llvm-6502/lib/Transforms/Instrumentation/RSProfiling.cpp
Dan Gohman 844731a7f1 Clean up the use of static and anonymous namespaces. This turned up
several things that were neither in an anonymous namespace nor static
but not intended to be global.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@51017 91177308-0d34-0410-b5e6-96231b3b80d8
2008-05-13 00:00:25 +00:00

658 lines
23 KiB
C++

//===- RSProfiling.cpp - Various profiling using random sampling ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// These passes implement a random sampling based profiling. Different methods
// of choosing when to sample are supported, as well as different types of
// profiling. This is done as two passes. The first is a sequence of profiling
// passes which insert profiling into the program, and remember what they
// inserted.
//
// The second stage duplicates all instructions in a function, ignoring the
// profiling code, then connects the two versions togeather at the entry and at
// backedges. At each connection point a choice is made as to whether to jump
// to the profiled code (take a sample) or execute the unprofiled code.
//
// It is highly recommended that after this pass one runs mem2reg and adce
// (instcombine load-vn gdce dse also are good to run afterwards)
//
// This design is intended to make the profiling passes independent of the RS
// framework, but any profiling pass that implements the RSProfiling interface
// is compatible with the rs framework (and thus can be sampled)
//
// TODO: obviously the block and function profiling are almost identical to the
// existing ones, so they can be unified (esp since these passes are valid
// without the rs framework).
// TODO: Fix choice code so that frequency is not hard coded
//
//===----------------------------------------------------------------------===//
#include "llvm/Pass.h"
#include "llvm/Module.h"
#include "llvm/Instructions.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Intrinsics.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Instrumentation.h"
#include "RSProfiling.h"
#include <set>
#include <map>
#include <queue>
#include <list>
using namespace llvm;
namespace {
enum RandomMeth {
GBV, GBVO, HOSTCC
};
}
static cl::opt<RandomMeth> RandomMethod("profile-randomness",
cl::desc("How to randomly choose to profile:"),
cl::values(
clEnumValN(GBV, "global", "global counter"),
clEnumValN(GBVO, "ra_global",
"register allocated global counter"),
clEnumValN(HOSTCC, "rdcc", "cycle counter"),
clEnumValEnd));
namespace {
/// NullProfilerRS - The basic profiler that does nothing. It is the default
/// profiler and thus terminates RSProfiler chains. It is useful for
/// measuring framework overhead
class VISIBILITY_HIDDEN NullProfilerRS : public RSProfilers {
public:
static char ID; // Pass identification, replacement for typeid
bool isProfiling(Value* v) {
return false;
}
bool runOnModule(Module &M) {
return false;
}
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
}
};
}
static RegisterAnalysisGroup<RSProfilers> A("Profiling passes");
static RegisterPass<NullProfilerRS> NP("insert-null-profiling-rs",
"Measure profiling framework overhead");
static RegisterAnalysisGroup<RSProfilers, true> NPT(NP);
namespace {
/// Chooser - Something that chooses when to make a sample of the profiled code
class VISIBILITY_HIDDEN Chooser {
public:
/// ProcessChoicePoint - is called for each basic block inserted to choose
/// between normal and sample code
virtual void ProcessChoicePoint(BasicBlock*) = 0;
/// PrepFunction - is called once per function before other work is done.
/// This gives the opertunity to insert new allocas and such.
virtual void PrepFunction(Function*) = 0;
virtual ~Chooser() {}
};
//Things that implement sampling policies
//A global value that is read-mod-stored to choose when to sample.
//A sample is taken when the global counter hits 0
class VISIBILITY_HIDDEN GlobalRandomCounter : public Chooser {
GlobalVariable* Counter;
Value* ResetValue;
const Type* T;
public:
GlobalRandomCounter(Module& M, const Type* t, uint64_t resetval);
virtual ~GlobalRandomCounter();
virtual void PrepFunction(Function* F);
virtual void ProcessChoicePoint(BasicBlock* bb);
};
//Same is GRC, but allow register allocation of the global counter
class VISIBILITY_HIDDEN GlobalRandomCounterOpt : public Chooser {
GlobalVariable* Counter;
Value* ResetValue;
AllocaInst* AI;
const Type* T;
public:
GlobalRandomCounterOpt(Module& M, const Type* t, uint64_t resetval);
virtual ~GlobalRandomCounterOpt();
virtual void PrepFunction(Function* F);
virtual void ProcessChoicePoint(BasicBlock* bb);
};
//Use the cycle counter intrinsic as a source of pseudo randomness when
//deciding when to sample.
class VISIBILITY_HIDDEN CycleCounter : public Chooser {
uint64_t rm;
Constant *F;
public:
CycleCounter(Module& m, uint64_t resetmask);
virtual ~CycleCounter();
virtual void PrepFunction(Function* F);
virtual void ProcessChoicePoint(BasicBlock* bb);
};
/// ProfilerRS - Insert the random sampling framework
struct VISIBILITY_HIDDEN ProfilerRS : public FunctionPass {
static char ID; // Pass identification, replacement for typeid
ProfilerRS() : FunctionPass((intptr_t)&ID) {}
std::map<Value*, Value*> TransCache;
std::set<BasicBlock*> ChoicePoints;
Chooser* c;
//Translate and duplicate values for the new profile free version of stuff
Value* Translate(Value* v);
//Duplicate an entire function (with out profiling)
void Duplicate(Function& F, RSProfilers& LI);
//Called once for each backedge, handle the insertion of choice points and
//the interconection of the two versions of the code
void ProcessBackEdge(BasicBlock* src, BasicBlock* dst, Function& F);
bool runOnFunction(Function& F);
bool doInitialization(Module &M);
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
};
}
static RegisterPass<ProfilerRS>
X("insert-rs-profiling-framework",
"Insert random sampling instrumentation framework");
char RSProfilers::ID = 0;
char NullProfilerRS::ID = 0;
char ProfilerRS::ID = 0;
//Local utilities
static void ReplacePhiPred(BasicBlock* btarget,
BasicBlock* bold, BasicBlock* bnew);
static void CollapsePhi(BasicBlock* btarget, BasicBlock* bsrc);
template<class T>
static void recBackEdge(BasicBlock* bb, T& BackEdges,
std::map<BasicBlock*, int>& color,
std::map<BasicBlock*, int>& depth,
std::map<BasicBlock*, int>& finish,
int& time);
//find the back edges and where they go to
template<class T>
static void getBackEdges(Function& F, T& BackEdges);
///////////////////////////////////////
// Methods of choosing when to profile
///////////////////////////////////////
GlobalRandomCounter::GlobalRandomCounter(Module& M, const Type* t,
uint64_t resetval) : T(t) {
ConstantInt* Init = ConstantInt::get(T, resetval);
ResetValue = Init;
Counter = new GlobalVariable(T, false, GlobalValue::InternalLinkage,
Init, "RandomSteeringCounter", &M);
}
GlobalRandomCounter::~GlobalRandomCounter() {}
void GlobalRandomCounter::PrepFunction(Function* F) {}
void GlobalRandomCounter::ProcessChoicePoint(BasicBlock* bb) {
BranchInst* t = cast<BranchInst>(bb->getTerminator());
//decrement counter
LoadInst* l = new LoadInst(Counter, "counter", t);
ICmpInst* s = new ICmpInst(ICmpInst::ICMP_EQ, l, ConstantInt::get(T, 0),
"countercc", t);
Value* nv = BinaryOperator::createSub(l, ConstantInt::get(T, 1),
"counternew", t);
new StoreInst(nv, Counter, t);
t->setCondition(s);
//reset counter
BasicBlock* oldnext = t->getSuccessor(0);
BasicBlock* resetblock = BasicBlock::Create("reset", oldnext->getParent(),
oldnext);
TerminatorInst* t2 = BranchInst::Create(oldnext, resetblock);
t->setSuccessor(0, resetblock);
new StoreInst(ResetValue, Counter, t2);
ReplacePhiPred(oldnext, bb, resetblock);
}
GlobalRandomCounterOpt::GlobalRandomCounterOpt(Module& M, const Type* t,
uint64_t resetval)
: AI(0), T(t) {
ConstantInt* Init = ConstantInt::get(T, resetval);
ResetValue = Init;
Counter = new GlobalVariable(T, false, GlobalValue::InternalLinkage,
Init, "RandomSteeringCounter", &M);
}
GlobalRandomCounterOpt::~GlobalRandomCounterOpt() {}
void GlobalRandomCounterOpt::PrepFunction(Function* F) {
//make a local temporary to cache the global
BasicBlock& bb = F->getEntryBlock();
BasicBlock::iterator InsertPt = bb.begin();
AI = new AllocaInst(T, 0, "localcounter", InsertPt);
LoadInst* l = new LoadInst(Counter, "counterload", InsertPt);
new StoreInst(l, AI, InsertPt);
//modify all functions and return values to restore the local variable to/from
//the global variable
for(Function::iterator fib = F->begin(), fie = F->end();
fib != fie; ++fib)
for(BasicBlock::iterator bib = fib->begin(), bie = fib->end();
bib != bie; ++bib)
if (isa<CallInst>(bib)) {
LoadInst* l = new LoadInst(AI, "counter", bib);
new StoreInst(l, Counter, bib);
l = new LoadInst(Counter, "counter", ++bib);
new StoreInst(l, AI, bib--);
} else if (isa<InvokeInst>(bib)) {
LoadInst* l = new LoadInst(AI, "counter", bib);
new StoreInst(l, Counter, bib);
BasicBlock* bb = cast<InvokeInst>(bib)->getNormalDest();
BasicBlock::iterator i = bb->begin();
while (isa<PHINode>(i))
++i;
l = new LoadInst(Counter, "counter", i);
bb = cast<InvokeInst>(bib)->getUnwindDest();
i = bb->begin();
while (isa<PHINode>(i)) ++i;
l = new LoadInst(Counter, "counter", i);
new StoreInst(l, AI, i);
} else if (isa<UnwindInst>(&*bib) || isa<ReturnInst>(&*bib)) {
LoadInst* l = new LoadInst(AI, "counter", bib);
new StoreInst(l, Counter, bib);
}
}
void GlobalRandomCounterOpt::ProcessChoicePoint(BasicBlock* bb) {
BranchInst* t = cast<BranchInst>(bb->getTerminator());
//decrement counter
LoadInst* l = new LoadInst(AI, "counter", t);
ICmpInst* s = new ICmpInst(ICmpInst::ICMP_EQ, l, ConstantInt::get(T, 0),
"countercc", t);
Value* nv = BinaryOperator::createSub(l, ConstantInt::get(T, 1),
"counternew", t);
new StoreInst(nv, AI, t);
t->setCondition(s);
//reset counter
BasicBlock* oldnext = t->getSuccessor(0);
BasicBlock* resetblock = BasicBlock::Create("reset", oldnext->getParent(),
oldnext);
TerminatorInst* t2 = BranchInst::Create(oldnext, resetblock);
t->setSuccessor(0, resetblock);
new StoreInst(ResetValue, AI, t2);
ReplacePhiPred(oldnext, bb, resetblock);
}
CycleCounter::CycleCounter(Module& m, uint64_t resetmask) : rm(resetmask) {
F = Intrinsic::getDeclaration(&m, Intrinsic::readcyclecounter);
}
CycleCounter::~CycleCounter() {}
void CycleCounter::PrepFunction(Function* F) {}
void CycleCounter::ProcessChoicePoint(BasicBlock* bb) {
BranchInst* t = cast<BranchInst>(bb->getTerminator());
CallInst* c = CallInst::Create(F, "rdcc", t);
BinaryOperator* b =
BinaryOperator::createAnd(c, ConstantInt::get(Type::Int64Ty, rm),
"mrdcc", t);
ICmpInst *s = new ICmpInst(ICmpInst::ICMP_EQ, b,
ConstantInt::get(Type::Int64Ty, 0),
"mrdccc", t);
t->setCondition(s);
}
///////////////////////////////////////
// Profiling:
///////////////////////////////////////
bool RSProfilers_std::isProfiling(Value* v) {
if (profcode.find(v) != profcode.end())
return true;
//else
RSProfilers& LI = getAnalysis<RSProfilers>();
return LI.isProfiling(v);
}
void RSProfilers_std::IncrementCounterInBlock(BasicBlock *BB, unsigned CounterNum,
GlobalValue *CounterArray) {
// Insert the increment after any alloca or PHI instructions...
BasicBlock::iterator InsertPos = BB->begin();
while (isa<AllocaInst>(InsertPos) || isa<PHINode>(InsertPos))
++InsertPos;
// Create the getelementptr constant expression
std::vector<Constant*> Indices(2);
Indices[0] = Constant::getNullValue(Type::Int32Ty);
Indices[1] = ConstantInt::get(Type::Int32Ty, CounterNum);
Constant *ElementPtr = ConstantExpr::getGetElementPtr(CounterArray,
&Indices[0], 2);
// Load, increment and store the value back.
Value *OldVal = new LoadInst(ElementPtr, "OldCounter", InsertPos);
profcode.insert(OldVal);
Value *NewVal = BinaryOperator::createAdd(OldVal,
ConstantInt::get(Type::Int32Ty, 1),
"NewCounter", InsertPos);
profcode.insert(NewVal);
profcode.insert(new StoreInst(NewVal, ElementPtr, InsertPos));
}
void RSProfilers_std::getAnalysisUsage(AnalysisUsage &AU) const {
//grab any outstanding profiler, or get the null one
AU.addRequired<RSProfilers>();
}
///////////////////////////////////////
// RS Framework
///////////////////////////////////////
Value* ProfilerRS::Translate(Value* v) {
if(TransCache[v])
return TransCache[v];
if (BasicBlock* bb = dyn_cast<BasicBlock>(v)) {
if (bb == &bb->getParent()->getEntryBlock())
TransCache[bb] = bb; //don't translate entry block
else
TransCache[bb] = BasicBlock::Create("dup_" + bb->getName(), bb->getParent(),
NULL);
return TransCache[bb];
} else if (Instruction* i = dyn_cast<Instruction>(v)) {
//we have already translated this
//do not translate entry block allocas
if(&i->getParent()->getParent()->getEntryBlock() == i->getParent()) {
TransCache[i] = i;
return i;
} else {
//translate this
Instruction* i2 = i->clone();
if (i->hasName())
i2->setName("dup_" + i->getName());
TransCache[i] = i2;
//NumNewInst++;
for (unsigned x = 0; x < i2->getNumOperands(); ++x)
i2->setOperand(x, Translate(i2->getOperand(x)));
return i2;
}
} else if (isa<Function>(v) || isa<Constant>(v) || isa<Argument>(v)) {
TransCache[v] = v;
return v;
}
assert(0 && "Value not handled");
return 0;
}
void ProfilerRS::Duplicate(Function& F, RSProfilers& LI)
{
//perform a breadth first search, building up a duplicate of the code
std::queue<BasicBlock*> worklist;
std::set<BasicBlock*> seen;
//This loop ensures proper BB order, to help performance
for (Function::iterator fib = F.begin(), fie = F.end(); fib != fie; ++fib)
worklist.push(fib);
while (!worklist.empty()) {
Translate(worklist.front());
worklist.pop();
}
//remember than reg2mem created a new entry block we don't want to duplicate
worklist.push(F.getEntryBlock().getTerminator()->getSuccessor(0));
seen.insert(&F.getEntryBlock());
while (!worklist.empty()) {
BasicBlock* bb = worklist.front();
worklist.pop();
if(seen.find(bb) == seen.end()) {
BasicBlock* bbtarget = cast<BasicBlock>(Translate(bb));
BasicBlock::InstListType& instlist = bbtarget->getInstList();
for (BasicBlock::iterator iib = bb->begin(), iie = bb->end();
iib != iie; ++iib) {
//NumOldInst++;
if (!LI.isProfiling(&*iib)) {
Instruction* i = cast<Instruction>(Translate(iib));
instlist.insert(bbtarget->end(), i);
}
}
//updated search state;
seen.insert(bb);
TerminatorInst* ti = bb->getTerminator();
for (unsigned x = 0; x < ti->getNumSuccessors(); ++x) {
BasicBlock* bbs = ti->getSuccessor(x);
if (seen.find(bbs) == seen.end()) {
worklist.push(bbs);
}
}
}
}
}
void ProfilerRS::ProcessBackEdge(BasicBlock* src, BasicBlock* dst, Function& F) {
//given a backedge from B -> A, and translations A' and B',
//a: insert C and C'
//b: add branches in C to A and A' and in C' to A and A'
//c: mod terminators@B, replace A with C
//d: mod terminators@B', replace A' with C'
//e: mod phis@A for pred B to be pred C
// if multiple entries, simplify to one
//f: mod phis@A' for pred B' to be pred C'
// if multiple entries, simplify to one
//g: for all phis@A with pred C using x
// add in edge from C' using x'
// add in edge from C using x in A'
//a:
Function::iterator BBN = src; ++BBN;
BasicBlock* bbC = BasicBlock::Create("choice", &F, BBN);
//ChoicePoints.insert(bbC);
BBN = cast<BasicBlock>(Translate(src));
BasicBlock* bbCp = BasicBlock::Create("choice", &F, ++BBN);
ChoicePoints.insert(bbCp);
//b:
BranchInst::Create(cast<BasicBlock>(Translate(dst)), bbC);
BranchInst::Create(dst, cast<BasicBlock>(Translate(dst)),
ConstantInt::get(Type::Int1Ty, true), bbCp);
//c:
{
TerminatorInst* iB = src->getTerminator();
for (unsigned x = 0; x < iB->getNumSuccessors(); ++x)
if (iB->getSuccessor(x) == dst)
iB->setSuccessor(x, bbC);
}
//d:
{
TerminatorInst* iBp = cast<TerminatorInst>(Translate(src->getTerminator()));
for (unsigned x = 0; x < iBp->getNumSuccessors(); ++x)
if (iBp->getSuccessor(x) == cast<BasicBlock>(Translate(dst)))
iBp->setSuccessor(x, bbCp);
}
//e:
ReplacePhiPred(dst, src, bbC);
//src could be a switch, in which case we are replacing several edges with one
//thus collapse those edges int the Phi
CollapsePhi(dst, bbC);
//f:
ReplacePhiPred(cast<BasicBlock>(Translate(dst)),
cast<BasicBlock>(Translate(src)),bbCp);
CollapsePhi(cast<BasicBlock>(Translate(dst)), bbCp);
//g:
for(BasicBlock::iterator ib = dst->begin(), ie = dst->end(); ib != ie;
++ib)
if (PHINode* phi = dyn_cast<PHINode>(&*ib)) {
for(unsigned x = 0; x < phi->getNumIncomingValues(); ++x)
if(bbC == phi->getIncomingBlock(x)) {
phi->addIncoming(Translate(phi->getIncomingValue(x)), bbCp);
cast<PHINode>(Translate(phi))->addIncoming(phi->getIncomingValue(x),
bbC);
}
phi->removeIncomingValue(bbC);
}
}
bool ProfilerRS::runOnFunction(Function& F) {
if (!F.isDeclaration()) {
std::set<std::pair<BasicBlock*, BasicBlock*> > BackEdges;
RSProfilers& LI = getAnalysis<RSProfilers>();
getBackEdges(F, BackEdges);
Duplicate(F, LI);
//assume that stuff worked. now connect the duplicated basic blocks
//with the originals in such a way as to preserve ssa. yuk!
for (std::set<std::pair<BasicBlock*, BasicBlock*> >::iterator
ib = BackEdges.begin(), ie = BackEdges.end(); ib != ie; ++ib)
ProcessBackEdge(ib->first, ib->second, F);
//oh, and add the edge from the reg2mem created entry node to the
//duplicated second node
TerminatorInst* T = F.getEntryBlock().getTerminator();
ReplaceInstWithInst(T, BranchInst::Create(T->getSuccessor(0),
cast<BasicBlock>(
Translate(T->getSuccessor(0))),
ConstantInt::get(Type::Int1Ty,
true)));
//do whatever is needed now that the function is duplicated
c->PrepFunction(&F);
//add entry node to choice points
ChoicePoints.insert(&F.getEntryBlock());
for (std::set<BasicBlock*>::iterator
ii = ChoicePoints.begin(), ie = ChoicePoints.end(); ii != ie; ++ii)
c->ProcessChoicePoint(*ii);
ChoicePoints.clear();
TransCache.clear();
return true;
}
return false;
}
bool ProfilerRS::doInitialization(Module &M) {
switch (RandomMethod) {
case GBV:
c = new GlobalRandomCounter(M, Type::Int32Ty, (1 << 14) - 1);
break;
case GBVO:
c = new GlobalRandomCounterOpt(M, Type::Int32Ty, (1 << 14) - 1);
break;
case HOSTCC:
c = new CycleCounter(M, (1 << 14) - 1);
break;
};
return true;
}
void ProfilerRS::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<RSProfilers>();
AU.addRequiredID(DemoteRegisterToMemoryID);
}
///////////////////////////////////////
// Utilities:
///////////////////////////////////////
static void ReplacePhiPred(BasicBlock* btarget,
BasicBlock* bold, BasicBlock* bnew) {
for(BasicBlock::iterator ib = btarget->begin(), ie = btarget->end();
ib != ie; ++ib)
if (PHINode* phi = dyn_cast<PHINode>(&*ib)) {
for(unsigned x = 0; x < phi->getNumIncomingValues(); ++x)
if(bold == phi->getIncomingBlock(x))
phi->setIncomingBlock(x, bnew);
}
}
static void CollapsePhi(BasicBlock* btarget, BasicBlock* bsrc) {
for(BasicBlock::iterator ib = btarget->begin(), ie = btarget->end();
ib != ie; ++ib)
if (PHINode* phi = dyn_cast<PHINode>(&*ib)) {
std::map<BasicBlock*, Value*> counter;
for(unsigned i = 0; i < phi->getNumIncomingValues(); ) {
if (counter[phi->getIncomingBlock(i)]) {
assert(phi->getIncomingValue(i) == counter[phi->getIncomingBlock(i)]);
phi->removeIncomingValue(i, false);
} else {
counter[phi->getIncomingBlock(i)] = phi->getIncomingValue(i);
++i;
}
}
}
}
template<class T>
static void recBackEdge(BasicBlock* bb, T& BackEdges,
std::map<BasicBlock*, int>& color,
std::map<BasicBlock*, int>& depth,
std::map<BasicBlock*, int>& finish,
int& time)
{
color[bb] = 1;
++time;
depth[bb] = time;
TerminatorInst* t= bb->getTerminator();
for(unsigned i = 0; i < t->getNumSuccessors(); ++i) {
BasicBlock* bbnew = t->getSuccessor(i);
if (color[bbnew] == 0)
recBackEdge(bbnew, BackEdges, color, depth, finish, time);
else if (color[bbnew] == 1) {
BackEdges.insert(std::make_pair(bb, bbnew));
//NumBackEdges++;
}
}
color[bb] = 2;
++time;
finish[bb] = time;
}
//find the back edges and where they go to
template<class T>
static void getBackEdges(Function& F, T& BackEdges) {
std::map<BasicBlock*, int> color;
std::map<BasicBlock*, int> depth;
std::map<BasicBlock*, int> finish;
int time = 0;
recBackEdge(&F.getEntryBlock(), BackEdges, color, depth, finish, time);
DOUT << F.getName() << " " << BackEdges.size() << "\n";
}
//Creation functions
ModulePass* llvm::createNullProfilerRSPass() {
return new NullProfilerRS();
}
FunctionPass* llvm::createRSProfilingPass() {
return new ProfilerRS();
}