshufhw_imm>;
def PSHUFLW_shuffle_mask : PatLeaf<(build_vector), [{
return X86::isPSHUFLWMask(N);
}], SHUFFLE_get_pshuflw_imm>;
def SHUFP_unary_shuffle_mask : PatLeaf<(build_vector), [{
return X86::isPSHUFDMask(N);
}], SHUFFLE_get_shuf_imm>;
def SHUFP_shuffle_mask : PatLeaf<(build_vector), [{
return X86::isSHUFPMask(N);
}], SHUFFLE_get_shuf_imm>;
def PSHUFD_binary_shuffle_mask : PatLeaf<(build_vector), [{
return X86::isSHUFPMask(N);
}], SHUFFLE_get_shuf_imm>;
//===----------------------------------------------------------------------===//
// SSE scalar FP Instructions
//===----------------------------------------------------------------------===//
// CMOV* - Used to implement the SSE SELECT DAG operation. Expanded by the
// scheduler into a branch sequence.
let usesCustomDAGSchedInserter = 1 in { // Expanded by the scheduler.
def CMOV_FR32 : I<0, Pseudo,
(ops FR32:$dst, FR32:$t, FR32:$f, i8imm:$cond),
"#CMOV_FR32 PSEUDO!",
[(set FR32:$dst, (X86cmov FR32:$t, FR32:$f, imm:$cond))]>;
def CMOV_FR64 : I<0, Pseudo,
(ops FR64:$dst, FR64:$t, FR64:$f, i8imm:$cond),
"#CMOV_FR64 PSEUDO!",
[(set FR64:$dst, (X86cmov FR64:$t, FR64:$f, imm:$cond))]>;
def CMOV_V4F32 : I<0, Pseudo,
(ops VR128:$dst, VR128:$t, VR128:$f, i8imm:$cond),
"#CMOV_V4F32 PSEUDO!",
[(set VR128:$dst,
(v4f32 (X86cmov VR128:$t, VR128:$f, imm:$cond)))]>;
def CMOV_V2F64 : I<0, Pseudo,
(ops VR128:$dst, VR128:$t, VR128:$f, i8imm:$cond),
"#CMOV_V2F64 PSEUDO!",
[(set VR128:$dst,
(v2f64 (X86cmov VR128:$t, VR128:$f, imm:$cond)))]>;
def CMOV_V2I64 : I<0, Pseudo,
(ops VR128:$dst, VR128:$t, VR128:$f, i8imm:$cond),
"#CMOV_V2I64 PSEUDO!",
[(set VR128:$dst,
(v2i64 (X86cmov VR128:$t, VR128:$f, imm:$cond)))]>;
}
//===----------------------------------------------------------------------===//
// SSE1 Instructions
//===----------------------------------------------------------------------===//
// SSE1 Instruction Templates:
//
// SSI - SSE1 instructions with XS prefix.
// PSI - SSE1 instructions with TB prefix.
// PSIi8 - SSE1 instructions with ImmT == Imm8 and TB prefix.
class SSI<bits<8> o, Format F, dag ops, string asm, list<dag> pattern>
: I<o, F, ops, asm, pattern>, XS, Requires<[HasSSE1]>;
class PSI<bits<8> o, Format F, dag ops, string asm, list<dag> pattern>
: I<o, F, ops, asm, pattern>, TB, Requires<[HasSSE1]>;
class PSIi8<bits<8> o, Format F, dag ops, string asm, list<dag> pattern>
: Ii8<o, F, ops, asm, pattern>, TB, Requires<[HasSSE1]>;
// Helpers for defining instructions that directly correspond to intrinsics.
multiclass SS_IntUnary<bits<8> o, string OpcodeStr, Intrinsic IntId> {
def r : SSI<o, MRMSrcReg, (ops VR128:$dst, VR128:$src),
!strconcat(OpcodeStr, " {$src, $dst|$dst, $src}"),
[(set VR128:$dst, (v4f32 (IntId VR128:$src)))]>;
def m : SSI<o, MRMSrcMem, (ops VR128:$dst, ssmem:$src),
!strconcat(OpcodeStr, " {$src, $dst|$dst, $src}"),
[(set VR128:$dst, (v4f32 (IntId sse_load_f32:$src)))]>;
}
// Move Instructions
def MOVSSrr : SSI<0x10, MRMSrcReg, (ops FR32:$dst, FR32:$src),
"movss {$src, $dst|$dst, $src}", []>;
def MOVSSrm : SSI<0x10, MRMSrcMem, (ops FR32:$dst, f32mem:$src),
"movss {$src, $dst|$dst, $src}",
[(set FR32:$dst, (loadf32 addr:$src))]>;
def MOVSSmr : SSI<0x11, MRMDestMem, (ops f32mem:$dst, FR32:$src),
"movss {$src, $dst|$dst, $src}",
[(store FR32:$src, addr:$dst)]>;
def SQRTSSr : SSI<0x51, MRMSrcReg, (ops FR32:$dst, FR32:$src),
"sqrtss {$src, $dst|$dst, $src}",
[(set FR32:$dst, (fsqrt FR32:$src))]>;
def SQRTSSm : SSI<0x51, MRMSrcMem, (ops FR32:$dst, f32mem:$src),
"sqrtss {$src, $dst|$dst, $src}",
[(set FR32:$dst, (fsqrt (loadf32 addr:$src)))]>;
// Aliases to match intrinsics which expect XMM operand(s).
defm SQRTSS_Int : SS_IntUnary<0x51, "sqrtss" , int_x86_sse_sqrt_ss>;
defm RSQRTSS_Int : SS_IntUnary<0x52, "rsqrtss", int_x86_sse_rsqrt_ss>;
defm RCPSS_Int : SS_IntUnary<0x53, "rcpss" , int_x86_sse_rcp_ss>;
// Conversion instructions
def CVTTSS2SIrr : SSI<0x2C, MRMSrcReg, (ops GR32:$dst, FR32:$src),
"cvttss2si {$src, $dst|$dst, $src}",
[(set GR32:$dst, (fp_to_sint FR32:$src))]>;
def CVTTSS2SIrm : SSI<0x2C, MRMSrcMem, (ops GR32:$dst, f32mem:$src),
"cvttss2si {$src, $dst|$dst, $src}",
[(set GR32:$dst, (fp_to_sint (loadf32 addr:$src)))]>;
def CVTSI2SSrr : SSI<0x2A, MRMSrcReg, (ops FR32:$dst, GR32:$src),
"cvtsi2ss {$src, $dst|$dst, $src}",
[(set FR32:$dst, (sint_to_fp GR32:$src))]>;
def CVTSI2SSrm : SSI<0x2A, MRMSrcMem, (ops FR32:$dst, i32mem:$src),
"cvtsi2ss {$src, $dst|$dst, $src}",
[(set FR32:$dst, (sint_to_fp (loadi32 addr:$src)))]>;
// Match intrinsics which expect XMM operand(s).
def Int_CVTSS2SIrr : SSI<0x2D, MRMSrcReg, (ops GR32:$dst, VR128:$src),
"cvtss2si {$src, $dst|$dst, $src}",
[(set GR32:$dst, (int_x86_sse_cvtss2si VR128:$src))]>;
def Int_CVTSS2SIrm : SSI<0x2D, MRMSrcMem, (ops GR32:$dst, f32mem:$src),
"cvtss2si {$src, $dst|$dst, $src}",
[(set GR32:$dst, (int_x86_sse_cvtss2si
(load addr:$src)))]>;
// Aliases for intrinsics
def Int_CVTTSS2SIrr : SSI<0x2C, MRMSrcReg, (ops GR32:$dst, VR128:$src),
"cvttss2si {$src, $dst|$dst, $src}",
[(set GR32:$dst,
(int_x86_sse_cvttss2si VR128:$src))]>;
def Int_CVTTSS2SIrm : SSI<0x2C, MRMSrcMem, (ops GR32:$dst, f32mem:$src),
"cvttss2si {$src, $dst|$dst, $src}",
[(set GR32:$dst,
(int_x86_sse_cvttss2si(load addr:$src)))]>;
let isTwoAddress = 1 in {
def Int_CVTSI2SSrr : SSI<0x2A, MRMSrcReg,
(ops VR128:$dst, VR128:$src1, GR32:$src2),
"cvtsi2ss {$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (int_x86_sse_cvtsi2ss VR128:$src1,
GR32:$src2))]>;
def Int_CVTSI2SSrm : SSI<0x2A, MRMSrcMem,
(ops VR128:$dst, VR128:$src1, i32mem:$src2),
"cvtsi2ss {$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (int_x86_sse_cvtsi2ss VR128:$src1,
(loadi32 addr:$src2)))]>;
}
// Comparison instructions
let isTwoAddress = 1 in {
def CMPSSrr : SSI<0xC2, MRMSrcReg,
(ops FR32:$dst, FR32:$src1, FR32:$src, SSECC:$cc),
"cmp${cc}ss {$src, $dst|$dst, $src}",
[]>;
def CMPSSrm : SSI<0xC2, MRMSrcMem,
(ops FR32:$dst, FR32:$src1, f32mem:$src, SSECC:$cc),
"cmp${cc}ss {$src, $dst|$dst, $src}", []>;
}
def UCOMISSrr: PSI<0x2E, MRMSrcReg, (ops FR32:$src1, FR32:$src2),
"ucomiss {$src2, $src1|$src1, $src2}",
[(X86cmp FR32:$src1, FR32:$src2)]>;
def UCOMISSrm: PSI<0x2E, MRMSrcMem, (ops FR32:$src1, f32mem:$src2),
"ucomiss {$src2, $src1|$src1, $src2}",
[(X86cmp FR32:$src1, (loadf32 addr:$src2))]>;
// Aliases to match intrinsics which expect XMM operand(s).
let isTwoAddress = 1 in {
def Int_CMPSSrr : SSI<0xC2, MRMSrcReg,
(ops VR128:$dst, VR128:$src1, VR128:$src, SSECC:$cc),
"cmp${cc}ss {$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse_cmp_ss VR128:$src1,
VR128:$src, imm:$cc))]>;
def Int_CMPSSrm : SSI<0xC2, MRMSrcMem,
(ops VR128:$dst, VR128:$src1, f32mem:$src, SSECC:$cc),
"cmp${cc}ss {$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse_cmp_ss VR128:$src1,
(load addr:$src), imm:$cc))]>;
}
def Int_UCOMISSrr: PSI<0x2E, MRMSrcReg, (ops VR128:$src1, VR128:$src2),
"ucomiss {$src2, $src1|$src1, $src2}",
[(X86ucomi (v4f32 VR128:$src1), VR128:$src2)]>;
def Int_UCOMISSrm: PSI<0x2E, MRMSrcMem, (ops VR128:$src1, f128mem:$src2),
"ucomiss {$src2, $src1|$src1, $src2}",
[(X86ucomi (v4f32 VR128:$src1), (load addr:$src2))]>;
def Int_COMISSrr: PSI<0x2F, MRMSrcReg, (ops VR128:$src1, VR128:$src2),
"comiss {$src2, $src1|$src1, $src2}",
[(X86comi (v4f32 VR128:$src1), VR128:$src2)]>;
def Int_COMISSrm: PSI<0x2F, MRMSrcMem, (ops VR128:$src1, f128mem:$src2),
"comiss {$src2, $src1|$src1, $src2}",
[(X86comi (v4f32 VR128:$src1), (load addr:$src2))]>;
// Aliases of packed SSE1 instructions for scalar use. These all have names that
// start with 'Fs'.
// Alias instructions that map fld0 to pxor for sse.
def FsFLD0SS : I<0xEF, MRMInitReg, (ops FR32:$dst),
"pxor $dst, $dst", [(set FR32:$dst, fp32imm0)]>,
Requires<[HasSSE1]>, TB, OpSize;
// Alias instruction to do FR32 reg-to-reg copy using movaps. Upper bits are
// disregarded.
def FsMOVAPSrr : PSI<0x28, MRMSrcReg, (ops FR32:$dst, FR32:$src),
"movaps {$src, $dst|$dst, $src}", []>;
// Alias instruction to load FR32 from f128mem using movaps. Upper bits are
// disregarded.
def FsMOVAPSrm : PSI<0x28, MRMSrcMem, (ops FR32:$dst, f128mem:$src),
"movaps {$src, $dst|$dst, $src}",
[(set FR32:$dst, (X86loadpf32 addr:$src))]>;
// Alias bitwise logical operations using SSE logical ops on packed FP values.
let isTwoAddress = 1 in {
let isCommutable = 1 in {
def FsANDPSrr : PSI<0x54, MRMSrcReg, (ops FR32:$dst, FR32:$src1, FR32:$src2),
"andps {$src2, $dst|$dst, $src2}",
[(set FR32:$dst, (X86fand FR32:$src1, FR32:$src2))]>;
def FsORPSrr : PSI<0x56, MRMSrcReg, (ops FR32:$dst, FR32:$src1, FR32:$src2),
"orps {$src2, $dst|$dst, $src2}",
[(set FR32:$dst, (X86for FR32:$src1, FR32:$src2))]>;
def FsXORPSrr : PSI<0x57, MRMSrcReg, (ops FR32:$dst, FR32:$src1, FR32:$src2),
"xorps {$src2, $dst|$dst, $src2}",
[(set FR32:$dst, (X86fxor FR32:$src1, FR32:$src2))]>;
}
def FsANDPSrm : PSI<0x54, MRMSrcMem, (ops FR32:$dst, FR32:$src1, f128mem:$src2),
"andps {$src2, $dst|$dst, $src2}",
[(set FR32:$dst, (X86fand FR32:$src1,
(X86loadpf32 addr:$src2)))]>;
def FsORPSrm : PSI<0x56, MRMSrcMem, (ops FR32:$dst, FR32:$src1, f128mem:$src2),
"orps {$src2, $dst|$dst, $src2}",
[(set FR32:$dst, (X86for FR32:$src1,
(X86loadpf32 addr:$src2)))]>;
def FsXORPSrm : PSI<0x57, MRMSrcMem, (ops FR32:$dst, FR32:$src1, f128mem:$src2),
"xorps {$src2, $dst|$dst, $src2}",
[(set FR32:$dst, (X86fxor FR32:$src1,
(X86loadpf32 addr:$src2)))]>;
def FsANDNPSrr : PSI<0x55, MRMSrcReg, (ops FR32:$dst, FR32:$src1, FR32:$src2),
"andnps {$src2, $dst|$dst, $src2}", []>;
def FsANDNPSrm : PSI<0x55, MRMSrcMem, (ops FR32:$dst, FR32:$src1, f128mem:$src2),
"andnps {$src2, $dst|$dst, $src2}", []>;
}
/// scalar_sse1_fp_binop_rm - Scalar SSE1 binops come in three basic forms:
///
/// 1. f32 - This comes in SSE1 form for floats.
/// 2. rr vs rm - They include a reg+reg form and a reg+mem form.
///
/// In addition, scalar SSE ops have an intrinsic form. This form is unlike the
/// normal form, in that they take an entire vector (instead of a scalar) and
/// leave the top elements undefined. This adds another two variants of the
/// above permutations, giving us 8 forms for 'instruction'.
///
let isTwoAddress = 1 in {
multiclass scalar_sse1_fp_binop_rm<bits<8> opc, string OpcodeStr,
SDNode OpNode, Intrinsic F32Int,
bit Commutable = 0> {
// Scalar operation, reg+reg.
def SSrr : SSI<opc, MRMSrcReg, (ops FR32:$dst, FR32:$src1, FR32:$src2),
!strconcat(OpcodeStr, "ss {$src2, $dst|$dst, $src2}"),
[(set FR32:$dst, (OpNode FR32:$src1, FR32:$src2))]> {
let isCommutable = Commutable;
}
// Scalar operation, reg+mem.
def SSrm : SSI<opc, MRMSrcMem, (ops FR32:$dst, FR32:$src1, f32mem:$src2),
!strconcat(OpcodeStr, "ss {$src2, $dst|$dst, $src2}"),
[(set FR32:$dst, (OpNode FR32:$src1, (load addr:$src2)))]>;
// Vector intrinsic operation, reg+reg.
def SSrr_Int : SSI<opc, MRMSrcReg, (ops VR128:$dst, VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, "ss {$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (F32Int VR128:$src1, VR128:$src2))]> {
let isCommutable = Commutable;
}
// Vector intrinsic operation, reg+mem.
def SSrm_Int : SSI<opc, MRMSrcMem, (ops VR128:$dst, VR128:$src1, ssmem:$src2),
!strconcat(OpcodeStr, "ss {$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (F32Int VR128:$src1,
sse_load_f32:$src2))]>;
}
}
// Arithmetic instructions
defm ADD : scalar_sse1_fp_binop_rm<0x58, "add", fadd, int_x86_sse_add_ss, 1>;
defm MUL : scalar_sse1_fp_binop_rm<0x59, "mul", fmul, int_x86_sse_mul_ss, 1>;
defm SUB : scalar_sse1_fp_binop_rm<0x5C, "sub", fsub, int_x86_sse_sub_ss>;
defm DIV : scalar_sse1_fp_binop_rm<0x5E, "div", fdiv, int_x86_sse_div_ss>;
defm MAX : scalar_sse1_fp_binop_rm<0x5F, "max", X86fmax, int_x86_sse_max_ss>;
defm MIN : scalar_sse1_fp_binop_rm<0x5D, "min", X86fmin, int_x86_sse_min_ss>;
//===----------------------------------------------------------------------===//
// SSE packed FP Instructions
// Move Instructions
def MOVAPSrr : PSI<0x28, MRMSrcReg, (ops VR128:$dst, VR128:$src),
"movaps {$src, $dst|$dst, $src}", []>;
def MOVAPSrm : PSI<0x28, MRMSrcMem, (ops VR128:$dst, f128mem:$src),
"movaps {$src, $dst|$dst, $src}",
[(set VR128:$dst, (loadv4f32 addr:$src))]>;
def MOVAPSmr : PSI<0x29, MRMDestMem, (ops f128mem:$dst, VR128:$src),
"movaps {$src, $dst|$dst, $src}",
[(store (v4f32 VR128:$src), addr:$dst)]>;
def MOVUPSrr : PSI<0x10, MRMSrcReg, (ops VR128:$dst, VR128:$src),
"movups {$src, $dst|$dst, $src}", []>;
def MOVUPSrm : PSI<0x10, MRMSrcMem, (ops VR128:$dst, f128mem:$src),
"movups {$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse_loadu_ps addr:$src))]>;
def MOVUPSmr : PSI<0x11, MRMDestMem, (ops f128mem:$dst, VR128:$src),
"movups {$src, $dst|$dst, $src}",
[(int_x86_sse_storeu_ps addr:$dst, VR128:$src)]>;
let isTwoAddress = 1 in {
let AddedComplexity = 20 in {
def MOVLPSrm : PSI<0x12, MRMSrcMem, (ops VR128:$dst, VR128:$src1, f64mem:$src2),
"movlps {$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v4f32 (vector_shuffle VR128:$src1,
(bc_v4f32 (v2f64 (scalar_to_vector (loadf64 addr:$src2)))),
MOVLP_shuffle_mask)))]>;
def MOVHPSrm : PSI<0x16, MRMSrcMem, (ops VR128:$dst, VR128:$src1, f64mem:$src2),
"movhps {$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v4f32 (vector_shuffle VR128:$src1,
(bc_v4f32 (v2f64 (scalar_to_vector (loadf64 addr:$src2)))),
MOVHP_shuffle_mask)))]>;
} // AddedComplexity
} // isTwoAddress
def MOVLPSmr : PSI<0x13, MRMDestMem, (ops f64mem:$dst, VR128:$src),
"movlps {$src, $dst|$dst, $src}",
[(store (f64 (vector_extract (bc_v2f64 (v4f32 VR128:$src)),
(iPTR 0))), addr:$dst)]>;
// v2f64 extract element 1 is always custom lowered to unpack high to low
// and extract element 0 so the non-store version isn't too horrible.
def MOVHPSmr : PSI<0x17, MRMDestMem, (ops f64mem:$dst, VR128:$src),
"movhps {$src, $dst|$dst, $src}",
[(store (f64 (vector_extract
(v2f64 (vector_shuffle
(bc_v2f64 (v4f32 VR128:$src)), (undef),
UNPCKH_shuffle_mask)), (iPTR 0))),
addr:$dst)]>;
let isTwoAddress = 1 in {
let AddedComplexity = 15 in {
def MOVLHPSrr : PSI<0x16, MRMSrcReg, (ops VR128:$dst, VR128:$src1, VR128:$src2),
"movlhps {$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v4f32 (vector_shuffle VR128:$src1, VR128:$src2,
MOVHP_shuffle_mask)))]>;
def MOVHLPSrr : PSI<0x12, MRMSrcReg, (ops VR128:$dst, VR128:$src1, VR128:$src2),
"movhlps {$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v4f32 (vector_shuffle VR128:$src1, VR128:$src2,
MOVHLPS_shuffle_mask)))]>;
} // AddedComplexity
} // isTwoAddress
/// packed_sse1_fp_binop_rm - Packed SSE binops come in three basic forms:
/// 1. v4f32 - This comes in SSE1 form for float.
/// 2. rr vs rm - They include a reg+reg form and a ref+mem form.
///
let isTwoAddress = 1 in {
multiclass packed_sse1_fp_binop_rm<bits<8> opc, string OpcodeStr,
SDNode OpNode, bit Commutable = 0> {
// Packed operation, reg+reg.
def PSrr : PSI<opc, MRMSrcReg, (ops VR128:$dst, VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, "ps {$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (v4f32 (OpNode VR128:$src1, VR128:$src2)))]> {
let isCommutable = Commutable;
}
// Packed operation, reg+mem.
def PSrm : PSI<opc, MRMSrcMem, (ops VR128:$dst, VR128:$src1, f128mem:$src2),
!strconcat(OpcodeStr, "ps {$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (OpNode VR128:$src1, (loadv4f32 addr:$src2)))]>;
}
}
defm ADD : packed_sse1_fp_binop_rm<0x58, "add", fadd, 1>;
defm MUL : packed_sse1_fp_binop_rm<0x59, "mul", fmul, 1>;
defm DIV : packed_sse1_fp_binop_rm<0x5E, "div", fdiv>;
defm SUB : packed_sse1_fp_binop_rm<0x5C, "sub", fsub>;
// Arithmetic
class PS_Intr<bits<8> o, string OpcodeStr, Intrinsic IntId>
: PSI<o, MRMSrcReg, (ops VR128:$dst, VR128:$src),
!strconcat(OpcodeStr, " {$src, $dst|$dst, $src}"),
[(set VR128:$dst, (IntId VR128:$src))]>;
class PS_Intm<bits<8> o, string OpcodeStr, Intrinsic IntId>
: PSI<o, MRMSrcMem, (ops VR128:$dst, f32mem:$src),
!strconcat(OpcodeStr, " {$src, $dst|$dst, $src}"),
[(set VR128:$dst, (IntId (load addr:$src)))]>;
class PS_Intrr<bits<8> o, string OpcodeStr, Intrinsic IntId>
: PSI<o, MRMSrcReg, (ops VR128:$dst, VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, " {$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (IntId VR128:$src1, VR128:$src2))]>;
class PS_Intrm<bits<8> o, string OpcodeStr, Intrinsic IntId>
: PSI<o, MRMSrcMem, (ops VR128:$dst, VR128:$src1, f32mem:$src2),
!strconcat(OpcodeStr, " {$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (IntId VR128:$src1, (load addr:$src2)))]>;
def SQRTPSr : PS_Intr<0x51, "sqrtps", int_x86_sse_sqrt_ps>;
def SQRTPSm : PS_Intm<0x51, "sqrtps", int_x86_sse_sqrt_ps>;
def RSQRTPSr : PS_Intr<0x52, "rsqrtps", int_x86_sse_rsqrt_ps>;
def RSQRTPSm : PS_Intm<0x52, "rsqrtps", int_x86_sse_rsqrt_ps>;
def RCPPSr : PS_Intr<0x53, "rcpps", int_x86_sse_rcp_ps>;
def RCPPSm : PS_Intm<0x53, "rcpps", int_x86_sse_rcp_ps>;
let isTwoAddress = 1 in {
let isCommutable = 1 in {
def MAXPSrr : PS_Intrr<0x5F, "maxps", int_x86_sse_max_ps>;
def MINPSrr : PS_Intrr<0x5D, "minps", int_x86_sse_min_ps>;
}
def MAXPSrm : PS_Intrm<0x5F, "maxps", int_x86_sse_max_ps>;
def MINPSrm : PS_Intrm<0x5D, "minps", int_x86_sse_min_ps>;
}
// Logical
let isTwoAddress = 1 in {
let isCommutable = 1 in {
def ANDPSrr : PSI<0x54, MRMSrcReg,
(ops VR128:$dst, VR128:$src1, VR128:$src2),
"andps {$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (v2i64
(and VR128:$src1, VR128:$src2)))]>;
def ORPSrr : PSI<0x56, MRMSrcReg,
(ops VR128:$dst, VR128:$src1, VR128:$src2),
"orps {$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (v2i64
(or VR128:$src1, VR128:$src2)))]>;
def XORPSrr : PSI<0x57, MRMSrcReg,
(ops VR128:$dst, VR128:$src1, VR128:$src2),
"xorps {$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (v2i64
(xor VR128:$src1, VR128:$src2)))]>;
}
def ANDPSrm : PSI<0x54, MRMSrcMem,
(ops VR128:$dst, VR128:$src1, f128mem:$src2),
"andps {$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (and VR128:$src1,
(bc_v2i64 (loadv4f32 addr:$src2))))]>;
def ORPSrm : PSI<0x56, MRMSrcMem,
(ops VR128:$dst, VR128:$src1, f128mem:$src2),
"orps {$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (or VR128:$src1,
(bc_v2i64 (loadv4f32 addr:$src2))))]>;
def XORPSrm : PSI<0x57, MRMSrcMem,
(ops VR128:$dst, VR128:$src1, f128mem:$src2),
"xorps {$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (xor VR128:$src1,
(bc_v2i64 (loadv4f32 addr:$src2))))]>;
def ANDNPSrr : PSI<0x55, MRMSrcReg,
(ops VR128:$dst, VR128:$src1, VR128:$src2),
"andnps {$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v2i64 (and (xor VR128:$src1,
(bc_v2i64 (v4i32 immAllOnesV))),
VR128:$src2)))]>;
def ANDNPSrm : PSI<0x55, MRMSrcMem,
(ops VR128:$dst, VR128:$src1,f128mem:$src2),
"andnps {$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v2i64 (and (xor VR128:$src1,
(bc_v2i64 (v4i32 immAllOnesV))),
(bc_v2i64 (loadv4f32 addr:$src2)))))]>;
}
let isTwoAddress = 1 in {
def CMPPSrri : PSIi8<0xC2, MRMSrcReg,
(ops VR128:$dst, VR128:$src1, VR128:$src, SSECC:$cc),
"cmp${cc}ps {$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse_cmp_ps VR128:$src1,
VR128:$src, imm:$cc))]>;
def CMPPSrmi : PSIi8<0xC2, MRMSrcMem,
(ops VR128:$dst, VR128:$src1, f128mem:$src, SSECC:$cc),
"cmp${cc}ps {$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse_cmp_ps VR128:$src1,
(load addr:$src), imm:$cc))]>;
}
// Shuffle and unpack instructions
let isTwoAddress = 1 in {
let isConvertibleToThreeAddress = 1 in // Convert to pshufd
def SHUFPSrri : PSIi8<0xC6, MRMSrcReg,
(ops VR128:$dst, VR128:$src1,
VR128:$src2, i32i8imm:$src3),
"shufps {$src3, $src2, $dst|$dst, $src2, $src3}",
[(set VR128:$dst,
(v4f32 (vector_shuffle
VR128:$src1, VR128:$src2,
SHUFP_shuffle_mask:$src3)))]>;
def SHUFPSrmi : PSIi8<0xC6, MRMSrcMem,
(ops VR128:$dst, VR128:$src1,
f128mem:$src2, i32i8imm:$src3),
"shufps {$src3, $src2, $dst|$dst, $src2, $src3}",
[(set VR128:$dst,
(v4f32 (vector_shuffle
VR128:$src1, (load addr:$src2),
SHUFP_shuffle_mask:$src3)))]>;
let AddedComplexity = 10 in {
def UNPCKHPSrr : PSI<0x15, MRMSrcReg,
(ops VR128:$dst, VR128:$src1, VR128:$src2),
"unpckhps {$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v4f32 (vector_shuffle
VR128:$src1, VR128:$src2,
UNPCKH_shuffle_mask)))]>;
def UNPCKHPSrm : PSI<0x15, MRMSrcMem,
(ops VR128:$dst, VR128:$src1, f128mem:$src2),
"unpckhps {$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v4f32 (vector_shuffle
VR128:$src1, (load addr:$src2),
UNPCKH_shuffle_mask)))]>;
def UNPCKLPSrr : PSI<0x14, MRMSrcReg,
(ops VR128:$dst, VR128:$src1, VR128:$src2),
"unpcklps {$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v4f32 (vector_shuffle
VR128:$src1, VR128:$src2,
UNPCKL_shuffle_mask)))]>;
def UNPCKLPSrm : PSI<0x14, MRMSrcMem,
(ops VR128:$dst, VR128:$src1, f128mem:$src2),
"unpcklps {$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v4f32 (vector_shuffle
VR128:$src1, (load addr:$src2),
UNPCKL_shuffle_mask)))]>;
} // AddedComplexity
} // isTwoAddress
// Mask creation
def MOVMSKPSrr : PSI<0x50, MRMSrcReg, (ops GR32:$dst, VR128:$src),
"movmskps {$src, $dst|$dst, $src}",
[(set GR32:$dst, (int_x86_sse_movmsk_ps VR128:$src))]>;
def MOVMSKPDrr : PSI<0x50, MRMSrcReg, (ops GR32:$dst, VR128:$src),
"movmskpd {$src, $dst|$dst, $src}",
[(set GR32:$dst, (int_x86_sse2_movmsk_pd VR128:$src))]>;
// Prefetching loads.
// TODO: no intrinsics for these?
def PREFETCHT0 : PSI<0x18, MRM1m, (ops i8mem:$src), "prefetcht0 $src", []>;
def PREFETCHT1 : PSI<0x18, MRM2m, (ops i8mem:$src), "prefetcht1 $src", []>;
def PREFETCHT2 : PSI<0x18, MRM3m, (ops i8mem:$src), "prefetcht2 $src", []>;
def PREFETCHNTA : PSI<0x18, MRM0m, (ops i8mem:$src), "prefetchnta $src", []>;
// Non-temporal stores
def MOVNTPSmr : PSI<0x2B, MRMDestMem, (ops i128mem:$dst, VR128:$src),
"movntps {$src, $dst|$dst, $src}",
[(int_x86_sse_movnt_ps addr:$dst, VR128:$src)]>;
// Load, store, and memory fence
def SFENCE : PSI<0xAE, MRM7m, (ops), "sfence", [(int_x86_sse_sfence)]>;
// MXCSR register
def LDMXCSR : PSI<0xAE, MRM2m, (ops i32mem:$src),
"ldmxcsr $src", [(int_x86_sse_ldmxcsr addr:$src)]>;
def STMXCSR : PSI<0xAE, MRM3m, (ops i32mem:$dst),
"stmxcsr $dst", [(int_x86_sse_stmxcsr addr:$dst)]>;
// Alias instructions that map zero vector to pxor / xorp* for sse.
// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
def V_SET0 : PSI<0x57, MRMInitReg, (ops VR128:$dst),
"xorps $dst, $dst",
[(set VR128:$dst, (v4f32 immAllZerosV))]>;
// FR32 to 128-bit vector conversion.
def MOVSS2PSrr : SSI<0x10, MRMSrcReg, (ops VR128:$dst, FR32:$src),
"movss {$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4f32 (scalar_to_vector FR32:$src)))]>;
def MOVSS2PSrm : SSI<0x10, MRMSrcMem, (ops VR128:$dst, f32mem:$src),
"movss {$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4f32 (scalar_to_vector (loadf32 addr:$src))))]>;
// FIXME: may not be able to eliminate this movss with coalescing the src and
// dest register classes are different. We really want to write this pattern
// like this:
// def : Pat<(f32 (vector_extract (v4f32 VR128:$src), (iPTR 0))),
// (f32 FR32:$src)>;
def MOVPS2SSrr : SSI<0x10, MRMSrcReg, (ops FR32:$dst, VR128:$src),
"movss {$src, $dst|$dst, $src}",
[(set FR32:$dst, (vector_extract (v4f32 VR128:$src),
(iPTR 0)))]>;
def MOVPS2SSmr : SSI<0x11, MRMDestMem, (ops f32mem:$dst, VR128:$src),
"movss {$src, $dst|$dst, $src}",
[(store (f32 (vector_extract (v4f32 VR128:$src),
(iPTR 0))), addr:$dst)]>;
// Move to lower bits of a VR128, leaving upper bits alone.
// Three operand (but two address) aliases.
let isTwoAddress = 1 in {
def MOVLSS2PSrr : SSI<0x10, MRMSrcReg,
(ops VR128:$dst, VR128:$src1, FR32:$src2),
"movss {$src2, $dst|$dst, $src2}", []>;
let AddedComplexity = 15 in
def MOVLPSrr : SSI<0x10, MRMSrcReg,
(ops VR128:$dst, VR128:$src1, VR128:$src2),
"movss {$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v4f32 (vector_shuffle VR128:$src1, VR128:$src2,
MOVL_shuffle_mask)))]>;
}
// Move to lower bits of a VR128 and zeroing upper bits.
// Loading from memory automatically zeroing upper bits.
let AddedComplexity = 20 in
def MOVZSS2PSrm : SSI<0x10, MRMSrcMem, (ops VR128:$dst, f32mem:$src),
"movss {$src, $dst|$dst, $src}",
[(set VR128:$dst, (v4f32 (vector_shuffle immAllZerosV,
(v4f32 (scalar_to_vector (loadf32 addr:$src))),
MOVL_shuffle_mask)))]>;
//===----------------------------------------------------------------------===//
// SSE2 Instructions
//===----------------------------------------------------------------------===//
// SSE2 Instruction Templates:
//
// SDI - SSE2 instructions with XD prefix.
// PDI - SSE2 instructions with TB and OpSize prefixes.
// PDIi8 - SSE2 instructions with ImmT == Imm8 and TB and OpSize prefixes.
class SDI<bits<8> o, Format F, dag ops, string asm, list<dag> pattern>
: I<o, F, ops, asm, pattern>, XD, Requires<[HasSSE2]>;
class PDI<bits<8> o, Format F, dag ops, string asm, list<dag> pattern>
: I<o, F, ops, asm, pattern>, TB, OpSize, Requires<[HasSSE2]>;
class PDIi8<bits<8> o, Format F, dag ops, string asm, list<dag> pattern>
: Ii8<o, F, ops, asm, pattern>, TB, OpSize, Requires<[HasSSE2]>;
// Helpers for defining instructions that directly correspond to intrinsics.
multiclass SD_IntUnary<bits<8> o, string OpcodeStr, Intrinsic IntId> {
def r : SDI<o, MRMSrcReg, (ops VR128:$dst, VR128:$src),
!strconcat(OpcodeStr, " {$src, $dst|$dst, $src}"),
[(set VR128:$dst, (v2f64 (IntId VR128:$src)))]>;
def m : SDI<o, MRMSrcMem, (ops VR128:$dst, sdmem:$src),
!strconcat(OpcodeStr, " {$src, $dst|$dst, $src}"),
[(set VR128:$dst, (v2f64 (IntId sse_load_f64:$src)))]>;
}
// Move Instructions
def MOVSDrr : SDI<0x10, MRMSrcReg, (ops FR64:$dst, FR64:$src),
"movsd {$src, $dst|$dst, $src}", []>;
def MOVSDrm : SDI<0x10, MRMSrcMem, (ops FR64:$dst, f64mem:$src),
"movsd {$src, $dst|$dst, $src}",
[(set FR64:$dst, (loadf64 addr:$src))]>;
def MOVSDmr : SDI<0x11, MRMDestMem, (ops f64mem:$dst, FR64:$src),
"movsd {$src, $dst|$dst, $src}",
[(store FR64:$src, addr:$dst)]>;
def SQRTSDr : SDI<0x51, MRMSrcReg, (ops FR64:$dst, FR64:$src),
"sqrtsd {$src, $dst|$dst, $src}",
[(set FR64:$dst, (fsqrt FR64:$src))]>;
def SQRTSDm : SDI<0x51, MRMSrcMem, (ops FR64:$dst, f64mem:$src),
"sqrtsd {$src, $dst|$dst, $src}",
[(set FR64:$dst, (fsqrt (loadf64 addr:$src)))]>;
// Aliases to match intrinsics which expect XMM operand(s).
defm SQRTSD_Int : SD_IntUnary<0x51, "sqrtsd" , int_x86_sse2_sqrt_sd>;
// Conversion instructions
def CVTTSD2SIrr : SDI<0x2C, MRMSrcReg, (ops GR32:$dst, FR64:$src),
"cvttsd2si {$src, $dst|$dst, $src}",
[(set GR32:$dst, (fp_to_sint FR64:$src))]>;
def CVTTSD2SIrm : SDI<0x2C, MRMSrcMem, (ops GR32:$dst, f64mem:$src),
"cvttsd2si {$src, $dst|$dst, $src}",
[(set GR32:$dst, (fp_to_sint (loadf64 addr:$src)))]>;
def CVTSD2SSrr : SDI<0x5A, MRMSrcReg, (ops FR32:$dst, FR64:$src),
"cvtsd2ss {$src, $dst|$dst, $src}",
[(set FR32:$dst, (fround FR64:$src))]>;
def CVTSD2SSrm : SDI<0x5A, MRMSrcMem, (ops FR32:$dst, f64mem:$src),
"cvtsd2ss {$src, $dst|$dst, $src}",
[(set FR32:$dst, (fround (loadf64 addr:$src)))]>;
def CVTSI2SDrr : SDI<0x2A, MRMSrcReg, (ops FR64:$dst, GR32:$src),
"cvtsi2sd {$src, $dst|$dst, $src}",
[(set FR64:$dst, (sint_to_fp GR32:$src))]>;
def CVTSI2SDrm : SDI<0x2A, MRMSrcMem, (ops FR64:$dst, i32mem:$src),
"cvtsi2sd {$src, $dst|$dst, $src}",
[(set FR64:$dst, (sint_to_fp (loadi32 addr:$src)))]>;
// SSE2 instructions with XS prefix
def CVTSS2SDrr : I<0x5A, MRMSrcReg, (ops FR64:$dst, FR32:$src),
"cvtss2sd {$src, $dst|$dst, $src}",
[(set FR64:$dst, (fextend FR32:$src))]>, XS,
Requires<[HasSSE2]>;
def CVTSS2SDrm : I<0x5A, MRMSrcMem, (ops FR64:$dst, f32mem:$src),
"cvtss2sd {$src, $dst|$dst, $src}",
[(set FR64:$dst, (extloadf32 addr:$src))]>, XS,
Requires<[HasSSE2]>;
// Match intrinsics which expect XMM operand(s).
def Int_CVTSD2SIrr : SDI<0x2D, MRMSrcReg, (ops GR32:$dst, VR128:$src),
"cvtsd2si {$src, $dst|$dst, $src}",
[(set GR32:$dst, (int_x86_sse2_cvtsd2si VR128:$src))]>;
def Int_CVTSD2SIrm : SDI<0x2D, MRMSrcMem, (ops GR32:$dst, f128mem:$src),
"cvtsd2si {$src, $dst|$dst, $src}",
[(set GR32:$dst, (int_x86_sse2_cvtsd2si
(load addr:$src)))]>;
// Aliases for intrinsics
def Int_CVTTSD2SIrr : SDI<0x2C, MRMSrcReg, (ops GR32:$dst, VR128:$src),
"cvttsd2si {$src, $dst|$dst, $src}",
[(set GR32:$dst,
(int_x86_sse2_cvttsd2si VR128:$src))]>;
def Int_CVTTSD2SIrm : SDI<0x2C, MRMSrcMem, (ops GR32:$dst, f128mem:$src),
"cvttsd2si {$src, $dst|$dst, $src}",
[(set GR32:$dst, (int_x86_sse2_cvttsd2si
(load addr:$src)))]>;
// Comparison instructions
let isTwoAddress = 1 in {
def CMPSDrr : SDI<0xC2, MRMSrcReg,
(ops FR64:$dst, FR64:$src1, FR64:$src, SSECC:$cc),
"cmp${cc}sd {$src, $dst|$dst, $src}", []>;
def CMPSDrm : SDI<0xC2, MRMSrcMem,
(ops FR64:$dst, FR64:$src1, f64mem:$src, SSECC:$cc),
"cmp${cc}sd {$src, $dst|$dst, $src}", []>;
}
def UCOMISDrr: PDI<0x2E, MRMSrcReg, (ops FR64:$src1, FR64:$src2),
"ucomisd {$src2, $src1|$src1, $src2}",
[(X86cmp FR64:$src1, FR64:$src2)]>;
def UCOMISDrm: PDI<0x2E, MRMSrcMem, (ops FR64:$src1, f64mem:$src2),
"ucomisd {$src2, $src1|$src1, $src2}",
[(X86cmp FR64:$src1, (loadf64 addr:$src2))]>;
// Aliases to match intrinsics which expect XMM operand(s).
let isTwoAddress = 1 in {
def Int_CMPSDrr : SDI<0xC2, MRMSrcReg,
(ops VR128:$dst, VR128:$src1, VR128:$src, SSECC:$cc),
"cmp${cc}sd {$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cmp_sd VR128:$src1,
VR128:$src, imm:$cc))]>;
def Int_CMPSDrm : SDI<0xC2, MRMSrcMem,
(ops VR128:$dst, VR128:$src1, f64mem:$src, SSECC:$cc),
"cmp${cc}sd {$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cmp_sd VR128:$src1,
(load addr:$src), imm:$cc))]>;
}
def Int_UCOMISDrr: PDI<0x2E, MRMSrcReg, (ops VR128:$src1, VR128:$src2),
"ucomisd {$src2, $src1|$src1, $src2}",
[(X86ucomi (v2f64 VR128:$src1), (v2f64 VR128:$src2))]>;
def Int_UCOMISDrm: PDI<0x2E, MRMSrcMem, (ops VR128:$src1, f128mem:$src2),
"ucomisd {$src2, $src1|$src1, $src2}",
[(X86ucomi (v2f64 VR128:$src1), (load addr:$src2))]>;
def Int_COMISDrr: PDI<0x2F, MRMSrcReg, (ops VR128:$src1, VR128:$src2),
"comisd {$src2, $src1|$src1, $src2}",
[(X86comi (v2f64 VR128:$src1), (v2f64 VR128:$src2))]>;
def Int_COMISDrm: PDI<0x2F, MRMSrcMem, (ops VR128:$src1, f128mem:$src2),
"comisd {$src2, $src1|$src1, $src2}",
[(X86comi (v2f64 VR128:$src1), (load addr:$src2))]>;
// Aliases of packed instructions for scalar use. These all have names that
// start with 'Fs'.
// Alias instructions that map fld0 to pxor for sse.
def FsFLD0SD : I<0xEF, MRMInitReg, (ops FR64:$dst),
"pxor $dst, $dst", [(set FR64:$dst, fp64imm0)]>,
Requires<[HasSSE2]>, TB, OpSize;
// Alias instructions to do FR64 reg-to-reg copy using movapd. Upper bits are
// disregarded.
def FsMOVAPDrr : PDI<0x28, MRMSrcReg, (ops FR64:$dst, FR64:$src),
"movapd {$src, $dst|$dst, $src}", []>;
// Alias instructions to load FR64 from f128mem using movapd. Upper bits are
// disregarded.
def FsMOVAPDrm : PDI<0x28, MRMSrcMem, (ops FR64:$dst, f128mem:$src),
"movapd {$src, $dst|$dst, $src}",
[(set FR64:$dst, (X86loadpf64 addr:$src))]>;
// Alias bitwise logical operations using SSE logical ops on packed FP values.
let isTwoAddress = 1 in {
let isCommutable = 1 in {
def FsANDPDrr : PDI<0x54, MRMSrcReg, (ops FR64:$dst, FR64:$src1, FR64:$src2),
"andpd {$src2, $dst|$dst, $src2}",
[(set FR64:$dst, (X86fand FR64:$src1, FR64:$src2))]>;
def FsORPDrr : PDI<0x56, MRMSrcReg, (ops FR64:$dst, FR64:$src1, FR64:$src2),
"orpd {$src2, $dst|$dst, $src2}",
[(set FR64:$dst, (X86for FR64:$src1, FR64:$src2))]>;
def FsXORPDrr : PDI<0x57, MRMSrcReg, (ops FR64:$dst, FR64:$src1, FR64:$src2),
"xorpd {$src2, $dst|$dst, $src2}",
[(set FR64:$dst, (X86fxor FR64:$src1, FR64:$src2))]>;
}
def FsANDPDrm : PDI<0x54, MRMSrcMem, (ops FR64:$dst, FR64:$src1, f128mem:$src2),
"andpd {$src2, $dst|$dst, $src2}",
[(set FR64:$dst, (X86fand FR64:$src1,
(X86loadpf64 addr:$src2)))]>;
def FsORPDrm : PDI<0x56, MRMSrcMem, (ops FR64:$dst, FR64:$src1, f128mem:$src2),
"orpd {$src2, $dst|$dst, $src2}",
[(set FR64:$dst, (X86for FR64:$src1,
(X86loadpf64 addr:$src2)))]>;
def FsXORPDrm : PDI<0x57, MRMSrcMem, (ops FR64:$dst, FR64:$src1, f128mem:$src2),
"xorpd {$src2, $dst|$dst, $src2}",
[(set FR64:$dst, (X86fxor FR64:$src1,
(X86loadpf64 addr:$src2)))]>;
def FsANDNPDrr : PDI<0x55, MRMSrcReg,
(ops FR64:$dst, FR64:$src1, FR64:$src2),
"andnpd {$src2, $dst|$dst, $src2}", []>;
def FsANDNPDrm : PDI<0x55, MRMSrcMem,
(ops FR64:$dst, FR64:$src1, f128mem:$src2),
"andnpd {$src2, $dst|$dst, $src2}", []>;
}
/// scalar_sse2_fp_binop_rm - Scalar SSE2 binops come in three basic forms:
///
/// 1. f64 - This comes in SSE2 form for doubles.
/// 2. rr vs rm - They include a reg+reg form and a reg+mem form.
///
/// In addition, scalar SSE ops have an intrinsic form. This form is unlike the
/// normal form, in that they take an entire vector (instead of a scalar) and
/// leave the top elements undefined. This adds another two variants of the
/// above permutations, giving us 8 forms for 'instruction'.
///
let isTwoAddress = 1 in {
multiclass scalar_sse2_fp_binop_rm<bits<8> opc, string OpcodeStr,
SDNode OpNode, Intrinsic F64Int,
bit Commutable = 0> {
// Scalar operation, reg+reg.
def SDrr : SDI<opc, MRMSrcReg, (ops FR64:$dst, FR64:$src1, FR64:$src2),
!strconcat(OpcodeStr, "sd {$src2, $dst|$dst, $src2}"),
[(set FR64:$dst, (OpNode FR64:$src1, FR64:$src2))]> {
let isCommutable = Commutable;
}
// Scalar operation, reg+mem.
def SDrm : SDI<opc, MRMSrcMem, (ops FR64:$dst, FR64:$src1, f64mem:$src2),
!strconcat(OpcodeStr, "sd {$src2, $dst|$dst, $src2}"),
[(set FR64:$dst, (OpNode FR64:$src1, (load addr:$src2)))]>;
// Vector intrinsic operation, reg+reg.
def SDrr_Int : SDI<opc, MRMSrcReg, (ops VR128:$dst, VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, "sd {$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (F64Int VR128:$src1, VR128:$src2))]> {
let isCommutable = Commutable;
}
// Vector intrinsic operation, reg+mem.
def SDrm_Int : SDI<opc, MRMSrcMem, (ops VR128:$dst, VR128:$src1, sdmem:$src2),
!strconcat(OpcodeStr, "sd {$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (F64Int VR128:$src1,
sse_load_f64:$src2))]>;
}
}
// Arithmetic instructions
defm ADD : scalar_sse2_fp_binop_rm<0x58, "add", fadd, int_x86_sse2_add_sd, 1>;
defm MUL : scalar_sse2_fp_binop_rm<0x59, "mul", fmul, int_x86_sse2_mul_sd, 1>;
defm SUB : scalar_sse2_fp_binop_rm<0x5C, "sub", fsub, int_x86_sse2_sub_sd>;
defm DIV : scalar_sse2_fp_binop_rm<0x5E, "div", fdiv, int_x86_sse2_div_sd>;
defm MAX : scalar_sse2_fp_binop_rm<0x5F, "max", X86fmax, int_x86_sse2_max_sd>;
defm MIN : scalar_sse2_fp_binop_rm<0x5D, "min", X86fmin, int_x86_sse2_min_sd>;
//===----------------------------------------------------------------------===//
// SSE packed FP Instructions
// Move Instructions
def MOVAPDrr : PDI<0x28, MRMSrcReg, (ops VR128:$dst, VR128:$src),
"movapd {$src, $dst|$dst, $src}", []>;
def MOVAPDrm : PDI<0x28, MRMSrcMem, (ops VR128:$dst, f128mem:$src),
"movapd {$src, $dst|$dst, $src}",
[(set VR128:$dst, (loadv2f64 addr:$src))]>;
def MOVAPDmr : PDI<0x29, MRMDestMem, (ops f128mem:$dst, VR128:$src),
"movapd {$src, $dst|$dst, $src}",
[(store (v2f64 VR128:$src), addr:$dst)]>;
def MOVUPDrr : PDI<0x10, MRMSrcReg, (ops VR128:$dst, VR128:$src),
"movupd {$src, $dst|$dst, $src}", []>;
def MOVUPDrm : PDI<0x10, MRMSrcMem, (ops VR128:$dst, f128mem:$src),
"movupd {$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_loadu_pd addr:$src))]>;
def MOVUPDmr : PDI<0x11, MRMDestMem, (ops f128mem:$dst, VR128:$src),
"movupd {$src, $dst|$dst, $src}",
[(int_x86_sse2_storeu_pd addr:$dst, VR128:$src)]>;
let isTwoAddress = 1 in {
let AddedComplexity = 20 in {
def MOVLPDrm : PDI<0x12, MRMSrcMem,
(ops VR128:$dst, VR128:$src1, f64mem:$src2),
"movlpd {$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v2f64 (vector_shuffle VR128:$src1,
(scalar_to_vector (loadf64 addr:$src2)),
MOVLP_shuffle_mask)))]>;
def MOVHPDrm : PDI<0x16, MRMSrcMem,
(ops VR128:$dst, VR128:$src1, f64mem:$src2),
"movhpd {$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v2f64 (vector_shuffle VR128:$src1,
(scalar_to_vector (loadf64 addr:$src2)),
MOVHP_shuffle_mask)))]>;
} // AddedComplexity
} // isTwoAddress
def MOVLPDmr : PDI<0x13, MRMDestMem, (ops f64mem:$dst, VR128:$src),
"movlpd {$src, $dst|$dst, $src}",
[(store (f64 (vector_extract (v2f64 VR128:$src),
(iPTR 0))), addr:$dst)]>;
// v2f64 extract element 1 is always custom lowered to unpack high to low
// and extract element 0 so the non-store version isn't too horrible.
def MOVHPDmr : PDI<0x17, MRMDestMem, (ops f64mem:$dst, VR128:$src),
"movhpd {$src, $dst|$dst, $src}",
[(store (f64 (vector_extract
(v2f64 (vector_shuffle VR128:$src, (undef),
UNPCKH_shuffle_mask)), (iPTR 0))),
addr:$dst)]>;
// SSE2 instructions without OpSize prefix
def Int_CVTDQ2PSrr : I<0x5B, MRMSrcReg, (ops VR128:$dst, VR128:$src),
"cvtdq2ps {$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtdq2ps VR128:$src))]>,
TB, Requires<[HasSSE2]>;
def Int_CVTDQ2PSrm : I<0x5B, MRMSrcMem, (ops VR128:$dst, i128mem:$src),
"cvtdq2ps {$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtdq2ps
(bitconvert (loadv2i64 addr:$src))))]>,
TB, Requires<[HasSSE2]>;
// SSE2 instructions with XS prefix
def Int_CVTDQ2PDrr : I<0xE6, MRMSrcReg, (ops VR128:$dst, VR128:$src),
"cvtdq2pd {$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtdq2pd VR128:$src))]>,
XS, Requires<[HasSSE2]>;
def Int_CVTDQ2PDrm : I<0xE6, MRMSrcMem, (ops VR128:$dst, i64mem:$src),
"cvtdq2pd {$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtdq2pd
(bitconvert (loadv2i64 addr:$src))))]>,
XS, Requires<[HasSSE2]>;
def Int_CVTPS2DQrr : PDI<0x5B, MRMSrcReg, (ops VR128:$dst, VR128:$src),
"cvtps2dq {$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtps2dq VR128:$src))]>;
def Int_CVTPS2DQrm : PDI<0x5B, MRMSrcMem, (ops VR128:$dst, f128mem:$src),
"cvtps2dq {$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtps2dq
(load addr:$src)))]>;
// SSE2 packed instructions with XS prefix
def Int_CVTTPS2DQrr : I<0x5B, MRMSrcReg, (ops VR128:$dst, VR128:$src),
"cvttps2dq {$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvttps2dq VR128:$src))]>,
XS, Requires<[HasSSE2]>;
def Int_CVTTPS2DQrm : I<0x5B, MRMSrcMem, (ops VR128:$dst, f128mem:$src),
"cvttps2dq {$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvttps2dq
(load addr:$src)))]>,
XS, Requires<[HasSSE2]>;
// SSE2 packed instructions with XD prefix
def Int_CVTPD2DQrr : I<0xE6, MRMSrcReg, (ops VR128:$dst, VR128:$src),
"cvtpd2dq {$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtpd2dq VR128:$src))]>,
XD, Requires<[HasSSE2]>;
def Int_CVTPD2DQrm : I<0xE6, MRMSrcMem, (ops VR128:$dst, f128mem:$src),
"cvtpd2dq {$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtpd2dq
(load addr:$src)))]>,
XD, Requires<[HasSSE2]>;
def Int_CVTTPD2DQrr : PDI<0xE6, MRMSrcReg, (ops VR128:$dst, VR128:$src),
"cvttpd2dq {$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvttpd2dq VR128:$src))]>;
def Int_CVTTPD2DQrm : PDI<0xE6, MRMSrcMem, (ops VR128:$dst, f128mem:$src),
"cvttpd2dq {$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvttpd2dq
(load addr:$src)))]>;
// SSE2 instructions without OpSize prefix
def Int_CVTPS2PDrr : I<0x5A, MRMSrcReg, (ops VR128:$dst, VR128:$src),
"cvtps2pd {$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtps2pd VR128:$src))]>,
TB, Requires<[HasSSE2]>;
def Int_CVTPS2PDrm : I<0x5A, MRMSrcReg, (ops VR128:$dst, f64mem:$src),
"cvtps2pd {$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtps2pd
(load addr:$src)))]>,
TB, Requires<[HasSSE2]>;
def Int_CVTPD2PSrr : PDI<0x5A, MRMSrcReg, (ops VR128:$dst, VR128:$src),
"cvtpd2ps {$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtpd2ps VR128:$src))]>;
def Int_CVTPD2PSrm : PDI<0x5A, MRMSrcReg, (ops VR128:$dst, f128mem:$src),
"cvtpd2ps {$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cvtpd2ps
(load addr:$src)))]>;
// Match intrinsics which expect XMM operand(s).
// Aliases for intrinsics
let isTwoAddress = 1 in {
def Int_CVTSI2SDrr: SDI<0x2A, MRMSrcReg,
(ops VR128:$dst, VR128:$src1, GR32:$src2),
"cvtsi2sd {$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (int_x86_sse2_cvtsi2sd VR128:$src1,
GR32:$src2))]>;
def Int_CVTSI2SDrm: SDI<0x2A, MRMSrcMem,
(ops VR128:$dst, VR128:$src1, i32mem:$src2),
"cvtsi2sd {$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (int_x86_sse2_cvtsi2sd VR128:$src1,
(loadi32 addr:$src2)))]>;
def Int_CVTSD2SSrr: SDI<0x5A, MRMSrcReg,
(ops VR128:$dst, VR128:$src1, VR128:$src2),
"cvtsd2ss {$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (int_x86_sse2_cvtsd2ss VR128:$src1,
VR128:$src2))]>;
def Int_CVTSD2SSrm: SDI<0x5A, MRMSrcMem,
(ops VR128:$dst, VR128:$src1, f64mem:$src2),
"cvtsd2ss {$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (int_x86_sse2_cvtsd2ss VR128:$src1,
(load addr:$src2)))]>;
def Int_CVTSS2SDrr: I<0x5A, MRMSrcReg,
(ops VR128:$dst, VR128:$src1, VR128:$src2),
"cvtss2sd {$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (int_x86_sse2_cvtss2sd VR128:$src1,
VR128:$src2))]>, XS,
Requires<[HasSSE2]>;
def Int_CVTSS2SDrm: I<0x5A, MRMSrcMem,
(ops VR128:$dst, VR128:$src1, f32mem:$src2),
"cvtss2sd {$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (int_x86_sse2_cvtss2sd VR128:$src1,
(load addr:$src2)))]>, XS,
Requires<[HasSSE2]>;
}
/// packed_sse2_fp_binop_rm - Packed SSE binops come in three basic forms:
/// 1. v2f64 - This comes in SSE2 form for doubles.
/// 2. rr vs rm - They include a reg+reg form and a ref+mem form.
///
let isTwoAddress = 1 in {
multiclass packed_sse2_fp_binop_rm<bits<8> opc, string OpcodeStr,
SDNode OpNode, bit Commutable = 0> {
// Packed operation, reg+reg.
def PDrr : PDI<opc, MRMSrcReg, (ops VR128:$dst, VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, "pd {$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (v2f64 (OpNode VR128:$src1, VR128:$src2)))]> {
let isCommutable = Commutable;
}
// Packed operation, reg+mem.
def PDrm : PDI<opc, MRMSrcMem, (ops VR128:$dst, VR128:$src1, f128mem:$src2),
!strconcat(OpcodeStr, "pd {$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (OpNode VR128:$src1, (loadv2f64 addr:$src2)))]>;
}
}
defm ADD : packed_sse2_fp_binop_rm<0x58, "add", fadd, 1>;
defm MUL : packed_sse2_fp_binop_rm<0x59, "mul", fmul, 1>;
defm DIV : packed_sse2_fp_binop_rm<0x5E, "div", fdiv>;
defm SUB : packed_sse2_fp_binop_rm<0x5C, "sub", fsub>;
// Arithmetic
class PD_Intr<bits<8> o, string OpcodeStr, Intrinsic IntId>
: PDI<o, MRMSrcReg, (ops VR128:$dst, VR128:$src),
!strconcat(OpcodeStr, " {$src, $dst|$dst, $src}"),
[(set VR128:$dst, (IntId VR128:$src))]>;
class PD_Intm<bits<8> o, string OpcodeStr, Intrinsic IntId>
: PDI<o, MRMSrcMem, (ops VR128:$dst, f64mem:$src),
!strconcat(OpcodeStr, " {$src, $dst|$dst, $src}"),
[(set VR128:$dst, (IntId (load addr:$src)))]>;
class PD_Intrr<bits<8> o, string OpcodeStr, Intrinsic IntId>
: PDI<o, MRMSrcReg, (ops VR128:$dst, VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, " {$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (IntId VR128:$src1, VR128:$src2))]>;
class PD_Intrm<bits<8> o, string OpcodeStr, Intrinsic IntId>
: PDI<o, MRMSrcMem, (ops VR128:$dst, VR128:$src1, f64mem:$src2),
!strconcat(OpcodeStr, " {$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (IntId VR128:$src1, (load addr:$src2)))]>;
def SQRTPDr : PD_Intr<0x51, "sqrtpd", int_x86_sse2_sqrt_pd>;
def SQRTPDm : PD_Intm<0x51, "sqrtpd", int_x86_sse2_sqrt_pd>;
let isTwoAddress = 1 in {
let isCommutable = 1 in {
def MAXPDrr : PD_Intrr<0x5F, "maxpd", int_x86_sse2_max_pd>;
def MINPDrr : PD_Intrr<0x5D, "minpd", int_x86_sse2_min_pd>;
}
def MAXPDrm : PD_Intrm<0x5F, "maxpd", int_x86_sse2_max_pd>;
def MINPDrm : PD_Intrm<0x5D, "minpd", int_x86_sse2_min_pd>;
}
// Logical
let isTwoAddress = 1 in {
let isCommutable = 1 in {
def ANDPDrr : PDI<0x54, MRMSrcReg,
(ops VR128:$dst, VR128:$src1, VR128:$src2),
"andpd {$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(and (bc_v2i64 (v2f64 VR128:$src1)),
(bc_v2i64 (v2f64 VR128:$src2))))]>;
def ORPDrr : PDI<0x56, MRMSrcReg,
(ops VR128:$dst, VR128:$src1, VR128:$src2),
"orpd {$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(or (bc_v2i64 (v2f64 VR128:$src1)),
(bc_v2i64 (v2f64 VR128:$src2))))]>;
def XORPDrr : PDI<0x57, MRMSrcReg,
(ops VR128:$dst, VR128:$src1, VR128:$src2),
"xorpd {$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(xor (bc_v2i64 (v2f64 VR128:$src1)),
(bc_v2i64 (v2f64 VR128:$src2))))]>;
}
def ANDPDrm : PDI<0x54, MRMSrcMem,
(ops VR128:$dst, VR128:$src1, f128mem:$src2),
"andpd {$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(and (bc_v2i64 (v2f64 VR128:$src1)),
(bc_v2i64 (loadv2f64 addr:$src2))))]>;
def ORPDrm : PDI<0x56, MRMSrcMem,
(ops VR128:$dst, VR128:$src1, f128mem:$src2),
"orpd {$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(or (bc_v2i64 (v2f64 VR128:$src1)),
(bc_v2i64 (loadv2f64 addr:$src2))))]>;
def XORPDrm : PDI<0x57, MRMSrcMem,
(ops VR128:$dst, VR128:$src1, f128mem:$src2),
"xorpd {$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(xor (bc_v2i64 (v2f64 VR128:$src1)),
(bc_v2i64 (loadv2f64 addr:$src2))))]>;
def ANDNPDrr : PDI<0x55, MRMSrcReg,
(ops VR128:$dst, VR128:$src1, VR128:$src2),
"andnpd {$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(and (vnot (bc_v2i64 (v2f64 VR128:$src1))),
(bc_v2i64 (v2f64 VR128:$src2))))]>;
def ANDNPDrm : PDI<0x55, MRMSrcMem,
(ops VR128:$dst, VR128:$src1,f128mem:$src2),
"andnpd {$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(and (vnot (bc_v2i64 (v2f64 VR128:$src1))),
(bc_v2i64 (loadv2f64 addr:$src2))))]>;
}
let isTwoAddress = 1 in {
def CMPPDrri : PDIi8<0xC2, MRMSrcReg,
(ops VR128:$dst, VR128:$src1, VR128:$src, SSECC:$cc),
"cmp${cc}pd {$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cmp_pd VR128:$src1,
VR128:$src, imm:$cc))]>;
def CMPPDrmi : PDIi8<0xC2, MRMSrcMem,
(ops VR128:$dst, VR128:$src1, f128mem:$src, SSECC:$cc),
"cmp${cc}pd {$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_cmp_pd VR128:$src1,
(load addr:$src), imm:$cc))]>;
}
// Shuffle and unpack instructions
let isTwoAddress = 1 in {
def SHUFPDrri : PDIi8<0xC6, MRMSrcReg,
(ops VR128:$dst, VR128:$src1, VR128:$src2, i8imm:$src3),
"shufpd {$src3, $src2, $dst|$dst, $src2, $src3}",
[(set VR128:$dst, (v2f64 (vector_shuffle
VR128:$src1, VR128:$src2,
SHUFP_shuffle_mask:$src3)))]>;
def SHUFPDrmi : PDIi8<0xC6, MRMSrcMem,
(ops VR128:$dst, VR128:$src1,
f128mem:$src2, i8imm:$src3),
"shufpd {$src3, $src2, $dst|$dst, $src2, $src3}",
[(set VR128:$dst,
(v2f64 (vector_shuffle
VR128:$src1, (load addr:$src2),
SHUFP_shuffle_mask:$src3)))]>;
let AddedComplexity = 10 in {
def UNPCKHPDrr : PDI<0x15, MRMSrcReg,
(ops VR128:$dst, VR128:$src1, VR128:$src2),
"unpckhpd {$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v2f64 (vector_shuffle
VR128:$src1, VR128:$src2,
UNPCKH_shuffle_mask)))]>;
def UNPCKHPDrm : PDI<0x15, MRMSrcMem,
(ops VR128:$dst, VR128:$src1, f128mem:$src2),
"unpckhpd {$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v2f64 (vector_shuffle
VR128:$src1, (load addr:$src2),
UNPCKH_shuffle_mask)))]>;
def UNPCKLPDrr : PDI<0x14, MRMSrcReg,
(ops VR128:$dst, VR128:$src1, VR128:$src2),
"unpcklpd {$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v2f64 (vector_shuffle
VR128:$src1, VR128:$src2,
UNPCKL_shuffle_mask)))]>;
def UNPCKLPDrm : PDI<0x14, MRMSrcMem,
(ops VR128:$dst, VR128:$src1, f128mem:$src2),
"unpcklpd {$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v2f64 (vector_shuffle
VR128:$src1, (load addr:$src2),
UNPCKL_shuffle_mask)))]>;
} // AddedComplexity
} // isTwoAddress
//===----------------------------------------------------------------------===//
// SSE integer instructions
// Move Instructions
def MOVDQArr : PDI<0x6F, MRMSrcReg, (ops VR128:$dst, VR128:$src),
"movdqa {$src, $dst|$dst, $src}", []>;
def MOVDQArm : PDI<0x6F, MRMSrcMem, (ops VR128:$dst, i128mem:$src),
"movdqa {$src, $dst|$dst, $src}",
[(set VR128:$dst, (loadv2i64 addr:$src))]>;
def MOVDQAmr : PDI<0x7F, MRMDestMem, (ops i128mem:$dst, VR128:$src),
"movdqa {$src, $dst|$dst, $src}",
[(store (v2i64 VR128:$src), addr:$dst)]>;
def MOVDQUrm : I<0x6F, MRMSrcMem, (ops VR128:$dst, i128mem:$src),
"movdqu {$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_loadu_dq addr:$src))]>,
XS, Requires<[HasSSE2]>;
def MOVDQUmr : I<0x7F, MRMDestMem, (ops i128mem:$dst, VR128:$src),
"movdqu {$src, $dst|$dst, $src}",
[(int_x86_sse2_storeu_dq addr:$dst, VR128:$src)]>,
XS, Requires<[HasSSE2]>;
let isTwoAddress = 1 in {
multiclass PDI_binop_rm_int<bits<8> opc, string OpcodeStr, Intrinsic IntId,
bit Commutable = 0> {
def rr : PDI<opc, MRMSrcReg, (ops VR128:$dst, VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, " {$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (IntId VR128:$src1, VR128:$src2))]> {
let isCommutable = Commutable;
}
def rm : PDI<opc, MRMSrcMem, (ops VR128:$dst, VR128:$src1, i128mem:$src2),
!strconcat(OpcodeStr, " {$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (IntId VR128:$src1,
(bitconvert (loadv2i64 addr:$src2))))]>;
}
multiclass PDI_binop_rmi_int<bits<8> opc, bits<8> opc2, Format ImmForm,
string OpcodeStr, Intrinsic IntId> {
def rr : PDI<opc, MRMSrcReg, (ops VR128:$dst, VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, " {$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (IntId VR128:$src1, VR128:$src2))]>;
def rm : PDI<opc, MRMSrcMem, (ops VR128:$dst, VR128:$src1, i128mem:$src2),
!strconcat(OpcodeStr, " {$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (IntId VR128:$src1,
(bitconvert (loadv2i64 addr:$src2))))]>;
def ri : PDIi8<opc2, ImmForm, (ops VR128:$dst, VR128:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr, " {$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (IntId VR128:$src1,
(scalar_to_vector (i32 imm:$src2))))]>;
}
/// PDI_binop_rm - Simple SSE2 binary operator.
multiclass PDI_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode,
ValueType OpVT, bit Commutable = 0> {
def rr : PDI<opc, MRMSrcReg, (ops VR128:$dst, VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, " {$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (OpVT (OpNode VR128:$src1, VR128:$src2)))]> {
let isCommutable = Commutable;
}
def rm : PDI<opc, MRMSrcMem, (ops VR128:$dst, VR128:$src1, i128mem:$src2),
!strconcat(OpcodeStr, " {$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (OpVT (OpNode VR128:$src1,
(bitconvert (loadv2i64 addr:$src2)))))]>;
}
/// PDI_binop_rm_v2i64 - Simple SSE2 binary operator whose type is v2i64.
///
/// FIXME: we could eliminate this and use PDI_binop_rm instead if tblgen knew
/// to collapse (bitconvert VT to VT) into its operand.
///
multiclass PDI_binop_rm_v2i64<bits<8> opc, string OpcodeStr, SDNode OpNode,
bit Commutable = 0> {
def rr : PDI<opc, MRMSrcReg, (ops VR128:$dst, VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, " {$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (v2i64 (OpNode VR128:$src1, VR128:$src2)))]> {
let isCommutable = Commutable;
}
def rm : PDI<opc, MRMSrcMem, (ops VR128:$dst, VR128:$src1, i128mem:$src2),
!strconcat(OpcodeStr, " {$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (OpNode VR128:$src1,(loadv2i64 addr:$src2)))]>;
}
} // isTwoAddress
// 128-bit Integer Arithmetic
defm PADDB : PDI_binop_rm<0xFC, "paddb", add, v16i8, 1>;
defm PADDW : PDI_binop_rm<0xFD, "paddw", add, v8i16, 1>;
defm PADDD : PDI_binop_rm<0xFE, "paddd", add, v4i32, 1>;
defm PADDQ : PDI_binop_rm_v2i64<0xD4, "paddq", add, 1>;
defm PADDSB : PDI_binop_rm_int<0xEC, "paddsb" , int_x86_sse2_padds_b, 1>;
defm PADDSW : PDI_binop_rm_int<0xED, "paddsw" , int_x86_sse2_padds_w, 1>;
defm PADDUSB : PDI_binop_rm_int<0xDC, "paddusb", int_x86_sse2_paddus_b, 1>;
defm PADDUSW : PDI_binop_rm_int<0xDD, "paddusw", int_x86_sse2_paddus_w, 1>;
defm PSUBB : PDI_binop_rm<0xF8, "psubb", sub, v16i8>;
defm PSUBW : PDI_binop_rm<0xF9, "psubw", sub, v8i16>;
defm PSUBD : PDI_binop_rm<0xFA, "psubd", sub, v4i32>;
defm PSUBQ : PDI_binop_rm_v2i64<0xFB, "psubq", sub>;
defm PSUBSB : PDI_binop_rm_int<0xE8, "psubsb" , int_x86_sse2_psubs_b>;
defm PSUBSW : PDI_binop_rm_int<0xE9, "psubsw" , int_x86_sse2_psubs_w>;
defm PSUBUSB : PDI_binop_rm_int<0xD8, "psubusb", int_x86_sse2_psubus_b>;
defm PSUBUSW : PDI_binop_rm_int<0xD9, "psubusw", int_x86_sse2_psubus_w>;
defm PMULLW : PDI_binop_rm<0xD5, "pmullw", mul, v8i16, 1>;
defm PMULHUW : PDI_binop_rm_int<0xE4, "pmulhuw", int_x86_sse2_pmulhu_w, 1>;
defm PMULHW : PDI_binop_rm_int<0xE5, "pmulhw" , int_x86_sse2_pmulh_w , 1>;
defm PMULUDQ : PDI_binop_rm_int<0xF4, "pmuludq", int_x86_sse2_pmulu_dq, 1>;
defm PMADDWD : PDI_binop_rm_int<0xF5, "pmaddwd", int_x86_sse2_pmadd_wd, 1>;
defm PAVGB : PDI_binop_rm_int<0xE0, "pavgb", int_x86_sse2_pavg_b, 1>;
defm PAVGW : PDI_binop_rm_int<0xE3, "pavgw", int_x86_sse2_pavg_w, 1>;
defm PMINUB : PDI_binop_rm_int<0xDA, "pminub", int_x86_sse2_pminu_b, 1>;
defm PMINSW : PDI_binop_rm_int<0xEA, "pminsw", int_x86_sse2_pmins_w, 1>;
defm PMAXUB : PDI_binop_rm_int<0xDE, "pmaxub", int_x86_sse2_pmaxu_b, 1>;
defm PMAXSW : PDI_binop_rm_int<0xEE, "pmaxsw", int_x86_sse2_pmaxs_w, 1>;
defm PSADBW : PDI_binop_rm_int<0xE0, "psadbw", int_x86_sse2_psad_bw, 1>;
defm PSLLW : PDI_binop_rmi_int<0xF1, 0x71, MRM6r, "psllw", int_x86_sse2_psll_w>;
defm PSLLD : PDI_binop_rmi_int<0xF2, 0x72, MRM6r, "pslld", int_x86_sse2_psll_d>;
defm PSLLQ : PDI_binop_rmi_int<0xF3, 0x73, MRM6r, "psllq", int_x86_sse2_psll_q>;
defm PSRLW : PDI_binop_rmi_int<0xD1, 0x71, MRM2r, "psrlw", int_x86_sse2_psrl_w>;
defm PSRLD : PDI_binop_rmi_int<0xD2, 0x72, MRM2r, "psrld", int_x86_sse2_psrl_d>;
defm PSRLQ : PDI_binop_rmi_int<0xD3, 0x73, MRM2r, "psrlq", int_x86_sse2_psrl_q>;
defm PSRAW : PDI_binop_rmi_int<0xE1, 0x71, MRM4r, "psraw", int_x86_sse2_psra_w>;
defm PSRAD : PDI_binop_rmi_int<0xE2, 0x72, MRM4r, "psrad", int_x86_sse2_psra_d>;
// PSRAQ doesn't exist in SSE[1-3].
// 128-bit logical shifts.
let isTwoAddress = 1 in {
def PSLLDQri : PDIi8<0x73, MRM7r,
(ops VR128:$dst, VR128:$src1, i32i8imm:$src2),
"pslldq {$src2, $dst|$dst, $src2}", []>;
def PSRLDQri : PDIi8<0x73, MRM3r,
(ops VR128:$dst, VR128:$src1, i32i8imm:$src2),
"psrldq {$src2, $dst|$dst, $src2}", []>;
// PSRADQri doesn't exist in SSE[1-3].
}
let Predicates = [HasSSE2] in {
def : Pat<(int_x86_sse2_psll_dq VR128:$src1, imm:$src2),
(v2i64 (PSLLDQri VR128:$src1, (PSxLDQ_imm imm:$src2)))>;
def : Pat<(int_x86_sse2_psrl_dq VR128:$src1, imm:$src2),
(v2i64 (PSRLDQri VR128:$src1, (PSxLDQ_imm imm:$src2)))>;
def : Pat<(v2f64 (X86fsrl VR128:$src1, i32immSExt8:$src2)),
(v2f64 (PSRLDQri VR128:$src1, (PSxLDQ_imm imm:$src2)))>;
}
// Logical
defm PAND : PDI_binop_rm_v2i64<0xDB, "pand", and, 1>;
defm POR : PDI_binop_rm_v2i64<0xEB, "por" , or , 1>;
defm PXOR : PDI_binop_rm_v2i64<0xEF, "pxor", xor, 1>;
let isTwoAddress = 1 in {
def PANDNrr : PDI<0xDF, MRMSrcReg,
(ops VR128:$dst, VR128:$src1, VR128:$src2),
"pandn {$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (v2i64 (and (vnot VR128:$src1),
VR128:$src2)))]>;
def PANDNrm : PDI<0xDF, MRMSrcMem,
(ops VR128:$dst, VR128:$src1, i128mem:$src2),
"pandn {$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (v2i64 (and (vnot VR128:$src1),
(load addr:$src2))))]>;
}
// SSE2 Integer comparison
defm PCMPEQB : PDI_binop_rm_int<0x74, "pcmpeqb", int_x86_sse2_pcmpeq_b>;
defm PCMPEQW : PDI_binop_rm_int<0x75, "pcmpeqw", int_x86_sse2_pcmpeq_w>;
defm PCMPEQD : PDI_binop_rm_int<0x76, "pcmpeqd", int_x86_sse2_pcmpeq_d>;
defm PCMPGTB : PDI_binop_rm_int<0x64, "pcmpgtb", int_x86_sse2_pcmpgt_b>;
defm PCMPGTW : PDI_binop_rm_int<0x65, "pcmpgtw", int_x86_sse2_pcmpgt_w>;
defm PCMPGTD : PDI_binop_rm_int<0x66, "pcmpgtd", int_x86_sse2_pcmpgt_d>;
// Pack instructions
defm PACKSSWB : PDI_binop_rm_int<0x63, "packsswb", int_x86_sse2_packsswb_128>;
defm PACKSSDW : PDI_binop_rm_int<0x6B, "packssdw", int_x86_sse2_packssdw_128>;
defm PACKUSWB : PDI_binop_rm_int<0x67, "packuswb", int_x86_sse2_packuswb_128>;
// Shuffle and unpack instructions
def PSHUFDri : PDIi8<0x70, MRMSrcReg,
(ops VR128:$dst, VR128:$src1, i8imm:$src2),
"pshufd {$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst, (v4i32 (vector_shuffle
VR128:$src1, (undef),
PSHUFD_shuffle_mask:$src2)))]>;
def PSHUFDmi : PDIi8<0x70, MRMSrcMem,
(ops VR128:$dst, i128mem:$src1, i8imm:$src2),
"pshufd {$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst, (v4i32 (vector_shuffle
(bc_v4i32(loadv2i64 addr:$src1)),
(undef),
PSHUFD_shuffle_mask:$src2)))]>;
// SSE2 with ImmT == Imm8 and XS prefix.
def PSHUFHWri : Ii8<0x70, MRMSrcReg,
(ops VR128:$dst, VR128:$src1, i8imm:$src2),
"pshufhw {$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst, (v8i16 (vector_shuffle
VR128:$src1, (undef),
PSHUFHW_shuffle_mask:$src2)))]>,
XS, Requires<[HasSSE2]>;
def PSHUFHWmi : Ii8<0x70, MRMSrcMem,
(ops VR128:$dst, i128mem:$src1, i8imm:$src2),
"pshufhw {$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst, (v8i16 (vector_shuffle
(bc_v8i16 (loadv2i64 addr:$src1)),
(undef),
PSHUFHW_shuffle_mask:$src2)))]>,
XS, Requires<[HasSSE2]>;
// SSE2 with ImmT == Imm8 and XD prefix.
def PSHUFLWri : Ii8<0x70, MRMSrcReg,
(ops VR128:$dst, VR128:$src1, i32i8imm:$src2),
"pshuflw {$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst, (v8i16 (vector_shuffle
VR128:$src1, (undef),
PSHUFLW_shuffle_mask:$src2)))]>,
XD, Requires<[HasSSE2]>;
def PSHUFLWmi : Ii8<0x70, MRMSrcMem,
(ops VR128:$dst, i128mem:$src1, i32i8imm:$src2),
"pshuflw {$src2, $src1, $dst|$dst, $src1, $src2}",
[(set VR128:$dst, (v8i16 (vector_shuffle
(bc_v8i16 (loadv2i64 addr:$src1)),
(undef),
PSHUFLW_shuffle_mask:$src2)))]>,
XD, Requires<[HasSSE2]>;
let isTwoAddress = 1 in {
def PUNPCKLBWrr : PDI<0x60, MRMSrcReg,
(ops VR128:$dst, VR128:$src1, VR128:$src2),
"punpcklbw {$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v16i8 (vector_shuffle VR128:$src1, VR128:$src2,
UNPCKL_shuffle_mask)))]>;
def PUNPCKLBWrm : PDI<0x60, MRMSrcMem,
(ops VR128:$dst, VR128:$src1, i128mem:$src2),
"punpcklbw {$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v16i8 (vector_shuffle VR128:$src1,
(bc_v16i8 (loadv2i64 addr:$src2)),
UNPCKL_shuffle_mask)))]>;
def PUNPCKLWDrr : PDI<0x61, MRMSrcReg,
(ops VR128:$dst, VR128:$src1, VR128:$src2),
"punpcklwd {$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v8i16 (vector_shuffle VR128:$src1, VR128:$src2,
UNPCKL_shuffle_mask)))]>;
def PUNPCKLWDrm : PDI<0x61, MRMSrcMem,
(ops VR128:$dst, VR128:$src1, i128mem:$src2),
"punpcklwd {$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v8i16 (vector_shuffle VR128:$src1,
(bc_v8i16 (loadv2i64 addr:$src2)),
UNPCKL_shuffle_mask)))]>;
def PUNPCKLDQrr : PDI<0x62, MRMSrcReg,
(ops VR128:$dst, VR128:$src1, VR128:$src2),
"punpckldq {$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v4i32 (vector_shuffle VR128:$src1, VR128:$src2,
UNPCKL_shuffle_mask)))]>;
def PUNPCKLDQrm : PDI<0x62, MRMSrcMem,
(ops VR128:$dst, VR128:$src1, i128mem:$src2),
"punpckldq {$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v4i32 (vector_shuffle VR128:$src1,
(bc_v4i32 (loadv2i64 addr:$src2)),
UNPCKL_shuffle_mask)))]>;
def PUNPCKLQDQrr : PDI<0x6C, MRMSrcReg,
(ops VR128:$dst, VR128:$src1, VR128:$src2),
"punpcklqdq {$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v2i64 (vector_shuffle VR128:$src1, VR128:$src2,
UNPCKL_shuffle_mask)))]>;
def PUNPCKLQDQrm : PDI<0x6C, MRMSrcMem,
(ops VR128:$dst, VR128:$src1, i128mem:$src2),
"punpcklqdq {$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v2i64 (vector_shuffle VR128:$src1,
(loadv2i64 addr:$src2),
UNPCKL_shuffle_mask)))]>;
def PUNPCKHBWrr : PDI<0x68, MRMSrcReg,
(ops VR128:$dst, VR128:$src1, VR128:$src2),
"punpckhbw {$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v16i8 (vector_shuffle VR128:$src1, VR128:$src2,
UNPCKH_shuffle_mask)))]>;
def PUNPCKHBWrm : PDI<0x68, MRMSrcMem,
(ops VR128:$dst, VR128:$src1, i128mem:$src2),
"punpckhbw {$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v16i8 (vector_shuffle VR128:$src1,
(bc_v16i8 (loadv2i64 addr:$src2)),
UNPCKH_shuffle_mask)))]>;
def PUNPCKHWDrr : PDI<0x69, MRMSrcReg,
(ops VR128:$dst, VR128:$src1, VR128:$src2),
"punpckhwd {$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v8i16 (vector_shuffle VR128:$src1, VR128:$src2,
UNPCKH_shuffle_mask)))]>;
def PUNPCKHWDrm : PDI<0x69, MRMSrcMem,
(ops VR128:$dst, VR128:$src1, i128mem:$src2),
"punpckhwd {$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v8i16 (vector_shuffle VR128:$src1,
(bc_v8i16 (loadv2i64 addr:$src2)),
UNPCKH_shuffle_mask)))]>;
def PUNPCKHDQrr : PDI<0x6A, MRMSrcReg,
(ops VR128:$dst, VR128:$src1, VR128:$src2),
"punpckhdq {$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v4i32 (vector_shuffle VR128:$src1, VR128:$src2,
UNPCKH_shuffle_mask)))]>;
def PUNPCKHDQrm : PDI<0x6A, MRMSrcMem,
(ops VR128:$dst, VR128:$src1, i128mem:$src2),
"punpckhdq {$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v4i32 (vector_shuffle VR128:$src1,
(bc_v4i32 (loadv2i64 addr:$src2)),
UNPCKH_shuffle_mask)))]>;
def PUNPCKHQDQrr : PDI<0x6D, MRMSrcReg,
(ops VR128:$dst, VR128:$src1, VR128:$src2),
"punpckhqdq {$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v2i64 (vector_shuffle VR128:$src1, VR128:$src2,
UNPCKH_shuffle_mask)))]>;
def PUNPCKHQDQrm : PDI<0x6D, MRMSrcMem,
(ops VR128:$dst, VR128:$src1, i128mem:$src2),
"punpckhqdq {$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v2i64 (vector_shuffle VR128:$src1,
(loadv2i64 addr:$src2),
UNPCKH_shuffle_mask)))]>;
}
// Extract / Insert
def PEXTRWri : PDIi8<0xC5, MRMSrcReg,
(ops GR32:$dst, VR128:$src1, i32i8imm:$src2),
"pextrw {$src2, $src1, $dst|$dst, $src1, $src2}",
[(set GR32:$dst, (X86pextrw (v8i16 VR128:$src1),
(iPTR imm:$src2)))]>;
let isTwoAddress = 1 in {
def PINSRWrri : PDIi8<0xC4, MRMSrcReg,
(ops VR128:$dst, VR128:$src1,
GR32:$src2, i32i8imm:$src3),
"pinsrw {$src3, $src2, $dst|$dst, $src2, $src3}",
[(set VR128:$dst,
(v8i16 (X86pinsrw (v8i16 VR128:$src1),
GR32:$src2, (iPTR imm:$src3))))]>;
def PINSRWrmi : PDIi8<0xC4, MRMSrcMem,
(ops VR128:$dst, VR128:$src1,
i16mem:$src2, i32i8imm:$src3),
"pinsrw {$src3, $src2, $dst|$dst, $src2, $src3}",
[(set VR128:$dst,
(v8i16 (X86pinsrw (v8i16 VR128:$src1),
(i32 (anyext (loadi16 addr:$src2))),
(iPTR imm:$src3))))]>;
}
// Mask creation
def PMOVMSKBrr : PDI<0xD7, MRMSrcReg, (ops GR32:$dst, VR128:$src),
"pmovmskb {$src, $dst|$dst, $src}",
[(set GR32:$dst, (int_x86_sse2_pmovmskb_128 VR128:$src))]>;
// Conditional store
def MASKMOVDQU : PDI<0xF7, MRMSrcReg, (ops VR128:$src, VR128:$mask),
"maskmovdqu {$mask, $src|$src, $mask}",
[(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, EDI)]>,
Imp<[EDI],[]>;
// Non-temporal stores
def MOVNTPDmr : PDI<0x2B, MRMDestMem, (ops i128mem:$dst, VR128:$src),
"movntpd {$src, $dst|$dst, $src}",
[(int_x86_sse2_movnt_pd addr:$dst, VR128:$src)]>;
def MOVNTDQmr : PDI<0xE7, MRMDestMem, (ops f128mem:$dst, VR128:$src),
"movntdq {$src, $dst|$dst, $src}",
[(int_x86_sse2_movnt_dq addr:$dst, VR128:$src)]>;
def MOVNTImr : I<0xC3, MRMDestMem, (ops i32mem:$dst, GR32:$src),
"movnti {$src, $dst|$dst, $src}",
[(int_x86_sse2_movnt_i addr:$dst, GR32:$src)]>,
TB, Requires<[HasSSE2]>;
// Flush cache
def CLFLUSH : I<0xAE, MRM7m, (ops i8mem:$src),
"clflush $src", [(int_x86_sse2_clflush addr:$src)]>,
TB, Requires<[HasSSE2]>;
// Load, store, and memory fence
def LFENCE : I<0xAE, MRM5m, (ops),
"lfence", [(int_x86_sse2_lfence)]>, TB, Requires<[HasSSE2]>;
def MFENCE : I<0xAE, MRM6m, (ops),
"mfence", [(int_x86_sse2_mfence)]>, TB, Requires<[HasSSE2]>;
// Alias instructions that map zero vector to pxor / xorp* for sse.
// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
def V_SETALLONES : PDI<0x76, MRMInitReg, (ops VR128:$dst),
"pcmpeqd $dst, $dst",
[(set VR128:$dst, (v2f64 immAllOnesV))]>;
// FR64 to 128-bit vector conversion.
def MOVSD2PDrr : SDI<0x10, MRMSrcReg, (ops VR128:$dst, FR64:$src),
"movsd {$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v2f64 (scalar_to_vector FR64:$src)))]>;
def MOVSD2PDrm : SDI<0x10, MRMSrcMem, (ops VR128:$dst, f64mem:$src),
"movsd {$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v2f64 (scalar_to_vector (loadf64 addr:$src))))]>;
def MOVDI2PDIrr : PDI<0x6E, MRMSrcReg, (ops VR128:$dst, GR32:$src),
"movd {$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4i32 (scalar_to_vector GR32:$src)))]>;
def MOVDI2PDIrm : PDI<0x6E, MRMSrcMem, (ops VR128:$dst, i32mem:$src),
"movd {$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4i32 (scalar_to_vector (loadi32 addr:$src))))]>;
def MOVDI2SSrr : PDI<0x6E, MRMSrcReg, (ops FR32:$dst, GR32:$src),
"movd {$src, $dst|$dst, $src}",
[(set FR32:$dst, (bitconvert GR32:$src))]>;
def MOVDI2SSrm : PDI<0x6E, MRMSrcMem, (ops FR32:$dst, i32mem:$src),
"movd {$src, $dst|$dst, $src}",
[(set FR32:$dst, (bitconvert (loadi32 addr:$src)))]>;
// SSE2 instructions with XS prefix
def MOVQI2PQIrm : I<0x7E, MRMSrcMem, (ops VR128:$dst, i64mem:$src),
"movq {$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v2i64 (scalar_to_vector (loadi64 addr:$src))))]>, XS,
Requires<[HasSSE2]>;
def MOVPQI2QImr : PDI<0xD6, MRMDestMem, (ops i64mem:$dst, VR128:$src),
"movq {$src, $dst|$dst, $src}",
[(store (i64 (vector_extract (v2i64 VR128:$src),
(iPTR 0))), addr:$dst)]>;
// FIXME: may not be able to eliminate this movss with coalescing the src and
// dest register classes are different. We really want to write this pattern
// like this:
// def : Pat<(f32 (vector_extract (v4f32 VR128:$src), (iPTR 0))),
// (f32 FR32:$src)>;
def MOVPD2SDrr : SDI<0x10, MRMSrcReg, (ops FR64:$dst, VR128:$src),
"movsd {$src, $dst|$dst, $src}",
[(set FR64:$dst, (vector_extract (v2f64 VR128:$src),
(iPTR 0)))]>;
def MOVPD2SDmr : SDI<0x11, MRMDestMem, (ops f64mem:$dst, VR128:$src),
"movsd {$src, $dst|$dst, $src}",
[(store (f64 (vector_extract (v2f64 VR128:$src),
(iPTR 0))), addr:$dst)]>;
def MOVPDI2DIrr : PDI<0x7E, MRMDestReg, (ops GR32:$dst, VR128:$src),
"movd {$src, $dst|$dst, $src}",
[(set GR32:$dst, (vector_extract (v4i32 VR128:$src),
(iPTR 0)))]>;
def MOVPDI2DImr : PDI<0x7E, MRMDestMem, (ops i32mem:$dst, VR128:$src),
"movd {$src, $dst|$dst, $src}",
[(store (i32 (vector_extract (v4i32 VR128:$src),
(iPTR 0))), addr:$dst)]>;
def MOVSS2DIrr : PDI<0x7E, MRMDestReg, (ops GR32:$dst, FR32:$src),
"movd {$src, $dst|$dst, $src}",
[(set GR32:$dst, (bitconvert FR32:$src))]>;
def MOVSS2DImr : PDI<0x7E, MRMDestMem, (ops i32mem:$dst, FR32:$src),
"movd {$src, $dst|$dst, $src}",
[(store (i32 (bitconvert FR32:$src)), addr:$dst)]>;
// Move to lower bits of a VR128, leaving upper bits alone.
// Three operand (but two address) aliases.
let isTwoAddress = 1 in {
def MOVLSD2PDrr : SDI<0x10, MRMSrcReg,
(ops VR128:$dst, VR128:$src1, FR64:$src2),
"movsd {$src2, $dst|$dst, $src2}", []>;
let AddedComplexity = 15 in
def MOVLPDrr : SDI<0x10, MRMSrcReg,
(ops VR128:$dst, VR128:$src1, VR128:$src2),
"movsd {$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(v2f64 (vector_shuffle VR128:$src1, VR128:$src2,
MOVL_shuffle_mask)))]>;
}
// Store / copy lower 64-bits of a XMM register.
def MOVLQ128mr : PDI<0xD6, MRMDestMem, (ops i64mem:$dst, VR128:$src),
"movq {$src, $dst|$dst, $src}",
[(int_x86_sse2_storel_dq addr:$dst, VR128:$src)]>;
// Move to lower bits of a VR128 and zeroing upper bits.
// Loading from memory automatically zeroing upper bits.
let AddedComplexity = 20 in
def MOVZSD2PDrm : SDI<0x10, MRMSrcMem, (ops VR128:$dst, f64mem:$src),
"movsd {$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v2f64 (vector_shuffle immAllZerosV,
(v2f64 (scalar_to_vector
(loadf64 addr:$src))),
MOVL_shuffle_mask)))]>;
let AddedComplexity = 15 in
// movd / movq to XMM register zero-extends
def MOVZDI2PDIrr : PDI<0x6E, MRMSrcReg, (ops VR128:$dst, GR32:$src),
"movd {$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4i32 (vector_shuffle immAllZerosV,
(v4i32 (scalar_to_vector GR32:$src)),
MOVL_shuffle_mask)))]>;
let AddedComplexity = 20 in
def MOVZDI2PDIrm : PDI<0x6E, MRMSrcMem, (ops VR128:$dst, i32mem:$src),
"movd {$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v4i32 (vector_shuffle immAllZerosV,
(v4i32 (scalar_to_vector (loadi32 addr:$src))),
MOVL_shuffle_mask)))]>;
// Moving from XMM to XMM but still clear upper 64 bits.
let AddedComplexity = 15 in
def MOVZQI2PQIrr : I<0x7E, MRMSrcReg, (ops VR128:$dst, VR128:$src),
"movq {$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_movl_dq VR128:$src))]>,
XS, Requires<[HasSSE2]>;
let AddedComplexity = 20 in
def MOVZQI2PQIrm : I<0x7E, MRMSrcMem, (ops VR128:$dst, i64mem:$src),
"movq {$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse2_movl_dq
(bitconvert (loadv2i64 addr:$src))))]>,
XS, Requires<[HasSSE2]>;
//===----------------------------------------------------------------------===//
// SSE3 Instructions
//===----------------------------------------------------------------------===//
// SSE3 Instruction Templates:
//
// S3I - SSE3 instructions with TB and OpSize prefixes.
// S3SI - SSE3 instructions with XS prefix.
// S3DI - SSE3 instructions with XD prefix.
class S3SI<bits<8> o, Format F, dag ops, string asm, list<dag> pattern>
: I<o, F, ops, asm, pattern>, XS, Requires<[HasSSE3]>;
class S3DI<bits<8> o, Format F, dag ops, string asm, list<dag> pattern>
: I<o, F, ops, asm, pattern>, XD, Requires<[HasSSE3]>;
class S3I<bits<8> o, Format F, dag ops, string asm, list<dag> pattern>
: I<o, F, ops, asm, pattern>, TB, OpSize, Requires<[HasSSE3]>;
// Move Instructions
def MOVSHDUPrr : S3SI<0x16, MRMSrcReg, (ops VR128:$dst, VR128:$src),
"movshdup {$src, $dst|$dst, $src}",
[(set VR128:$dst, (v4f32 (vector_shuffle
VR128:$src, (undef),
MOVSHDUP_shuffle_mask)))]>;
def MOVSHDUPrm : S3SI<0x16, MRMSrcMem, (ops VR128:$dst, f128mem:$src),
"movshdup {$src, $dst|$dst, $src}",
[(set VR128:$dst, (v4f32 (vector_shuffle
(loadv4f32 addr:$src), (undef),
MOVSHDUP_shuffle_mask)))]>;
def MOVSLDUPrr : S3SI<0x12, MRMSrcReg, (ops VR128:$dst, VR128:$src),
"movsldup {$src, $dst|$dst, $src}",
[(set VR128:$dst, (v4f32 (vector_shuffle
VR128:$src, (undef),
MOVSLDUP_shuffle_mask)))]>;
def MOVSLDUPrm : S3SI<0x12, MRMSrcMem, (ops VR128:$dst, f128mem:$src),
"movsldup {$src, $dst|$dst, $src}",
[(set VR128:$dst, (v4f32 (vector_shuffle
(loadv4f32 addr:$src), (undef),
MOVSLDUP_shuffle_mask)))]>;
def MOVDDUPrr : S3DI<0x12, MRMSrcReg, (ops VR128:$dst, VR128:$src),
"movddup {$src, $dst|$dst, $src}",
[(set VR128:$dst, (v2f64 (vector_shuffle
VR128:$src, (undef),
SSE_splat_lo_mask)))]>;
def MOVDDUPrm : S3DI<0x12, MRMSrcMem, (ops VR128:$dst, f64mem:$src),
"movddup {$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v2f64 (vector_shuffle
(scalar_to_vector (loadf64 addr:$src)),
(undef),
SSE_splat_lo_mask)))]>;
// Arithmetic
let isTwoAddress = 1 in {
def ADDSUBPSrr : S3DI<0xD0, MRMSrcReg,
(ops VR128:$dst, VR128:$src1, VR128:$src2),
"addsubps {$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (int_x86_sse3_addsub_ps VR128:$src1,
VR128:$src2))]>;
def ADDSUBPSrm : S3DI<0xD0, MRMSrcMem,
(ops VR128:$dst, VR128:$src1, f128mem:$src2),
"addsubps {$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (int_x86_sse3_addsub_ps VR128:$src1,
(load addr:$src2)))]>;
def ADDSUBPDrr : S3I<0xD0, MRMSrcReg,
(ops VR128:$dst, VR128:$src1, VR128:$src2),
"addsubpd {$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (int_x86_sse3_addsub_pd VR128:$src1,
VR128:$src2))]>;
def ADDSUBPDrm : S3I<0xD0, MRMSrcMem,
(ops VR128:$dst, VR128:$src1, f128mem:$src2),
"addsubpd {$src2, $dst|$dst, $src2}",
[(set VR128:$dst, (int_x86_sse3_addsub_pd VR128:$src1,
(load addr:$src2)))]>;
}
def LDDQUrm : S3DI<0xF0, MRMSrcMem, (ops VR128:$dst, i128mem:$src),
"lddqu {$src, $dst|$dst, $src}",
[(set VR128:$dst, (int_x86_sse3_ldu_dq addr:$src))]>;
// Horizontal ops
class S3D_Intrr<bits<8> o, string OpcodeStr, Intrinsic IntId>
: S3DI<o, MRMSrcReg, (ops VR128:$dst, VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, " {$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (v4f32 (IntId VR128:$src1, VR128:$src2)))]>;
class S3D_Intrm<bits<8> o, string OpcodeStr, Intrinsic IntId>
: S3DI<o, MRMSrcMem, (ops VR128:$dst, VR128:$src1, f128mem:$src2),
!strconcat(OpcodeStr, " {$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (v4f32 (IntId VR128:$src1, (load addr:$src2))))]>;
class S3_Intrr<bits<8> o, string OpcodeStr, Intrinsic IntId>
: S3I<o, MRMSrcReg, (ops VR128:$dst, VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, " {$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (v2f64 (IntId VR128:$src1, VR128:$src2)))]>;
class S3_Intrm<bits<8> o, string OpcodeStr, Intrinsic IntId>
: S3I<o, MRMSrcMem, (ops VR128:$dst, VR128:$src1, f128mem:$src2),
!strconcat(OpcodeStr, " {$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (v2f64 (IntId VR128:$src1, (load addr:$src2))))]>;
let isTwoAddress = 1 in {
def HADDPSrr : S3D_Intrr<0x7C, "haddps", int_x86_sse3_hadd_ps>;
def HADDPSrm : S3D_Intrm<0x7C, "haddps", int_x86_sse3_hadd_ps>;
def HADDPDrr : S3_Intrr <0x7C, "haddpd", int_x86_sse3_hadd_pd>;
def HADDPDrm : S3_Intrm <0x7C, "haddpd", int_x86_sse3_hadd_pd>;
def HSUBPSrr : S3D_Intrr<0x7D, "hsubps", int_x86_sse3_hsub_ps>;
def HSUBPSrm : S3D_Intrm<0x7D, "hsubps", int_x86_sse3_hsub_ps>;
def HSUBPDrr : S3_Intrr <0x7D, "hsubpd", int_x86_sse3_hsub_pd>;
def HSUBPDrm : S3_Intrm <0x7D, "hsubpd", int_x86_sse3_hsub_pd>;
}
// Thread synchronization
def MONITOR : I<0xC8, RawFrm, (ops), "monitor",
[(int_x86_sse3_monitor EAX, ECX, EDX)]>,TB, Requires<[HasSSE3]>;
def MWAIT : I<0xC9, RawFrm, (ops), "mwait",
[(int_x86_sse3_mwait ECX, EAX)]>, TB, Requires<[HasSSE3]>;
// vector_shuffle v1, <undef> <1, 1, 3, 3>
let AddedComplexity = 15 in
def : Pat<(v4i32 (vector_shuffle VR128:$src, (undef),
MOVSHDUP_shuffle_mask)),
(MOVSHDUPrr VR128:$src)>, Requires<[HasSSE3]>;
let AddedComplexity = 20 in
def : Pat<(v4i32 (vector_shuffle (bc_v4i32 (loadv2i64 addr:$src)), (undef),
MOVSHDUP_shuffle_mask)),
(MOVSHDUPrm addr:$src)>, Requires<[HasSSE3]>;
// vector_shuffle v1, <undef> <0, 0, 2, 2>
let AddedComplexity = 15 in
def : Pat<(v4i32 (vector_shuffle VR128:$src, (undef),
MOVSLDUP_shuffle_mask)),
(MOVSLDUPrr VR128:$src)>, Requires<[HasSSE3]>;
let AddedComplexity = 20 in
def : Pat<(v4i32 (vector_shuffle (bc_v4i32 (loadv2i64 addr:$src)), (undef),
MOVSLDUP_shuffle_mask)),
(MOVSLDUPrm addr:$src)>, Requires<[HasSSE3]>;
//===----------------------------------------------------------------------===//
// SSSE3 Instructions
//===----------------------------------------------------------------------===//
// SSE3 Instruction Templates:
//
// SS38I - SSSE3 instructions with T8 and OpSize prefixes.
// SS3AI - SSSE3 instructions with TA and OpSize prefixes.
class SS38I<bits<8> o, Format F, dag ops, string asm, list<dag> pattern>
: I<o, F, ops, asm, pattern>, T8, OpSize, Requires<[HasSSSE3]>;
class SS3AI<bits<8> o, Format F, dag ops, string asm, list<dag> pattern>
: I<o, F, ops, asm, pattern>, TA, OpSize, Requires<[HasSSSE3]>;
/// SS3I_binop_rm_int - Simple SSSE3 binary operatr whose type is v2i64.
let isTwoAddress = 1 in {
multiclass SS3I_binop_rm_int<bits<8> opc, string OpcodeStr, Intrinsic IntId,
bit Commutable = 0> {
def rr : SS38I<opc, MRMSrcReg, (ops VR128:$dst, VR128:$src1, VR128:$src2),
!strconcat(OpcodeStr, " {$src2, $dst|$dst, $src2}"),
[(set VR128:$dst, (IntId VR128:$src1, VR128:$src2))]> {
let isCommutable = Commutable;
}
def rm : SS38I<opc, MRMSrcMem, (ops VR128:$dst, VR128:$src1, i128mem:$src2),
!strconcat(OpcodeStr, " {$src2, $dst|$dst, $src2}"),
[(set VR128:$dst,
(IntId VR128:$src1,
(bitconvert (loadv2i64 addr:$src2))))]>;
}
}
defm PMULHRSW128 : SS3I_binop_rm_int<0x0B, "pmulhrsw",
int_x86_ssse3_pmulhrsw_128, 1>;
//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
//===----------------------------------------------------------------------===//
// 128-bit vector undef's.
def : Pat<(v2f64 (undef)), (IMPLICIT_DEF_VR128)>, Requires<[HasSSE2]>;
def : Pat<(v16i8 (undef)), (IMPLICIT_DEF_VR128)>, Requires<[HasSSE2]>;
def : Pat<(v8i16 (undef)), (IMPLICIT_DEF_VR128)>, Requires<[HasSSE2]>;
def : Pat<(v4i32 (undef)), (IMPLICIT_DEF_VR128)>, Requires<[HasSSE2]>;
def : Pat<(v2i64 (undef)), (IMPLICIT_DEF_VR128)>, Requires<[HasSSE2]>;
// 128-bit vector all zero's.
def : Pat<(v16i8 immAllZerosV), (V_SET0)>, Requires<[HasSSE2]>;
def : Pat<(v8i16 immAllZerosV), (V_SET0)>, Requires<[HasSSE2]>;
def : Pat<(v4i32 immAllZerosV), (V_SET0)>, Requires<[HasSSE2]>;
def : Pat<(v2i64 immAllZerosV), (V_SET0)>, Requires<[HasSSE2]>;
def : Pat<(v2f64 immAllZerosV), (V_SET0)>, Requires<[HasSSE2]>;
// 128-bit vector all one's.
def : Pat<(v16i8 immAllOnesV), (V_SETALLONES)>, Requires<[HasSSE2]>;
def : Pat<(v8i16 immAllOnesV), (V_SETALLONES)>, Requires<[HasSSE2]>;
def : Pat<(v4i32 immAllOnesV), (V_SETALLONES)>, Requires<[HasSSE2]>;
def : Pat<(v2i64 immAllOnesV), (V_SETALLONES)>, Requires<[HasSSE2]>;
def : Pat<(v4f32 immAllOnesV), (V_SETALLONES)>, Requires<[HasSSE1]>;
// Store 128-bit integer vector values.
def : Pat<(store (v16i8 VR128:$src), addr:$dst),
(MOVDQAmr addr:$dst, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(store (v8i16 VR128:$src), addr:$dst),
(MOVDQAmr addr:$dst, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(store (v4i32 VR128:$src), addr:$dst),
(MOVDQAmr addr:$dst, VR128:$src)>, Requires<[HasSSE2]>;
// Scalar to v8i16 / v16i8. The source may be a GR32, but only the lower 8 or
// 16-bits matter.
def : Pat<(v8i16 (X86s2vec GR32:$src)), (MOVDI2PDIrr GR32:$src)>,
Requires<[HasSSE2]>;
def : Pat<(v16i8 (X86s2vec GR32:$src)), (MOVDI2PDIrr GR32:$src)>,
Requires<[HasSSE2]>;
// bit_convert
let Predicates = [HasSSE2] in {
def : Pat<(v2i64 (bitconvert (v4i32 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v2i64 (bitconvert (v8i16 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v2i64 (bitconvert (v16i8 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v2i64 (bitconvert (v2f64 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v2i64 (bitconvert (v4f32 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v2i64 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v8i16 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v16i8 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v2f64 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v4f32 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v2i64 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v4i32 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v16i8 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v2f64 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v4f32 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v2i64 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v4i32 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v8i16 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v2f64 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v4f32 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (v2i64 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (v4i32 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (v8i16 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (v16i8 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (v2f64 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (v2i64 VR128:$src))), (v2f64 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (v4i32 VR128:$src))), (v2f64 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (v8i16 VR128:$src))), (v2f64 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (v16i8 VR128:$src))), (v2f64 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (v4f32 VR128:$src))), (v2f64 VR128:$src)>;
}
// Move scalar to XMM zero-extended
// movd to XMM register zero-extends
let AddedComplexity = 15 in {
def : Pat<(v8i16 (vector_shuffle immAllZerosV,
(v8i16 (X86s2vec GR32:$src)), MOVL_shuffle_mask)),
(MOVZDI2PDIrr GR32:$src)>, Requires<[HasSSE2]>;
def : Pat<(v16i8 (vector_shuffle immAllZerosV,
(v16i8 (X86s2vec GR32:$src)), MOVL_shuffle_mask)),
(MOVZDI2PDIrr GR32:$src)>, Requires<[HasSSE2]>;
// Zeroing a VR128 then do a MOVS{S|D} to the lower bits.
def : Pat<(v2f64 (vector_shuffle immAllZerosV,
(v2f64 (scalar_to_vector FR64:$src)), MOVL_shuffle_mask)),
(MOVLSD2PDrr (V_SET0), FR64:$src)>, Requires<[HasSSE2]>;
def : Pat<(v4f32 (vector_shuffle immAllZerosV,
(v4f32 (scalar_to_vector FR32:$src)), MOVL_shuffle_mask)),
(MOVLSS2PSrr (V_SET0), FR32:$src)>, Requires<[HasSSE2]>;
}
// Splat v2f64 / v2i64
let AddedComplexity = 10 in {
def : Pat<(vector_shuffle (v2f64 VR128:$src), (undef), SSE_splat_lo_mask:$sm),
(UNPCKLPDrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(vector_shuffle (v2f64 VR128:$src), (undef), UNPCKH_shuffle_mask:$sm),
(UNPCKHPDrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(vector_shuffle (v2i64 VR128:$src), (undef), SSE_splat_lo_mask:$sm),
(PUNPCKLQDQrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(vector_shuffle (v2i64 VR128:$src), (undef), UNPCKH_shuffle_mask:$sm),
(PUNPCKHQDQrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>;
}
// Splat v4f32
def : Pat<(vector_shuffle (v4f32 VR128:$src), (undef), SSE_splat_mask:$sm),
(SHUFPSrri VR128:$src, VR128:$src, SSE_splat_mask:$sm)>,
Requires<[HasSSE1]>;
// Special unary SHUFPSrri case.
// FIXME: when we want non two-address code, then we should use PSHUFD?
def : Pat<(vector_shuffle (v4f32 VR128:$src1), (undef),
SHUFP_unary_shuffle_mask:$sm),
(SHUFPSrri VR128:$src1, VR128:$src1, SHUFP_unary_shuffle_mask:$sm)>,
Requires<[HasSSE1]>;
// Unary v4f32 shuffle with PSHUF* in order to fold a load.
def : Pat<(vector_shuffle (loadv4f32 addr:$src1), (undef),
SHUFP_unary_shuffle_mask:$sm),
(PSHUFDmi addr:$src1, SHUFP_unary_shuffle_mask:$sm)>,
Requires<[HasSSE2]>;
// Special binary v4i32 shuffle cases with SHUFPS.
def : Pat<(vector_shuffle (v4i32 VR128:$src1), (v4i32 VR128:$src2),
PSHUFD_binary_shuffle_mask:$sm),
(SHUFPSrri VR128:$src1, VR128:$src2, PSHUFD_binary_shuffle_mask:$sm)>,
Requires<[HasSSE2]>;
def : Pat<(vector_shuffle (v4i32 VR128:$src1),
(bc_v4i32 (loadv2i64 addr:$src2)), PSHUFD_binary_shuffle_mask:$sm),
(SHUFPSrmi VR128:$src1, addr:$src2, PSHUFD_binary_shuffle_mask:$sm)>,
Requires<[HasSSE2]>;
// vector_shuffle v1, <undef>, <0, 0, 1, 1, ...>
let AddedComplexity = 10 in {
def : Pat<(v4f32 (vector_shuffle VR128:$src, (undef),
UNPCKL_v_undef_shuffle_mask)),
(UNPCKLPSrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(v16i8 (vector_shuffle VR128:$src, (undef),
UNPCKL_v_undef_shuffle_mask)),
(PUNPCKLBWrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(v8i16 (vector_shuffle VR128:$src, (undef),
UNPCKL_v_undef_shuffle_mask)),
(PUNPCKLWDrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(v4i32 (vector_shuffle VR128:$src, (undef),
UNPCKL_v_undef_shuffle_mask)),
(PUNPCKLDQrr VR128:$src, VR128:$src)>, Requires<[HasSSE1]>;
}
// vector_shuffle v1, <undef>, <2, 2, 3, 3, ...>
let AddedComplexity = 10 in {
def : Pat<(v4f32 (vector_shuffle VR128:$src, (undef),
UNPCKH_v_undef_shuffle_mask)),
(UNPCKHPSrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(v16i8 (vector_shuffle VR128:$src, (undef),
UNPCKH_v_undef_shuffle_mask)),
(PUNPCKHBWrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(v8i16 (vector_shuffle VR128:$src, (undef),
UNPCKH_v_undef_shuffle_mask)),
(PUNPCKHWDrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(v4i32 (vector_shuffle VR128:$src, (undef),
UNPCKH_v_undef_shuffle_mask)),
(PUNPCKHDQrr VR128:$src, VR128:$src)>, Requires<[HasSSE1]>;
}
let AddedComplexity = 15 in {
// vector_shuffle v1, v2 <0, 1, 4, 5> using MOVLHPS
def : Pat<(v4i32 (vector_shuffle VR128:$src1, VR128:$src2,
MOVHP_shuffle_mask)),
(MOVLHPSrr VR128:$src1, VR128:$src2)>;
// vector_shuffle v1, v2 <6, 7, 2, 3> using MOVHLPS
def : Pat<(v4i32 (vector_shuffle VR128:$src1, VR128:$src2,
MOVHLPS_shuffle_mask)),
(MOVHLPSrr VR128:$src1, VR128:$src2)>;
// vector_shuffle v1, undef <2, ?, ?, ?> using MOVHLPS
def : Pat<(v4f32 (vector_shuffle VR128:$src1, (undef),
MOVHLPS_v_undef_shuffle_mask)),
(MOVHLPSrr VR128:$src1, VR128:$src1)>;
def : Pat<(v4i32 (vector_shuffle VR128:$src1, (undef),
MOVHLPS_v_undef_shuffle_mask)),
(MOVHLPSrr VR128:$src1, VR128:$src1)>;
}
let AddedComplexity = 20 in {
// vector_shuffle v1, (load v2) <4, 5, 2, 3> using MOVLPS
// vector_shuffle v1, (load v2) <0, 1, 4, 5> using MOVHPS
def : Pat<(v4f32 (vector_shuffle VR128:$src1, (loadv4f32 addr:$src2),
MOVLP_shuffle_mask)),
(MOVLPSrm VR128:$src1, addr:$src2)>, Requires<[HasSSE1]>;
def : Pat<(v2f64 (vector_shuffle VR128:$src1, (loadv2f64 addr:$src2),
MOVLP_shuffle_mask)),
(MOVLPDrm VR128:$src1, addr:$src2)>, Requires<[HasSSE2]>;
def : Pat<(v4f32 (vector_shuffle VR128:$src1, (loadv4f32 addr:$src2),
MOVHP_shuffle_mask)),
(MOVHPSrm VR128:$src1, addr:$src2)>, Requires<[HasSSE1]>;
def : Pat<(v2f64 (vector_shuffle VR128:$src1, (loadv2f64 addr:$src2),
MOVHP_shuffle_mask)),
(MOVHPDrm VR128:$src1, addr:$src2)>, Requires<[HasSSE2]>;
def : Pat<(v4i32 (vector_shuffle VR128:$src1, (bc_v4i32 (loadv2i64 addr:$src2)),
MOVLP_shuffle_mask)),
(MOVLPSrm VR128:$src1, addr:$src2)>, Requires<[HasSSE2]>;
def : Pat<(v2i64 (vector_shuffle VR128:$src1, (loadv2i64 addr:$src2),
MOVLP_shuffle_mask)),
(MOVLPDrm VR128:$src1, addr:$src2)>, Requires<[HasSSE2]>;
def : Pat<(v4i32 (vector_shuffle VR128:$src1, (bc_v4i32 (loadv2i64 addr:$src2)),
MOVHP_shuffle_mask)),
(MOVHPSrm VR128:$src1, addr:$src2)>, Requires<[HasSSE1]>;
def : Pat<(v2i64 (vector_shuffle VR128:$src1, (loadv2i64 addr:$src2),
MOVLP_shuffle_mask)),
(MOVLPDrm VR128:$src1, addr:$src2)>, Requires<[HasSSE2]>;
}
let AddedComplexity = 15 in {
// Setting the lowest element in the vector.
def : Pat<(v4i32 (vector_shuffle VR128:$src1, VR128:$src2,
MOVL_shuffle_mask)),
(MOVLPSrr VR128:$src1, VR128:$src2)>, Requires<[HasSSE2]>;
def : Pat<(v2i64 (vector_shuffle VR128:$src1, VR128:$src2,
MOVL_shuffle_mask)),
(MOVLPDrr VR128:$src1, VR128:$src2)>, Requires<[HasSSE2]>;
// vector_shuffle v1, v2 <4, 5, 2, 3> using MOVLPDrr (movsd)
def : Pat<(v4f32 (vector_shuffle VR128:$src1, VR128:$src2,
MOVLP_shuffle_mask)),
(MOVLPDrr VR128:$src1, VR128:$src2)>, Requires<[HasSSE2]>;
def : Pat<(v4i32 (vector_shuffle VR128:$src1, VR128:$src2,
MOVLP_shuffle_mask)),
(MOVLPDrr VR128:$src1, VR128:$src2)>, Requires<[HasSSE2]>;
}
// Set lowest element and zero upper elements.
let AddedComplexity = 20 in
def : Pat<(bc_v2i64 (vector_shuffle immAllZerosV,
(v2f64 (scalar_to_vector (loadf64 addr:$src))),
MOVL_shuffle_mask)),
(MOVZQI2PQIrm addr:$src)>, Requires<[HasSSE2]>;
// FIXME: Temporary workaround since 2-wide shuffle is broken.
def : Pat<(int_x86_sse2_movs_d VR128:$src1, VR128:$src2),
(v2f64 (MOVLPDrr VR128:$src1, VR128:$src2))>, Requires<[HasSSE2]>;
def : Pat<(int_x86_sse2_loadh_pd VR128:$src1, addr:$src2),
(v2f64 (MOVHPDrm VR128:$src1, addr:$src2))>, Requires<[HasSSE2]>;
def : Pat<(int_x86_sse2_loadl_pd VR128:$src1, addr:$src2),
(v2f64 (MOVLPDrm VR128:$src1, addr:$src2))>, Requires<[HasSSE2]>;
def : Pat<(int_x86_sse2_shuf_pd VR128:$src1, VR128:$src2, imm:$src3),
(v2f64 (SHUFPDrri VR128:$src1, VR128:$src2, imm:$src3))>,
Requires<[HasSSE2]>;
def : Pat<(int_x86_sse2_shuf_pd VR128:$src1, (load addr:$src2), imm:$src3),
(v2f64 (SHUFPDrmi VR128:$src1, addr:$src2, imm:$src3))>,
Requires<[HasSSE2]>;
def : Pat<(int_x86_sse2_unpckh_pd VR128:$src1, VR128:$src2),
(v2f64 (UNPCKHPDrr VR128:$src1, VR128:$src2))>, Requires<[HasSSE2]>;
def : Pat<(int_x86_sse2_unpckh_pd VR128:$src1, (load addr:$src2)),
(v2f64 (UNPCKHPDrm VR128:$src1, addr:$src2))>, Requires<[HasSSE2]>;
def : Pat<(int_x86_sse2_unpckl_pd VR128:$src1, VR128:$src2),
(v2f64 (UNPCKLPDrr VR128:$src1, VR128:$src2))>, Requires<[HasSSE2]>;
def : Pat<(int_x86_sse2_unpckl_pd VR128:$src1, (load addr:$src2)),
(v2f64 (UNPCKLPDrm VR128:$src1, addr:$src2))>, Requires<[HasSSE2]>;
def : Pat<(int_x86_sse2_punpckh_qdq VR128:$src1, VR128:$src2),
(v2i64 (PUNPCKHQDQrr VR128:$src1, VR128:$src2))>, Requires<[HasSSE2]>;
def : Pat<(int_x86_sse2_punpckh_qdq VR128:$src1, (load addr:$src2)),
(v2i64 (PUNPCKHQDQrm VR128:$src1, addr:$src2))>, Requires<[HasSSE2]>;
def : Pat<(int_x86_sse2_punpckl_qdq VR128:$src1, VR128:$src2),
(v2i64 (PUNPCKLQDQrr VR128:$src1, VR128:$src2))>, Requires<[HasSSE2]>;
def : Pat<(int_x86_sse2_punpckl_qdq VR128:$src1, (load addr:$src2)),
(PUNPCKLQDQrm VR128:$src1, addr:$src2)>, Requires<[HasSSE2]>;
// Some special case pandn patterns.
def : Pat<(v2i64 (and (xor VR128:$src1, (bc_v2i64 (v4i32 immAllOnesV))),
VR128:$src2)),
(PANDNrr VR128:$src1, VR128:$src2)>, Requires<[HasSSE2]>;
def : Pat<(v2i64 (and (xor VR128:$src1, (bc_v2i64 (v8i16 immAllOnesV))),
VR128:$src2)),
(PANDNrr VR128:$src1, VR128:$src2)>, Requires<[HasSSE2]>;
def : Pat<(v2i64 (and (xor VR128:$src1, (bc_v2i64 (v16i8 immAllOnesV))),
VR128:$src2)),
(PANDNrr VR128:$src1, VR128:$src2)>, Requires<[HasSSE2]>;
def : Pat<(v2i64 (and (xor VR128:$src1, (bc_v2i64 (v4i32 immAllOnesV))),
(load addr:$src2))),
(PANDNrm VR128:$src1, addr:$src2)>, Requires<[HasSSE2]>;
def : Pat<(v2i64 (and (xor VR128:$src1, (bc_v2i64 (v8i16 immAllOnesV))),
(load addr:$src2))),
(PANDNrm VR128:$src1, addr:$src2)>, Requires<[HasSSE2]>;
def : Pat<(v2i64 (and (xor VR128:$src1, (bc_v2i64 (v16i8 immAllOnesV))),
(load addr:$src2))),
(PANDNrm VR128:$src1, addr:$src2)>, Requires<[HasSSE2]>;
// Unaligned load
def : Pat<(v4f32 (X86loadu addr:$src)), (MOVUPSrm addr:$src)>,
Requires<[HasSSE1]>;