llvm-6502/lib/Target/ARM/ARMScheduleV6.td
Anton Korobeynikov 928eb49cae Make processor FUs unique for given itinerary. This extends the limit of 32
FU per CPU arch to 32 per intinerary allowing precise modelling of quite
complex pipelines in the future.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101754 91177308-0d34-0410-b5e6-96231b3b80d8
2010-04-18 20:31:01 +00:00

205 lines
7.5 KiB
TableGen

//===- ARMScheduleV6.td - ARM v6 Scheduling Definitions ----*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the itinerary class data for the ARM v6 processors.
//
//===----------------------------------------------------------------------===//
// Model based on ARM1176
//
// Functional Units
def V6_Pipe : FuncUnit; // pipeline
// Scheduling information derived from "ARM1176JZF-S Technical Reference Manual".
//
def ARMV6Itineraries : ProcessorItineraries<
[V6_Pipe], [
//
// No operand cycles
InstrItinData<IIC_iALUx , [InstrStage<1, [V6_Pipe]>]>,
//
// Binary Instructions that produce a result
InstrItinData<IIC_iALUi , [InstrStage<1, [V6_Pipe]>], [2, 2]>,
InstrItinData<IIC_iALUr , [InstrStage<1, [V6_Pipe]>], [2, 2, 2]>,
InstrItinData<IIC_iALUsi , [InstrStage<1, [V6_Pipe]>], [2, 2, 1]>,
InstrItinData<IIC_iALUsr , [InstrStage<2, [V6_Pipe]>], [3, 3, 2, 1]>,
//
// Unary Instructions that produce a result
InstrItinData<IIC_iUNAr , [InstrStage<1, [V6_Pipe]>], [2, 2]>,
InstrItinData<IIC_iUNAsi , [InstrStage<1, [V6_Pipe]>], [2, 1]>,
InstrItinData<IIC_iUNAsr , [InstrStage<2, [V6_Pipe]>], [3, 2, 1]>,
//
// Compare instructions
InstrItinData<IIC_iCMPi , [InstrStage<1, [V6_Pipe]>], [2]>,
InstrItinData<IIC_iCMPr , [InstrStage<1, [V6_Pipe]>], [2, 2]>,
InstrItinData<IIC_iCMPsi , [InstrStage<1, [V6_Pipe]>], [2, 1]>,
InstrItinData<IIC_iCMPsr , [InstrStage<2, [V6_Pipe]>], [3, 2, 1]>,
//
// Move instructions, unconditional
InstrItinData<IIC_iMOVi , [InstrStage<1, [V6_Pipe]>], [2]>,
InstrItinData<IIC_iMOVr , [InstrStage<1, [V6_Pipe]>], [2, 2]>,
InstrItinData<IIC_iMOVsi , [InstrStage<1, [V6_Pipe]>], [2, 1]>,
InstrItinData<IIC_iMOVsr , [InstrStage<2, [V6_Pipe]>], [3, 2, 1]>,
//
// Move instructions, conditional
InstrItinData<IIC_iCMOVi , [InstrStage<1, [V6_Pipe]>], [3]>,
InstrItinData<IIC_iCMOVr , [InstrStage<1, [V6_Pipe]>], [3, 2]>,
InstrItinData<IIC_iCMOVsi , [InstrStage<1, [V6_Pipe]>], [3, 1]>,
InstrItinData<IIC_iCMOVsr , [InstrStage<1, [V6_Pipe]>], [4, 2, 1]>,
// Integer multiply pipeline
//
InstrItinData<IIC_iMUL16 , [InstrStage<1, [V6_Pipe]>], [4, 1, 1]>,
InstrItinData<IIC_iMAC16 , [InstrStage<1, [V6_Pipe]>], [4, 1, 1, 2]>,
InstrItinData<IIC_iMUL32 , [InstrStage<2, [V6_Pipe]>], [5, 1, 1]>,
InstrItinData<IIC_iMAC32 , [InstrStage<2, [V6_Pipe]>], [5, 1, 1, 2]>,
InstrItinData<IIC_iMUL64 , [InstrStage<3, [V6_Pipe]>], [6, 1, 1]>,
InstrItinData<IIC_iMAC64 , [InstrStage<3, [V6_Pipe]>], [6, 1, 1, 2]>,
// Integer load pipeline
//
// Immediate offset
InstrItinData<IIC_iLoadi , [InstrStage<1, [V6_Pipe]>], [4, 1]>,
//
// Register offset
InstrItinData<IIC_iLoadr , [InstrStage<1, [V6_Pipe]>], [4, 1, 1]>,
//
// Scaled register offset, issues over 2 cycles
InstrItinData<IIC_iLoadsi , [InstrStage<2, [V6_Pipe]>], [5, 2, 1]>,
//
// Immediate offset with update
InstrItinData<IIC_iLoadiu , [InstrStage<1, [V6_Pipe]>], [4, 2, 1]>,
//
// Register offset with update
InstrItinData<IIC_iLoadru , [InstrStage<1, [V6_Pipe]>], [4, 2, 1, 1]>,
//
// Scaled register offset with update, issues over 2 cycles
InstrItinData<IIC_iLoadsiu , [InstrStage<2, [V6_Pipe]>], [5, 2, 2, 1]>,
//
// Load multiple
InstrItinData<IIC_iLoadm , [InstrStage<3, [V6_Pipe]>]>,
// Integer store pipeline
//
// Immediate offset
InstrItinData<IIC_iStorei , [InstrStage<1, [V6_Pipe]>], [2, 1]>,
//
// Register offset
InstrItinData<IIC_iStorer , [InstrStage<1, [V6_Pipe]>], [2, 1, 1]>,
//
// Scaled register offset, issues over 2 cycles
InstrItinData<IIC_iStoresi , [InstrStage<2, [V6_Pipe]>], [2, 2, 1]>,
//
// Immediate offset with update
InstrItinData<IIC_iStoreiu , [InstrStage<1, [V6_Pipe]>], [2, 2, 1]>,
//
// Register offset with update
InstrItinData<IIC_iStoreru , [InstrStage<1, [V6_Pipe]>], [2, 2, 1, 1]>,
//
// Scaled register offset with update, issues over 2 cycles
InstrItinData<IIC_iStoresiu, [InstrStage<2, [V6_Pipe]>], [2, 2, 2, 1]>,
//
// Store multiple
InstrItinData<IIC_iStorem , [InstrStage<3, [V6_Pipe]>]>,
// Branch
//
// no delay slots, so the latency of a branch is unimportant
InstrItinData<IIC_Br , [InstrStage<1, [V6_Pipe]>]>,
// VFP
// Issue through integer pipeline, and execute in NEON unit. We assume
// RunFast mode so that NFP pipeline is used for single-precision when
// possible.
//
// FP Special Register to Integer Register File Move
InstrItinData<IIC_fpSTAT , [InstrStage<1, [V6_Pipe]>], [3]>,
//
// Single-precision FP Unary
InstrItinData<IIC_fpUNA32 , [InstrStage<1, [V6_Pipe]>], [5, 2]>,
//
// Double-precision FP Unary
InstrItinData<IIC_fpUNA64 , [InstrStage<1, [V6_Pipe]>], [5, 2]>,
//
// Single-precision FP Compare
InstrItinData<IIC_fpCMP32 , [InstrStage<1, [V6_Pipe]>], [2, 2]>,
//
// Double-precision FP Compare
InstrItinData<IIC_fpCMP64 , [InstrStage<1, [V6_Pipe]>], [2, 2]>,
//
// Single to Double FP Convert
InstrItinData<IIC_fpCVTSD , [InstrStage<1, [V6_Pipe]>], [5, 2]>,
//
// Double to Single FP Convert
InstrItinData<IIC_fpCVTDS , [InstrStage<1, [V6_Pipe]>], [5, 2]>,
//
// Single-Precision FP to Integer Convert
InstrItinData<IIC_fpCVTSI , [InstrStage<1, [V6_Pipe]>], [9, 2]>,
//
// Double-Precision FP to Integer Convert
InstrItinData<IIC_fpCVTDI , [InstrStage<1, [V6_Pipe]>], [9, 2]>,
//
// Integer to Single-Precision FP Convert
InstrItinData<IIC_fpCVTIS , [InstrStage<1, [V6_Pipe]>], [9, 2]>,
//
// Integer to Double-Precision FP Convert
InstrItinData<IIC_fpCVTID , [InstrStage<1, [V6_Pipe]>], [9, 2]>,
//
// Single-precision FP ALU
InstrItinData<IIC_fpALU32 , [InstrStage<1, [V6_Pipe]>], [9, 2, 2]>,
//
// Double-precision FP ALU
InstrItinData<IIC_fpALU64 , [InstrStage<1, [V6_Pipe]>], [9, 2, 2]>,
//
// Single-precision FP Multiply
InstrItinData<IIC_fpMUL32 , [InstrStage<1, [V6_Pipe]>], [9, 2, 2]>,
//
// Double-precision FP Multiply
InstrItinData<IIC_fpMUL64 , [InstrStage<2, [V6_Pipe]>], [9, 2, 2]>,
//
// Single-precision FP MAC
InstrItinData<IIC_fpMAC32 , [InstrStage<1, [V6_Pipe]>], [9, 2, 2, 2]>,
//
// Double-precision FP MAC
InstrItinData<IIC_fpMAC64 , [InstrStage<2, [V6_Pipe]>], [9, 2, 2, 2]>,
//
// Single-precision FP DIV
InstrItinData<IIC_fpDIV32 , [InstrStage<15, [V6_Pipe]>], [20, 2, 2]>,
//
// Double-precision FP DIV
InstrItinData<IIC_fpDIV64 , [InstrStage<29, [V6_Pipe]>], [34, 2, 2]>,
//
// Single-precision FP SQRT
InstrItinData<IIC_fpSQRT32 , [InstrStage<15, [V6_Pipe]>], [20, 2, 2]>,
//
// Double-precision FP SQRT
InstrItinData<IIC_fpSQRT64 , [InstrStage<29, [V6_Pipe]>], [34, 2, 2]>,
//
// Single-precision FP Load
InstrItinData<IIC_fpLoad32 , [InstrStage<1, [V6_Pipe]>], [5, 2, 2]>,
//
// Double-precision FP Load
InstrItinData<IIC_fpLoad64 , [InstrStage<1, [V6_Pipe]>], [5, 2, 2]>,
//
// FP Load Multiple
InstrItinData<IIC_fpLoadm , [InstrStage<3, [V6_Pipe]>]>,
//
// Single-precision FP Store
InstrItinData<IIC_fpStore32 , [InstrStage<1, [V6_Pipe]>], [2, 2, 2]>,
//
// Double-precision FP Store
// use FU_Issue to enforce the 1 load/store per cycle limit
InstrItinData<IIC_fpStore64 , [InstrStage<1, [V6_Pipe]>], [2, 2, 2]>,
//
// FP Store Multiple
InstrItinData<IIC_fpStorem , [InstrStage<3, [V6_Pipe]>]>
]>;