llvm-6502/lib/Transforms/Utils/BreakCriticalEdges.cpp
Dan Gohman 844731a7f1 Clean up the use of static and anonymous namespaces. This turned up
several things that were neither in an anonymous namespace nor static
but not intended to be global.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@51017 91177308-0d34-0410-b5e6-96231b3b80d8
2008-05-13 00:00:25 +00:00

280 lines
11 KiB
C++

//===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// BreakCriticalEdges pass - Break all of the critical edges in the CFG by
// inserting a dummy basic block. This pass may be "required" by passes that
// cannot deal with critical edges. For this usage, the structure type is
// forward declared. This pass obviously invalidates the CFG, but can update
// forward dominator (set, immediate dominators, tree, and frontier)
// information.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "break-crit-edges"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Type.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Compiler.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;
STATISTIC(NumBroken, "Number of blocks inserted");
namespace {
struct VISIBILITY_HIDDEN BreakCriticalEdges : public FunctionPass {
static char ID; // Pass identification, replacement for typeid
BreakCriticalEdges() : FunctionPass((intptr_t)&ID) {}
virtual bool runOnFunction(Function &F);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addPreserved<DominatorTree>();
AU.addPreserved<DominanceFrontier>();
AU.addPreserved<LoopInfo>();
// No loop canonicalization guarantees are broken by this pass.
AU.addPreservedID(LoopSimplifyID);
}
};
}
char BreakCriticalEdges::ID = 0;
static RegisterPass<BreakCriticalEdges>
X("break-crit-edges", "Break critical edges in CFG");
// Publically exposed interface to pass...
const PassInfo *llvm::BreakCriticalEdgesID = X.getPassInfo();
FunctionPass *llvm::createBreakCriticalEdgesPass() {
return new BreakCriticalEdges();
}
// runOnFunction - Loop over all of the edges in the CFG, breaking critical
// edges as they are found.
//
bool BreakCriticalEdges::runOnFunction(Function &F) {
bool Changed = false;
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
TerminatorInst *TI = I->getTerminator();
if (TI->getNumSuccessors() > 1)
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
if (SplitCriticalEdge(TI, i, this)) {
++NumBroken;
Changed = true;
}
}
return Changed;
}
//===----------------------------------------------------------------------===//
// Implementation of the external critical edge manipulation functions
//===----------------------------------------------------------------------===//
// isCriticalEdge - Return true if the specified edge is a critical edge.
// Critical edges are edges from a block with multiple successors to a block
// with multiple predecessors.
//
bool llvm::isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum,
bool AllowIdenticalEdges) {
assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
if (TI->getNumSuccessors() == 1) return false;
const BasicBlock *Dest = TI->getSuccessor(SuccNum);
pred_const_iterator I = pred_begin(Dest), E = pred_end(Dest);
// If there is more than one predecessor, this is a critical edge...
assert(I != E && "No preds, but we have an edge to the block?");
const BasicBlock *FirstPred = *I;
++I; // Skip one edge due to the incoming arc from TI.
if (!AllowIdenticalEdges)
return I != E;
// If AllowIdenticalEdges is true, then we allow this edge to be considered
// non-critical iff all preds come from TI's block.
while (I != E) {
if (*I != FirstPred)
return true;
// Note: leave this as is until no one ever compiles with either gcc 4.0.1
// or Xcode 2. This seems to work around the pred_iterator assert in PR 2207
E = pred_end(*I);
++I;
}
return false;
}
/// SplitCriticalEdge - If this edge is a critical edge, insert a new node to
/// split the critical edge. This will update DominatorTree and
/// DominatorFrontier information if it is available, thus calling this pass
/// will not invalidate any of them. This returns true if the edge was split,
/// false otherwise. This ensures that all edges to that dest go to one block
/// instead of each going to a different block.
//
bool llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum, Pass *P,
bool MergeIdenticalEdges) {
if (!isCriticalEdge(TI, SuccNum, MergeIdenticalEdges)) return false;
BasicBlock *TIBB = TI->getParent();
BasicBlock *DestBB = TI->getSuccessor(SuccNum);
// Create a new basic block, linking it into the CFG.
BasicBlock *NewBB = BasicBlock::Create(TIBB->getName() + "." +
DestBB->getName() + "_crit_edge");
// Create our unconditional branch...
BranchInst::Create(DestBB, NewBB);
// Branch to the new block, breaking the edge.
TI->setSuccessor(SuccNum, NewBB);
// Insert the block into the function... right after the block TI lives in.
Function &F = *TIBB->getParent();
Function::iterator FBBI = TIBB;
F.getBasicBlockList().insert(++FBBI, NewBB);
// If there are any PHI nodes in DestBB, we need to update them so that they
// merge incoming values from NewBB instead of from TIBB.
//
for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
PHINode *PN = cast<PHINode>(I);
// We no longer enter through TIBB, now we come in through NewBB. Revector
// exactly one entry in the PHI node that used to come from TIBB to come
// from NewBB.
int BBIdx = PN->getBasicBlockIndex(TIBB);
PN->setIncomingBlock(BBIdx, NewBB);
}
// If there are any other edges from TIBB to DestBB, update those to go
// through the split block, making those edges non-critical as well (and
// reducing the number of phi entries in the DestBB if relevant).
if (MergeIdenticalEdges) {
for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
if (TI->getSuccessor(i) != DestBB) continue;
// Remove an entry for TIBB from DestBB phi nodes.
DestBB->removePredecessor(TIBB);
// We found another edge to DestBB, go to NewBB instead.
TI->setSuccessor(i, NewBB);
}
}
// If we don't have a pass object, we can't update anything...
if (P == 0) return true;
// Now update analysis information. Since the only predecessor of NewBB is
// the TIBB, TIBB clearly dominates NewBB. TIBB usually doesn't dominate
// anything, as there are other successors of DestBB. However, if all other
// predecessors of DestBB are already dominated by DestBB (e.g. DestBB is a
// loop header) then NewBB dominates DestBB.
SmallVector<BasicBlock*, 8> OtherPreds;
for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB); I != E; ++I)
if (*I != NewBB)
OtherPreds.push_back(*I);
bool NewBBDominatesDestBB = true;
// Should we update DominatorTree information?
if (DominatorTree *DT = P->getAnalysisToUpdate<DominatorTree>()) {
DomTreeNode *TINode = DT->getNode(TIBB);
// The new block is not the immediate dominator for any other nodes, but
// TINode is the immediate dominator for the new node.
//
if (TINode) { // Don't break unreachable code!
DomTreeNode *NewBBNode = DT->addNewBlock(NewBB, TIBB);
DomTreeNode *DestBBNode = 0;
// If NewBBDominatesDestBB hasn't been computed yet, do so with DT.
if (!OtherPreds.empty()) {
DestBBNode = DT->getNode(DestBB);
while (!OtherPreds.empty() && NewBBDominatesDestBB) {
if (DomTreeNode *OPNode = DT->getNode(OtherPreds.back()))
NewBBDominatesDestBB = DT->dominates(DestBBNode, OPNode);
OtherPreds.pop_back();
}
OtherPreds.clear();
}
// If NewBBDominatesDestBB, then NewBB dominates DestBB, otherwise it
// doesn't dominate anything.
if (NewBBDominatesDestBB) {
if (!DestBBNode) DestBBNode = DT->getNode(DestBB);
DT->changeImmediateDominator(DestBBNode, NewBBNode);
}
}
}
// Should we update DominanceFrontier information?
if (DominanceFrontier *DF = P->getAnalysisToUpdate<DominanceFrontier>()) {
// If NewBBDominatesDestBB hasn't been computed yet, do so with DF.
if (!OtherPreds.empty()) {
// FIXME: IMPLEMENT THIS!
assert(0 && "Requiring domfrontiers but not idom/domtree/domset."
" not implemented yet!");
}
// Since the new block is dominated by its only predecessor TIBB,
// it cannot be in any block's dominance frontier. If NewBB dominates
// DestBB, its dominance frontier is the same as DestBB's, otherwise it is
// just {DestBB}.
DominanceFrontier::DomSetType NewDFSet;
if (NewBBDominatesDestBB) {
DominanceFrontier::iterator I = DF->find(DestBB);
if (I != DF->end()) {
DF->addBasicBlock(NewBB, I->second);
// However NewBB's frontier does not include DestBB.
DominanceFrontier::iterator NF = DF->find(NewBB);
DF->removeFromFrontier(NF, DestBB);
}
else
DF->addBasicBlock(NewBB, DominanceFrontier::DomSetType());
} else {
DominanceFrontier::DomSetType NewDFSet;
NewDFSet.insert(DestBB);
DF->addBasicBlock(NewBB, NewDFSet);
}
}
// Update LoopInfo if it is around.
if (LoopInfo *LI = P->getAnalysisToUpdate<LoopInfo>()) {
// If one or the other blocks were not in a loop, the new block is not
// either, and thus LI doesn't need to be updated.
if (Loop *TIL = LI->getLoopFor(TIBB))
if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
if (TIL == DestLoop) {
// Both in the same loop, the NewBB joins loop.
DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
} else if (TIL->contains(DestLoop->getHeader())) {
// Edge from an outer loop to an inner loop. Add to the outer loop.
TIL->addBasicBlockToLoop(NewBB, LI->getBase());
} else if (DestLoop->contains(TIL->getHeader())) {
// Edge from an inner loop to an outer loop. Add to the outer loop.
DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
} else {
// Edge from two loops with no containment relation. Because these
// are natural loops, we know that the destination block must be the
// header of its loop (adding a branch into a loop elsewhere would
// create an irreducible loop).
assert(DestLoop->getHeader() == DestBB &&
"Should not create irreducible loops!");
if (Loop *P = DestLoop->getParentLoop())
P->addBasicBlockToLoop(NewBB, LI->getBase());
}
}
}
return true;
}