llvm-6502/lib/CodeGen/RegAllocLocal.cpp
Chris Lattner e7d361d15a Use new reginfo interface
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@5099 91177308-0d34-0410-b5e6-96231b3b80d8
2002-12-17 04:19:40 +00:00

614 lines
24 KiB
C++

//===-- RegAllocLocal.cpp - A BasicBlock generic register allocator -------===//
//
// This register allocator allocates registers to a basic block at a time,
// attempting to keep values in registers and reusing registers as appropriate.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Target/MachineInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "Support/Statistic.h"
#include <iostream>
namespace {
Statistic<> NumSpilled ("ra-local", "Number of registers spilled");
Statistic<> NumReloaded("ra-local", "Number of registers reloaded");
class RA : public FunctionPass {
TargetMachine &TM;
MachineFunction *MF;
const MRegisterInfo &RegInfo;
const MachineInstrInfo &MIInfo;
unsigned NumBytesAllocated;
// Maps SSA Regs => offsets on the stack where these values are stored
std::map<unsigned, unsigned> VirtReg2OffsetMap;
// Virt2PhysRegMap - This map contains entries for each virtual register
// that is currently available in a physical register.
//
std::map<unsigned, unsigned> Virt2PhysRegMap;
// PhysRegsUsed - This map contains entries for each physical register that
// currently has a value (ie, it is in Virt2PhysRegMap). The value mapped
// to is the virtual register corresponding to the physical register (the
// inverse of the Virt2PhysRegMap), or 0. The value is set to 0 if this
// register is pinned because it is used by a future instruction.
//
std::map<unsigned, unsigned> PhysRegsUsed;
// PhysRegsUseOrder - This contains a list of the physical registers that
// currently have a virtual register value in them. This list provides an
// ordering of registers, imposing a reallocation order. This list is only
// used if all registers are allocated and we have to spill one, in which
// case we spill the least recently used register. Entries at the front of
// the list are the least recently used registers, entries at the back are
// the most recently used.
//
std::vector<unsigned> PhysRegsUseOrder;
void MarkPhysRegRecentlyUsed(unsigned Reg) {
assert(std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), Reg) !=
PhysRegsUseOrder.end() && "Register isn't used yet!");
if (PhysRegsUseOrder.back() != Reg) {
for (unsigned i = PhysRegsUseOrder.size(); ; --i)
if (PhysRegsUseOrder[i-1] == Reg) { // remove from middle
PhysRegsUseOrder.erase(PhysRegsUseOrder.begin()+i-1);
PhysRegsUseOrder.push_back(Reg); // Add it to the end of the list
return;
}
}
}
public:
RA(TargetMachine &tm)
: TM(tm), RegInfo(*tm.getRegisterInfo()), MIInfo(tm.getInstrInfo()) {
cleanupAfterFunction();
}
bool runOnFunction(Function &Fn) {
return runOnMachineFunction(MachineFunction::get(&Fn));
}
virtual const char *getPassName() const {
return "Local Register Allocator";
}
private:
/// runOnMachineFunction - Register allocate the whole function
bool runOnMachineFunction(MachineFunction &Fn);
/// AllocateBasicBlock - Register allocate the specified basic block.
void AllocateBasicBlock(MachineBasicBlock &MBB);
/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
/// in predecessor basic blocks.
void EliminatePHINodes(MachineBasicBlock &MBB);
/// EmitPrologue/EmitEpilogue - Use the register info object to add a
/// prologue/epilogue to the function and save/restore any callee saved
/// registers we are responsible for.
///
void EmitPrologue();
void EmitEpilogue(MachineBasicBlock &MBB);
/// isAllocatableRegister - A register may be used by the program if it's
/// not the stack or frame pointer.
bool isAllocatableRegister(unsigned R) const {
unsigned FP = RegInfo.getFramePointer(), SP = RegInfo.getStackPointer();
// Don't allocate the Frame or Stack pointers
if (R == FP || R == SP)
return false;
// Check to see if this register aliases the stack or frame pointer...
if (const unsigned *AliasSet = RegInfo.getAliasSet(R)) {
for (unsigned i = 0; AliasSet[i]; ++i)
if (AliasSet[i] == FP || AliasSet[i] == SP)
return false;
}
return true;
}
/// getStackSpaceFor - This returns the offset of the specified virtual
/// register on the stack, allocating space if neccesary.
unsigned getStackSpaceFor(unsigned VirtReg,
const TargetRegisterClass *regClass);
void cleanupAfterFunction() {
VirtReg2OffsetMap.clear();
NumBytesAllocated = 4; // FIXME: This is X86 specific
}
/// spillVirtReg - This method spills the value specified by PhysReg into
/// the virtual register slot specified by VirtReg. It then updates the RA
/// data structures to indicate the fact that PhysReg is now available.
///
void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
unsigned VirtReg, unsigned PhysReg);
/// spillPhysReg - This method spills the specified physical register into
/// the virtual register slot associated with it.
//
void spillPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
unsigned PhysReg) {
std::map<unsigned, unsigned>::iterator PI = PhysRegsUsed.find(PhysReg);
if (PI != PhysRegsUsed.end()) // Only spill it if it's used!
spillVirtReg(MBB, I, PI->second, PhysReg);
}
void AssignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg);
/// isPhysRegAvailable - Return true if the specified physical register is
/// free and available for use. This also includes checking to see if
/// aliased registers are all free...
///
bool RA::isPhysRegAvailable(unsigned PhysReg) const;
/// getFreeReg - Find a physical register to hold the specified virtual
/// register. If all compatible physical registers are used, this method
/// spills the last used virtual register to the stack, and uses that
/// register.
///
unsigned getFreeReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &I,
unsigned virtualReg);
/// reloadVirtReg - This method loads the specified virtual register into a
/// physical register, returning the physical register chosen. This updates
/// the regalloc data structures to reflect the fact that the virtual reg is
/// now alive in a physical register, and the previous one isn't.
///
unsigned reloadVirtReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &I, unsigned VirtReg);
};
}
/// getStackSpaceFor - This allocates space for the specified virtual
/// register to be held on the stack.
unsigned RA::getStackSpaceFor(unsigned VirtReg,
const TargetRegisterClass *RegClass) {
// Find the location VirtReg would belong...
std::map<unsigned, unsigned>::iterator I =
VirtReg2OffsetMap.lower_bound(VirtReg);
if (I != VirtReg2OffsetMap.end() && I->first == VirtReg)
return I->second; // Already has space allocated?
unsigned RegSize = RegClass->getDataSize();
// Align NumBytesAllocated. We should be using TargetData alignment stuff
// to determine this, but we don't know the LLVM type associated with the
// virtual register. Instead, just align to a multiple of the size for now.
NumBytesAllocated += RegSize-1;
NumBytesAllocated = NumBytesAllocated/RegSize*RegSize;
// Assign the slot...
VirtReg2OffsetMap.insert(I, std::make_pair(VirtReg, NumBytesAllocated));
// Reserve the space!
NumBytesAllocated += RegSize;
return NumBytesAllocated-RegSize;
}
/// spillVirtReg - This method spills the value specified by PhysReg into the
/// virtual register slot specified by VirtReg. It then updates the RA data
/// structures to indicate the fact that PhysReg is now available.
///
void RA::spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
unsigned VirtReg, unsigned PhysReg) {
// If this is just a marker register, we don't need to spill it.
if (VirtReg != 0) {
const TargetRegisterClass *RegClass = MF->getRegClass(VirtReg);
unsigned stackOffset = getStackSpaceFor(VirtReg, RegClass);
// Add move instruction(s)
I = RegInfo.storeReg2RegOffset(MBB, I, PhysReg, RegInfo.getFramePointer(),
-stackOffset, RegClass->getDataSize());
++NumSpilled; // Update statistics
Virt2PhysRegMap.erase(VirtReg); // VirtReg no longer available
}
PhysRegsUsed.erase(PhysReg); // PhyReg no longer used
std::vector<unsigned>::iterator It =
std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), PhysReg);
assert(It != PhysRegsUseOrder.end() &&
"Spilled a physical register, but it was not in use list!");
PhysRegsUseOrder.erase(It);
}
/// isPhysRegAvailable - Return true if the specified physical register is free
/// and available for use. This also includes checking to see if aliased
/// registers are all free...
///
bool RA::isPhysRegAvailable(unsigned PhysReg) const {
if (PhysRegsUsed.count(PhysReg)) return false;
// If the selected register aliases any other allocated registers, it is
// not free!
if (const unsigned *AliasSet = RegInfo.getAliasSet(PhysReg))
for (unsigned i = 0; AliasSet[i]; ++i)
if (PhysRegsUsed.count(AliasSet[i])) // Aliased register in use?
return false; // Can't use this reg then.
return true;
}
/// getFreeReg - Find a physical register to hold the specified virtual
/// register. If all compatible physical registers are used, this method spills
/// the last used virtual register to the stack, and uses that register.
///
unsigned RA::getFreeReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
unsigned VirtReg) {
const TargetRegisterClass *RegClass = MF->getRegClass(VirtReg);
unsigned PhysReg = 0;
// First check to see if we have a free register of the requested type...
for (TargetRegisterClass::iterator It = RegClass->begin(),E = RegClass->end();
It != E; ++It) {
unsigned R = *It;
if (isPhysRegAvailable(R)) { // Is reg unused?
if (isAllocatableRegister(R)) { // And is not a frame register?
// Found an unused register!
PhysReg = R;
break;
}
}
}
// If we didn't find an unused register, scavenge one now!
if (PhysReg == 0) {
assert(!PhysRegsUseOrder.empty() && "No allocated registers??");
// Loop over all of the preallocated registers from the least recently used
// to the most recently used. When we find one that is capable of holding
// our register, use it.
for (unsigned i = 0; PhysReg == 0; ++i) {
assert(i != PhysRegsUseOrder.size() &&
"Couldn't find a register of the appropriate class!");
unsigned R = PhysRegsUseOrder[i];
// If the current register is compatible, use it.
if (isAllocatableRegister(R)) {
if (RegInfo.getRegClass(R) == RegClass) {
PhysReg = R;
break;
} else {
// If one of the registers aliased to the current register is
// compatible, use it.
if (const unsigned *AliasSet = RegInfo.getAliasSet(R))
for (unsigned a = 0; AliasSet[a]; ++a)
if (RegInfo.getRegClass(AliasSet[a]) == RegClass) {
PhysReg = AliasSet[a]; // Take an aliased register
break;
}
}
}
}
assert(isAllocatableRegister(PhysReg) && "Register is not allocatable!");
assert(PhysReg && "Physical register not assigned!?!?");
// At this point PhysRegsUseOrder[i] is the least recently used register of
// compatible register class. Spill it to memory and reap its remains.
spillPhysReg(MBB, I, PhysReg);
// If the selected register aliases any other registers, we must make sure
// to spill them as well...
if (const unsigned *AliasSet = RegInfo.getAliasSet(PhysReg))
for (unsigned i = 0; AliasSet[i]; ++i)
if (PhysRegsUsed.count(AliasSet[i])) // Spill aliased register...
spillPhysReg(MBB, I, AliasSet[i]);
}
// Now that we know which register we need to assign this to, do it now!
AssignVirtToPhysReg(VirtReg, PhysReg);
return PhysReg;
}
void RA::AssignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
assert(PhysRegsUsed.find(PhysReg) == PhysRegsUsed.end() &&
"Phys reg already assigned!");
// Update information to note the fact that this register was just used, and
// it holds VirtReg.
PhysRegsUsed[PhysReg] = VirtReg;
Virt2PhysRegMap[VirtReg] = PhysReg;
PhysRegsUseOrder.push_back(PhysReg); // New use of PhysReg
}
/// reloadVirtReg - This method loads the specified virtual register into a
/// physical register, returning the physical register chosen. This updates the
/// regalloc data structures to reflect the fact that the virtual reg is now
/// alive in a physical register, and the previous one isn't.
///
unsigned RA::reloadVirtReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &I,
unsigned VirtReg) {
std::map<unsigned, unsigned>::iterator It = Virt2PhysRegMap.find(VirtReg);
if (It != Virt2PhysRegMap.end()) {
MarkPhysRegRecentlyUsed(It->second);
return It->second; // Already have this value available!
}
unsigned PhysReg = getFreeReg(MBB, I, VirtReg);
const TargetRegisterClass *RegClass = MF->getRegClass(VirtReg);
unsigned StackOffset = getStackSpaceFor(VirtReg, RegClass);
// Add move instruction(s)
I = RegInfo.loadRegOffset2Reg(MBB, I, PhysReg, RegInfo.getFramePointer(),
-StackOffset, RegClass->getDataSize());
++NumReloaded; // Update statistics
return PhysReg;
}
/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
/// predecessor basic blocks.
///
void RA::EliminatePHINodes(MachineBasicBlock &MBB) {
const MachineInstrInfo &MII = TM.getInstrInfo();
while (MBB.front()->getOpcode() == MachineInstrInfo::PHI) {
MachineInstr *MI = MBB.front();
// Unlink the PHI node from the basic block... but don't delete the PHI yet
MBB.erase(MBB.begin());
DEBUG(std::cerr << "num ops: " << MI->getNumOperands() << "\n");
assert(MI->getOperand(0).isVirtualRegister() &&
"PHI node doesn't write virt reg?");
unsigned virtualReg = MI->getOperand(0).getAllocatedRegNum();
for (int i = MI->getNumOperands() - 1; i >= 2; i-=2) {
MachineOperand &opVal = MI->getOperand(i-1);
// Get the MachineBasicBlock equivalent of the BasicBlock that is the
// source path the phi
MachineBasicBlock &opBlock = *MI->getOperand(i).getMachineBasicBlock();
// Check to make sure we haven't already emitted the copy for this block.
// This can happen because PHI nodes may have multiple entries for the
// same basic block. It doesn't matter which entry we use though, because
// all incoming values are guaranteed to be the same for a particular bb.
//
// Note that this is N^2 in the number of phi node entries, but since the
// # of entries is tiny, this is not a problem.
//
bool HaveNotEmitted = true;
for (int op = MI->getNumOperands() - 1; op != i; op -= 2)
if (&opBlock == MI->getOperand(op).getMachineBasicBlock()) {
HaveNotEmitted = false;
break;
}
if (HaveNotEmitted) {
MachineBasicBlock::iterator opI = opBlock.end();
MachineInstr *opMI = *--opI;
// must backtrack over ALL the branches in the previous block
while (MII.isBranch(opMI->getOpcode()) && opI != opBlock.begin())
opMI = *--opI;
// move back to the first branch instruction so new instructions
// are inserted right in front of it and not in front of a non-branch
if (!MII.isBranch(opMI->getOpcode()))
++opI;
unsigned dataSize = MF->getRegClass(virtualReg)->getDataSize();
// Retrieve the constant value from this op, move it to target
// register of the phi
if (opVal.isImmediate()) {
opI = RegInfo.moveImm2Reg(opBlock, opI, virtualReg,
(unsigned) opVal.getImmedValue(),
dataSize);
} else {
opI = RegInfo.moveReg2Reg(opBlock, opI, virtualReg,
opVal.getAllocatedRegNum(), dataSize);
}
}
}
// really delete the PHI instruction now!
delete MI;
}
}
void RA::AllocateBasicBlock(MachineBasicBlock &MBB) {
// loop over each instruction
MachineBasicBlock::iterator I = MBB.begin();
for (; I != MBB.end(); ++I) {
MachineInstr *MI = *I;
const MachineInstrDescriptor &MID = MIInfo.get(MI->getOpcode());
// Loop over all of the operands of the instruction, spilling registers that
// are defined, and marking explicit destinations in the PhysRegsUsed map.
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
if (MI->getOperand(i).opIsDef() &&
MI->getOperand(i).isPhysicalRegister()) {
unsigned Reg = MI->getOperand(i).getAllocatedRegNum();
spillPhysReg(MBB, I, Reg);
PhysRegsUsed[Reg] = 0; // It's free now, and it's reserved
PhysRegsUseOrder.push_back(Reg);
}
// Loop over the implicit defs, spilling them, as above.
if (const unsigned *ImplicitDefs = MID.ImplicitDefs)
for (unsigned i = 0; ImplicitDefs[i]; ++i) {
unsigned Reg = ImplicitDefs[i];
spillPhysReg(MBB, I, Reg);
PhysRegsUsed[Reg] = 0; // It's free now, and it's reserved
PhysRegsUseOrder.push_back(Reg);
}
// Loop over the implicit uses, making sure that they are at the head of the
// use order list, so they don't get reallocated.
if (const unsigned *ImplicitUses = MID.ImplicitUses)
for (unsigned i = 0; ImplicitUses[i]; ++i)
MarkPhysRegRecentlyUsed(ImplicitUses[i]);
// Loop over all of the operands again, getting the used operands into
// registers. This has the potiential to spill incoming values because we
// are out of registers.
//
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
if (MI->getOperand(i).opIsUse() &&
MI->getOperand(i).isVirtualRegister()) {
unsigned VirtSrcReg = MI->getOperand(i).getAllocatedRegNum();
unsigned PhysSrcReg = reloadVirtReg(MBB, I, VirtSrcReg);
MI->SetMachineOperandReg(i, PhysSrcReg); // Assign the input register
}
// Okay, we have allocated all of the source operands and spilled any values
// that would be destroyed by defs of this instruction. Loop over the
// implicit defs and assign them to a register, spilling the incoming value
// if we need to scavange a register.
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
if (MI->getOperand(i).opIsDef() &&
!MI->getOperand(i).isPhysicalRegister()) {
unsigned DestVirtReg = MI->getOperand(i).getAllocatedRegNum();
unsigned DestPhysReg;
if (TM.getInstrInfo().isTwoAddrInstr(MI->getOpcode()) && i == 0) {
// must be same register number as the first operand
// This maps a = b + c into b += c, and saves b into a's spot
assert(MI->getOperand(1).isRegister() &&
MI->getOperand(1).getAllocatedRegNum() &&
MI->getOperand(1).opIsUse() &&
"Two address instruction invalid!");
DestPhysReg = MI->getOperand(1).getAllocatedRegNum();
// Spill the incoming value, because we are about to change the
// register contents.
spillPhysReg(MBB, I, DestPhysReg);
AssignVirtToPhysReg(DestVirtReg, DestPhysReg);
} else {
DestPhysReg = getFreeReg(MBB, I, DestVirtReg);
}
MI->SetMachineOperandReg(i, DestPhysReg); // Assign the output register
}
}
// Rewind the iterator to point to the first flow control instruction...
const MachineInstrInfo &MII = TM.getInstrInfo();
I = MBB.end();
do {
--I;
} while ((MII.isReturn((*I)->getOpcode()) ||
MII.isBranch((*I)->getOpcode())) && I != MBB.begin());
if (!MII.isReturn((*I)->getOpcode()) && !MII.isBranch((*I)->getOpcode()))
++I;
// Spill all physical registers holding virtual registers now.
while (!PhysRegsUsed.empty())
spillVirtReg(MBB, I, PhysRegsUsed.begin()->second,
PhysRegsUsed.begin()->first);
assert(Virt2PhysRegMap.empty() && "Virtual registers still in phys regs?");
assert(PhysRegsUseOrder.empty() && "Physical regs still allocated?");
}
/// EmitPrologue - Use the register info object to add a prologue to the
/// function and save any callee saved registers we are responsible for.
///
void RA::EmitPrologue() {
// Get a list of the callee saved registers, so that we can save them on entry
// to the function.
//
MachineBasicBlock &MBB = MF->front(); // Prolog goes in entry BB
MachineBasicBlock::iterator I = MBB.begin();
const unsigned *CSRegs = RegInfo.getCalleeSaveRegs();
for (unsigned i = 0; CSRegs[i]; ++i) {
const TargetRegisterClass *RegClass = RegInfo.getRegClass(CSRegs[i]);
unsigned Offset = getStackSpaceFor(CSRegs[i], RegClass);
// Insert the spill to the stack frame...
++NumSpilled;
I = RegInfo.storeReg2RegOffset(MBB, I, CSRegs[i], RegInfo.getFramePointer(),
-Offset, RegClass->getDataSize());
}
// Add prologue to the function...
RegInfo.emitPrologue(*MF, NumBytesAllocated);
}
/// EmitEpilogue - Use the register info object to add a epilogue to the
/// function and restore any callee saved registers we are responsible for.
///
void RA::EmitEpilogue(MachineBasicBlock &MBB) {
// Insert instructions before the return.
MachineBasicBlock::iterator I = --MBB.end();
const unsigned *CSRegs = RegInfo.getCalleeSaveRegs();
for (unsigned i = 0; CSRegs[i]; ++i) {
const TargetRegisterClass *RegClass = RegInfo.getRegClass(CSRegs[i]);
unsigned Offset = getStackSpaceFor(CSRegs[i], RegClass);
++NumReloaded;
I = RegInfo.loadRegOffset2Reg(MBB, I, CSRegs[i], RegInfo.getFramePointer(),
-Offset, RegClass->getDataSize());
--I; // Insert in reverse order
}
RegInfo.emitEpilogue(MBB, NumBytesAllocated);
}
/// runOnMachineFunction - Register allocate the whole function
///
bool RA::runOnMachineFunction(MachineFunction &Fn) {
DEBUG(std::cerr << "Machine Function " << "\n");
MF = &Fn;
// First pass: eliminate PHI instructions by inserting copies into predecessor
// blocks.
// FIXME: In this pass, count how many uses of each VReg exist!
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
MBB != MBBe; ++MBB) {
EliminatePHINodes(*MBB);
}
// Loop over all of the basic blocks, eliminating virtual register references
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
MBB != MBBe; ++MBB)
AllocateBasicBlock(*MBB);
// Emit a prologue for the function...
EmitPrologue();
const MachineInstrInfo &MII = TM.getInstrInfo();
// Add epilogue to restore the callee-save registers in each exiting block
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
MBB != MBBe; ++MBB) {
// If last instruction is a return instruction, add an epilogue
if (MII.isReturn(MBB->back()->getOpcode()))
EmitEpilogue(*MBB);
}
cleanupAfterFunction();
return true;
}
Pass *createLocalRegisterAllocator(TargetMachine &TM) {
return new RA(TM);
}