llvm-6502/lib/CodeGen/LiveIntervalUnion.h
Andrew Trick 8a83d54528 Check TRI->getReservedRegs because other allocators do it. Even though
it makes no sense for allocation_order iterators to visit reserved regs.
The inline spiller depends on AliasAnalysis.
Manage the Query state to avoid uninitialized or stale results.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118800 91177308-0d34-0410-b5e6-96231b3b80d8
2010-11-11 17:46:29 +00:00

281 lines
9.8 KiB
C++

//===-- LiveIntervalUnion.h - Live interval union data struct --*- C++ -*--===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// LiveIntervalUnion is a union of live segments across multiple live virtual
// registers. This may be used during coalescing to represent a congruence
// class, or during register allocation to model liveness of a physical
// register.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_LIVEINTERVALUNION
#define LLVM_CODEGEN_LIVEINTERVALUNION
#include "llvm/CodeGen/LiveInterval.h"
#include <vector>
#include <set>
namespace llvm {
#ifndef NDEBUG
// forward declaration
template <unsigned Element> class SparseBitVector;
typedef SparseBitVector<128> LvrBitSet;
#endif
/// A LiveSegment is a copy of a LiveRange object used within
/// LiveIntervalUnion. LiveSegment additionally contains a pointer to its
/// original live virtual register (LiveInterval). This allows quick lookup of
/// the live virtual register as we iterate over live segments in a union. Note
/// that LiveRange is misnamed and actually represents only a single contiguous
/// interval within a virtual register's liveness. To limit confusion, in this
/// file we refer it as a live segment.
///
/// Note: This currently represents a half-open interval [start,end).
/// If LiveRange is modified to represent a closed interval, so should this.
struct LiveSegment {
SlotIndex start;
SlotIndex end;
LiveInterval *liveVirtReg;
LiveSegment(SlotIndex s, SlotIndex e, LiveInterval *lvr)
: start(s), end(e), liveVirtReg(lvr) {}
bool operator==(const LiveSegment &ls) const {
return start == ls.start && end == ls.end && liveVirtReg == ls.liveVirtReg;
}
bool operator!=(const LiveSegment &ls) const {
return !operator==(ls);
}
// Order segments by starting point only--we expect them to be disjoint.
bool operator<(const LiveSegment &ls) const { return start < ls.start; }
void dump() const;
void print(raw_ostream &os) const;
};
inline bool operator<(SlotIndex V, const LiveSegment &ls) {
return V < ls.start;
}
inline bool operator<(const LiveSegment &ls, SlotIndex V) {
return ls.start < V;
}
/// Compare a live virtual register segment to a LiveIntervalUnion segment.
inline bool overlap(const LiveRange &lvrSeg, const LiveSegment &liuSeg) {
return lvrSeg.start < liuSeg.end && liuSeg.start < lvrSeg.end;
}
template <> struct isPodLike<LiveSegment> { static const bool value = true; };
raw_ostream& operator<<(raw_ostream& os, const LiveSegment &ls);
/// Abstraction to provide info for the representative register.
class AbstractRegisterDescription {
public:
virtual const char *getName(unsigned reg) const = 0;
virtual ~AbstractRegisterDescription() {}
};
/// Union of live intervals that are strong candidates for coalescing into a
/// single register (either physical or virtual depending on the context). We
/// expect the constituent live intervals to be disjoint, although we may
/// eventually make exceptions to handle value-based interference.
class LiveIntervalUnion {
// A set of live virtual register segments that supports fast insertion,
// intersection, and removal.
//
// FIXME: std::set is a placeholder until we decide how to
// efficiently represent it. Probably need to roll our own B-tree.
typedef std::set<LiveSegment> LiveSegments;
// A set of live virtual registers. Elements have type LiveInterval, where
// each element represents the liveness of a single live virtual register.
// This is traditionally known as a live range, but we refer is as a live
// virtual register to avoid confusing it with the misnamed LiveRange
// class.
typedef std::vector<LiveInterval*> LiveVirtRegs;
public:
// SegmentIter can advance to the next segment ordered by starting position
// which may belong to a different live virtual register. We also must be able
// to reach the current segment's containing virtual register.
typedef LiveSegments::iterator SegmentIter;
class InterferenceResult;
class Query;
private:
unsigned repReg_; // representative register number
LiveSegments segments_; // union of virtual reg segements
public:
// default ctor avoids placement new
LiveIntervalUnion() : repReg_(0) {}
// Initialize the union by associating it with a representative register
// number.
void init(unsigned repReg) { repReg_ = repReg; }
// Iterate over all segments in the union of live virtual registers ordered
// by their starting position.
SegmentIter begin() { return segments_.begin(); }
SegmentIter end() { return segments_.end(); }
// Return an iterator to the first segment after or including begin that
// intersects with lvrSeg.
SegmentIter upperBound(SegmentIter begin, const LiveSegment &seg);
// Add a live virtual register to this union and merge its segments.
// Holds a nonconst reference to the LVR for later maniplution.
void unify(LiveInterval &lvr);
// Remove a live virtual register's segments from this union.
void extract(const LiveInterval &lvr);
void dump(const AbstractRegisterDescription *regInfo) const;
// If tri != NULL, use it to decode repReg_
void print(raw_ostream &os, const AbstractRegisterDescription *rdesc) const;
#ifndef NDEBUG
// Verify the live intervals in this union and add them to the visited set.
void verify(LvrBitSet& visitedVRegs);
#endif
/// Cache a single interference test result in the form of two intersecting
/// segments. This allows efficiently iterating over the interferences. The
/// iteration logic is handled by LiveIntervalUnion::Query which may
/// filter interferences depending on the type of query.
class InterferenceResult {
friend class Query;
LiveInterval::iterator lvrSegI_; // current position in _lvr
SegmentIter liuSegI_; // current position in _liu
// Internal ctor.
InterferenceResult(LiveInterval::iterator lvrSegI, SegmentIter liuSegI)
: lvrSegI_(lvrSegI), liuSegI_(liuSegI) {}
public:
// Public default ctor.
InterferenceResult(): lvrSegI_(), liuSegI_() {}
// Note: this interface provides raw access to the iterators because the
// result has no way to tell if it's valid to dereference them.
// Access the lvr segment.
LiveInterval::iterator lvrSegPos() const { return lvrSegI_; }
// Access the liu segment.
SegmentIter liuSegPos() const { return liuSegI_; }
bool operator==(const InterferenceResult &ir) const {
return lvrSegI_ == ir.lvrSegI_ && liuSegI_ == ir.liuSegI_;
}
bool operator!=(const InterferenceResult &ir) const {
return !operator==(ir);
}
};
/// Query interferences between a single live virtual register and a live
/// interval union.
class Query {
LiveIntervalUnion *liu_;
LiveInterval *lvr_;
InterferenceResult firstInterference_;
SmallVector<LiveInterval*,4> interferingVRegs_;
bool seenUnspillableVReg_;
public:
Query(): liu_(), lvr_() {}
Query(LiveInterval *lvr, LiveIntervalUnion *liu):
liu_(liu), lvr_(lvr), seenUnspillableVReg_(false) {}
void clear() {
liu_ = NULL;
lvr_ = NULL;
firstInterference_ = InterferenceResult();
interferingVRegs_.clear();
seenUnspillableVReg_ = false;
}
void init(LiveInterval *lvr, LiveIntervalUnion *liu) {
if (lvr_ == lvr) {
// We currently allow query objects to be reused acrossed live virtual
// registers, but always for the same live interval union.
assert(liu_ == liu && "inconsistent initialization");
// Retain cached results, e.g. firstInterference.
return;
}
liu_ = liu;
lvr_ = lvr;
// Clear cached results.
firstInterference_ = InterferenceResult();
interferingVRegs_.clear();
seenUnspillableVReg_ = false;
}
LiveInterval &lvr() const { assert(lvr_ && "uninitialized"); return *lvr_; }
bool isInterference(const InterferenceResult &ir) const {
if (ir.lvrSegI_ != lvr_->end()) {
assert(overlap(*ir.lvrSegI_, *ir.liuSegI_) &&
"invalid segment iterators");
return true;
}
return false;
}
// Does this live virtual register interfere with the union.
bool checkInterference() { return isInterference(firstInterference()); }
// Get the first pair of interfering segments, or a noninterfering result.
// This initializes the firstInterference_ cache.
InterferenceResult firstInterference();
// Treat the result as an iterator and advance to the next interfering pair
// of segments. Visiting each unique interfering pairs means that the same
// lvr or liu segment may be visited multiple times.
bool nextInterference(InterferenceResult &ir) const;
// Count the virtual registers in this union that interfere with this
// query's live virtual register, up to maxInterferingRegs.
unsigned collectInterferingVRegs(unsigned maxInterferingRegs = UINT_MAX);
// Was this virtual register visited during collectInterferingVRegs?
bool isSeenInterference(LiveInterval *lvr) const;
// Did collectInterferingVRegs encounter an unspillable vreg?
bool seenUnspillableVReg() const {
return seenUnspillableVReg_;
}
// Vector generated by collectInterferingVRegs.
const SmallVectorImpl<LiveInterval*> &interferingVRegs() const {
return interferingVRegs_;
}
private:
Query(const Query&); // DO NOT IMPLEMENT
void operator=(const Query&); // DO NOT IMPLEMENT
// Private interface for queries
void findIntersection(InterferenceResult &ir) const;
};
};
} // end namespace llvm
#endif // !defined(LLVM_CODEGEN_LIVEINTERVALUNION)