Hal Finkel 83d886db3a Add additional patterns for @llvm.assume in ValueTracking
This builds on r217342, which added the infrastructure to compute known bits
using assumptions (@llvm.assume calls). That original commit added only a few
patterns (to catch common cases related to determining pointer alignment); this
change adds several other patterns for simple cases.

r217342 contained that, for assume(v & b = a), bits in the mask
that are known to be one, we can propagate known bits from the a to v. It also
had a known-bits transfer for assume(a = b). This patch adds:

assume(~(v & b) = a) : For those bits in the mask that are known to be one, we
                       can propagate inverted known bits from the a to v.

assume(v | b = a) :    For those bits in b that are known to be zero, we can
                       propagate known bits from the a to v.

assume(~(v | b) = a):  For those bits in b that are known to be zero, we can
                       propagate inverted known bits from the a to v.

assume(v ^ b = a) :    For those bits in b that are known to be zero, we can
		       propagate known bits from the a to v. For those bits in
		       b that are known to be one, we can propagate inverted
                       known bits from the a to v.

assume(~(v ^ b) = a) : For those bits in b that are known to be zero, we can
		       propagate inverted known bits from the a to v. For those
		       bits in b that are known to be one, we can propagate
                       known bits from the a to v.

assume(v << c = a) :   For those bits in a that are known, we can propagate them
                       to known bits in v shifted to the right by c.

assume(~(v << c) = a) : For those bits in a that are known, we can propagate
                        them inverted to known bits in v shifted to the right by c.

assume(v >> c = a) :   For those bits in a that are known, we can propagate them
                       to known bits in v shifted to the right by c.

assume(~(v >> c) = a) : For those bits in a that are known, we can propagate
                        them inverted to known bits in v shifted to the right by c.

assume(v >=_s c) where c is non-negative: The sign bit of v is zero

assume(v >_s c) where c is at least -1: The sign bit of v is zero

assume(v <=_s c) where c is negative: The sign bit of v is one

assume(v <_s c) where c is non-positive: The sign bit of v is one

assume(v <=_u c): Transfer the known high zero bits

assume(v <_u c): Transfer the known high zero bits (if c is know to be a power
                 of 2, transfer one more)

A small addition to InstCombine was necessary for some of the test cases. The
problem is that when InstCombine was simplifying and, or, etc. it would fail to
check the 'do I know all of the bits' condition before checking less specific
conditions and would not fully constant-fold the result. I'm not sure how to
trigger this aside from using assumptions, so I've just included the change
here.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217343 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-07 19:21:07 +00:00
2014-08-14 15:15:09 +00:00
2014-09-02 22:28:02 +00:00
2014-08-14 15:15:09 +00:00
2014-09-02 22:28:02 +00:00

Low Level Virtual Machine (LLVM)
================================

This directory and its subdirectories contain source code for the Low Level
Virtual Machine, a toolkit for the construction of highly optimized compilers,
optimizers, and runtime environments.

LLVM is open source software. You may freely distribute it under the terms of
the license agreement found in LICENSE.txt.

Please see the documentation provided in docs/ for further
assistance with LLVM, and in particular docs/GettingStarted.rst for getting
started with LLVM and docs/README.txt for an overview of LLVM's
documentation setup.

If you're writing a package for LLVM, see docs/Packaging.rst for our
suggestions.
Description
LLVM backend for 6502
Readme 277 MiB
Languages
C++ 48.7%
LLVM 38.5%
Assembly 10.2%
C 0.9%
Python 0.4%
Other 1.2%