mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-15 07:34:33 +00:00
36b699f2b1
This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203364 91177308-0d34-0410-b5e6-96231b3b80d8
535 lines
18 KiB
C++
535 lines
18 KiB
C++
//===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the ValueEnumerator class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ValueEnumerator.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/ValueSymbolTable.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) {
|
|
return V.first->getType()->isIntOrIntVectorTy();
|
|
}
|
|
|
|
/// ValueEnumerator - Enumerate module-level information.
|
|
ValueEnumerator::ValueEnumerator(const Module *M) {
|
|
// Enumerate the global variables.
|
|
for (Module::const_global_iterator I = M->global_begin(),
|
|
E = M->global_end(); I != E; ++I)
|
|
EnumerateValue(I);
|
|
|
|
// Enumerate the functions.
|
|
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
|
|
EnumerateValue(I);
|
|
EnumerateAttributes(cast<Function>(I)->getAttributes());
|
|
}
|
|
|
|
// Enumerate the aliases.
|
|
for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
|
|
I != E; ++I)
|
|
EnumerateValue(I);
|
|
|
|
// Remember what is the cutoff between globalvalue's and other constants.
|
|
unsigned FirstConstant = Values.size();
|
|
|
|
// Enumerate the global variable initializers.
|
|
for (Module::const_global_iterator I = M->global_begin(),
|
|
E = M->global_end(); I != E; ++I)
|
|
if (I->hasInitializer())
|
|
EnumerateValue(I->getInitializer());
|
|
|
|
// Enumerate the aliasees.
|
|
for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
|
|
I != E; ++I)
|
|
EnumerateValue(I->getAliasee());
|
|
|
|
// Enumerate the prefix data constants.
|
|
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
|
|
if (I->hasPrefixData())
|
|
EnumerateValue(I->getPrefixData());
|
|
|
|
// Insert constants and metadata that are named at module level into the slot
|
|
// pool so that the module symbol table can refer to them...
|
|
EnumerateValueSymbolTable(M->getValueSymbolTable());
|
|
EnumerateNamedMetadata(M);
|
|
|
|
SmallVector<std::pair<unsigned, MDNode*>, 8> MDs;
|
|
|
|
// Enumerate types used by function bodies and argument lists.
|
|
for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
|
|
|
|
for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
|
|
I != E; ++I)
|
|
EnumerateType(I->getType());
|
|
|
|
for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
|
|
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){
|
|
for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
|
|
OI != E; ++OI) {
|
|
if (MDNode *MD = dyn_cast<MDNode>(*OI))
|
|
if (MD->isFunctionLocal() && MD->getFunction())
|
|
// These will get enumerated during function-incorporation.
|
|
continue;
|
|
EnumerateOperandType(*OI);
|
|
}
|
|
EnumerateType(I->getType());
|
|
if (const CallInst *CI = dyn_cast<CallInst>(I))
|
|
EnumerateAttributes(CI->getAttributes());
|
|
else if (const InvokeInst *II = dyn_cast<InvokeInst>(I))
|
|
EnumerateAttributes(II->getAttributes());
|
|
|
|
// Enumerate metadata attached with this instruction.
|
|
MDs.clear();
|
|
I->getAllMetadataOtherThanDebugLoc(MDs);
|
|
for (unsigned i = 0, e = MDs.size(); i != e; ++i)
|
|
EnumerateMetadata(MDs[i].second);
|
|
|
|
if (!I->getDebugLoc().isUnknown()) {
|
|
MDNode *Scope, *IA;
|
|
I->getDebugLoc().getScopeAndInlinedAt(Scope, IA, I->getContext());
|
|
if (Scope) EnumerateMetadata(Scope);
|
|
if (IA) EnumerateMetadata(IA);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Optimize constant ordering.
|
|
OptimizeConstants(FirstConstant, Values.size());
|
|
}
|
|
|
|
unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
|
|
InstructionMapType::const_iterator I = InstructionMap.find(Inst);
|
|
assert(I != InstructionMap.end() && "Instruction is not mapped!");
|
|
return I->second;
|
|
}
|
|
|
|
void ValueEnumerator::setInstructionID(const Instruction *I) {
|
|
InstructionMap[I] = InstructionCount++;
|
|
}
|
|
|
|
unsigned ValueEnumerator::getValueID(const Value *V) const {
|
|
if (isa<MDNode>(V) || isa<MDString>(V)) {
|
|
ValueMapType::const_iterator I = MDValueMap.find(V);
|
|
assert(I != MDValueMap.end() && "Value not in slotcalculator!");
|
|
return I->second-1;
|
|
}
|
|
|
|
ValueMapType::const_iterator I = ValueMap.find(V);
|
|
assert(I != ValueMap.end() && "Value not in slotcalculator!");
|
|
return I->second-1;
|
|
}
|
|
|
|
void ValueEnumerator::dump() const {
|
|
print(dbgs(), ValueMap, "Default");
|
|
dbgs() << '\n';
|
|
print(dbgs(), MDValueMap, "MetaData");
|
|
dbgs() << '\n';
|
|
}
|
|
|
|
void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map,
|
|
const char *Name) const {
|
|
|
|
OS << "Map Name: " << Name << "\n";
|
|
OS << "Size: " << Map.size() << "\n";
|
|
for (ValueMapType::const_iterator I = Map.begin(),
|
|
E = Map.end(); I != E; ++I) {
|
|
|
|
const Value *V = I->first;
|
|
if (V->hasName())
|
|
OS << "Value: " << V->getName();
|
|
else
|
|
OS << "Value: [null]\n";
|
|
V->dump();
|
|
|
|
OS << " Uses(" << std::distance(V->use_begin(),V->use_end()) << "):";
|
|
for (const Use &U : V->uses()) {
|
|
if (&U != &*V->use_begin())
|
|
OS << ",";
|
|
if(U->hasName())
|
|
OS << " " << U->getName();
|
|
else
|
|
OS << " [null]";
|
|
|
|
}
|
|
OS << "\n\n";
|
|
}
|
|
}
|
|
|
|
/// OptimizeConstants - Reorder constant pool for denser encoding.
|
|
void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
|
|
if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
|
|
|
|
std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd,
|
|
[this](const std::pair<const Value *, unsigned> &LHS,
|
|
const std::pair<const Value *, unsigned> &RHS) {
|
|
// Sort by plane.
|
|
if (LHS.first->getType() != RHS.first->getType())
|
|
return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType());
|
|
// Then by frequency.
|
|
return LHS.second > RHS.second;
|
|
});
|
|
|
|
// Ensure that integer and vector of integer constants are at the start of the
|
|
// constant pool. This is important so that GEP structure indices come before
|
|
// gep constant exprs.
|
|
std::partition(Values.begin()+CstStart, Values.begin()+CstEnd,
|
|
isIntOrIntVectorValue);
|
|
|
|
// Rebuild the modified portion of ValueMap.
|
|
for (; CstStart != CstEnd; ++CstStart)
|
|
ValueMap[Values[CstStart].first] = CstStart+1;
|
|
}
|
|
|
|
|
|
/// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
|
|
/// table into the values table.
|
|
void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
|
|
for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
|
|
VI != VE; ++VI)
|
|
EnumerateValue(VI->getValue());
|
|
}
|
|
|
|
/// EnumerateNamedMetadata - Insert all of the values referenced by
|
|
/// named metadata in the specified module.
|
|
void ValueEnumerator::EnumerateNamedMetadata(const Module *M) {
|
|
for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
|
|
E = M->named_metadata_end(); I != E; ++I)
|
|
EnumerateNamedMDNode(I);
|
|
}
|
|
|
|
void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
|
|
for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
|
|
EnumerateMetadata(MD->getOperand(i));
|
|
}
|
|
|
|
/// EnumerateMDNodeOperands - Enumerate all non-function-local values
|
|
/// and types referenced by the given MDNode.
|
|
void ValueEnumerator::EnumerateMDNodeOperands(const MDNode *N) {
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
|
|
if (Value *V = N->getOperand(i)) {
|
|
if (isa<MDNode>(V) || isa<MDString>(V))
|
|
EnumerateMetadata(V);
|
|
else if (!isa<Instruction>(V) && !isa<Argument>(V))
|
|
EnumerateValue(V);
|
|
} else
|
|
EnumerateType(Type::getVoidTy(N->getContext()));
|
|
}
|
|
}
|
|
|
|
void ValueEnumerator::EnumerateMetadata(const Value *MD) {
|
|
assert((isa<MDNode>(MD) || isa<MDString>(MD)) && "Invalid metadata kind");
|
|
|
|
// Enumerate the type of this value.
|
|
EnumerateType(MD->getType());
|
|
|
|
const MDNode *N = dyn_cast<MDNode>(MD);
|
|
|
|
// In the module-level pass, skip function-local nodes themselves, but
|
|
// do walk their operands.
|
|
if (N && N->isFunctionLocal() && N->getFunction()) {
|
|
EnumerateMDNodeOperands(N);
|
|
return;
|
|
}
|
|
|
|
// Check to see if it's already in!
|
|
unsigned &MDValueID = MDValueMap[MD];
|
|
if (MDValueID) {
|
|
// Increment use count.
|
|
MDValues[MDValueID-1].second++;
|
|
return;
|
|
}
|
|
MDValues.push_back(std::make_pair(MD, 1U));
|
|
MDValueID = MDValues.size();
|
|
|
|
// Enumerate all non-function-local operands.
|
|
if (N)
|
|
EnumerateMDNodeOperands(N);
|
|
}
|
|
|
|
/// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata
|
|
/// information reachable from the given MDNode.
|
|
void ValueEnumerator::EnumerateFunctionLocalMetadata(const MDNode *N) {
|
|
assert(N->isFunctionLocal() && N->getFunction() &&
|
|
"EnumerateFunctionLocalMetadata called on non-function-local mdnode!");
|
|
|
|
// Enumerate the type of this value.
|
|
EnumerateType(N->getType());
|
|
|
|
// Check to see if it's already in!
|
|
unsigned &MDValueID = MDValueMap[N];
|
|
if (MDValueID) {
|
|
// Increment use count.
|
|
MDValues[MDValueID-1].second++;
|
|
return;
|
|
}
|
|
MDValues.push_back(std::make_pair(N, 1U));
|
|
MDValueID = MDValues.size();
|
|
|
|
// To incoroporate function-local information visit all function-local
|
|
// MDNodes and all function-local values they reference.
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
|
|
if (Value *V = N->getOperand(i)) {
|
|
if (MDNode *O = dyn_cast<MDNode>(V)) {
|
|
if (O->isFunctionLocal() && O->getFunction())
|
|
EnumerateFunctionLocalMetadata(O);
|
|
} else if (isa<Instruction>(V) || isa<Argument>(V))
|
|
EnumerateValue(V);
|
|
}
|
|
|
|
// Also, collect all function-local MDNodes for easy access.
|
|
FunctionLocalMDs.push_back(N);
|
|
}
|
|
|
|
void ValueEnumerator::EnumerateValue(const Value *V) {
|
|
assert(!V->getType()->isVoidTy() && "Can't insert void values!");
|
|
assert(!isa<MDNode>(V) && !isa<MDString>(V) &&
|
|
"EnumerateValue doesn't handle Metadata!");
|
|
|
|
// Check to see if it's already in!
|
|
unsigned &ValueID = ValueMap[V];
|
|
if (ValueID) {
|
|
// Increment use count.
|
|
Values[ValueID-1].second++;
|
|
return;
|
|
}
|
|
|
|
// Enumerate the type of this value.
|
|
EnumerateType(V->getType());
|
|
|
|
if (const Constant *C = dyn_cast<Constant>(V)) {
|
|
if (isa<GlobalValue>(C)) {
|
|
// Initializers for globals are handled explicitly elsewhere.
|
|
} else if (C->getNumOperands()) {
|
|
// If a constant has operands, enumerate them. This makes sure that if a
|
|
// constant has uses (for example an array of const ints), that they are
|
|
// inserted also.
|
|
|
|
// We prefer to enumerate them with values before we enumerate the user
|
|
// itself. This makes it more likely that we can avoid forward references
|
|
// in the reader. We know that there can be no cycles in the constants
|
|
// graph that don't go through a global variable.
|
|
for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
|
|
I != E; ++I)
|
|
if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
|
|
EnumerateValue(*I);
|
|
|
|
// Finally, add the value. Doing this could make the ValueID reference be
|
|
// dangling, don't reuse it.
|
|
Values.push_back(std::make_pair(V, 1U));
|
|
ValueMap[V] = Values.size();
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Add the value.
|
|
Values.push_back(std::make_pair(V, 1U));
|
|
ValueID = Values.size();
|
|
}
|
|
|
|
|
|
void ValueEnumerator::EnumerateType(Type *Ty) {
|
|
unsigned *TypeID = &TypeMap[Ty];
|
|
|
|
// We've already seen this type.
|
|
if (*TypeID)
|
|
return;
|
|
|
|
// If it is a non-anonymous struct, mark the type as being visited so that we
|
|
// don't recursively visit it. This is safe because we allow forward
|
|
// references of these in the bitcode reader.
|
|
if (StructType *STy = dyn_cast<StructType>(Ty))
|
|
if (!STy->isLiteral())
|
|
*TypeID = ~0U;
|
|
|
|
// Enumerate all of the subtypes before we enumerate this type. This ensures
|
|
// that the type will be enumerated in an order that can be directly built.
|
|
for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
|
|
I != E; ++I)
|
|
EnumerateType(*I);
|
|
|
|
// Refresh the TypeID pointer in case the table rehashed.
|
|
TypeID = &TypeMap[Ty];
|
|
|
|
// Check to see if we got the pointer another way. This can happen when
|
|
// enumerating recursive types that hit the base case deeper than they start.
|
|
//
|
|
// If this is actually a struct that we are treating as forward ref'able,
|
|
// then emit the definition now that all of its contents are available.
|
|
if (*TypeID && *TypeID != ~0U)
|
|
return;
|
|
|
|
// Add this type now that its contents are all happily enumerated.
|
|
Types.push_back(Ty);
|
|
|
|
*TypeID = Types.size();
|
|
}
|
|
|
|
// Enumerate the types for the specified value. If the value is a constant,
|
|
// walk through it, enumerating the types of the constant.
|
|
void ValueEnumerator::EnumerateOperandType(const Value *V) {
|
|
EnumerateType(V->getType());
|
|
|
|
if (const Constant *C = dyn_cast<Constant>(V)) {
|
|
// If this constant is already enumerated, ignore it, we know its type must
|
|
// be enumerated.
|
|
if (ValueMap.count(V)) return;
|
|
|
|
// This constant may have operands, make sure to enumerate the types in
|
|
// them.
|
|
for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
|
|
const Value *Op = C->getOperand(i);
|
|
|
|
// Don't enumerate basic blocks here, this happens as operands to
|
|
// blockaddress.
|
|
if (isa<BasicBlock>(Op)) continue;
|
|
|
|
EnumerateOperandType(Op);
|
|
}
|
|
|
|
if (const MDNode *N = dyn_cast<MDNode>(V)) {
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
|
|
if (Value *Elem = N->getOperand(i))
|
|
EnumerateOperandType(Elem);
|
|
}
|
|
} else if (isa<MDString>(V) || isa<MDNode>(V))
|
|
EnumerateMetadata(V);
|
|
}
|
|
|
|
void ValueEnumerator::EnumerateAttributes(AttributeSet PAL) {
|
|
if (PAL.isEmpty()) return; // null is always 0.
|
|
|
|
// Do a lookup.
|
|
unsigned &Entry = AttributeMap[PAL];
|
|
if (Entry == 0) {
|
|
// Never saw this before, add it.
|
|
Attribute.push_back(PAL);
|
|
Entry = Attribute.size();
|
|
}
|
|
|
|
// Do lookups for all attribute groups.
|
|
for (unsigned i = 0, e = PAL.getNumSlots(); i != e; ++i) {
|
|
AttributeSet AS = PAL.getSlotAttributes(i);
|
|
unsigned &Entry = AttributeGroupMap[AS];
|
|
if (Entry == 0) {
|
|
AttributeGroups.push_back(AS);
|
|
Entry = AttributeGroups.size();
|
|
}
|
|
}
|
|
}
|
|
|
|
void ValueEnumerator::incorporateFunction(const Function &F) {
|
|
InstructionCount = 0;
|
|
NumModuleValues = Values.size();
|
|
NumModuleMDValues = MDValues.size();
|
|
|
|
// Adding function arguments to the value table.
|
|
for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
|
|
I != E; ++I)
|
|
EnumerateValue(I);
|
|
|
|
FirstFuncConstantID = Values.size();
|
|
|
|
// Add all function-level constants to the value table.
|
|
for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
|
|
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
|
|
for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
|
|
OI != E; ++OI) {
|
|
if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
|
|
isa<InlineAsm>(*OI))
|
|
EnumerateValue(*OI);
|
|
}
|
|
BasicBlocks.push_back(BB);
|
|
ValueMap[BB] = BasicBlocks.size();
|
|
}
|
|
|
|
// Optimize the constant layout.
|
|
OptimizeConstants(FirstFuncConstantID, Values.size());
|
|
|
|
// Add the function's parameter attributes so they are available for use in
|
|
// the function's instruction.
|
|
EnumerateAttributes(F.getAttributes());
|
|
|
|
FirstInstID = Values.size();
|
|
|
|
SmallVector<MDNode *, 8> FnLocalMDVector;
|
|
// Add all of the instructions.
|
|
for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
|
|
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
|
|
for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
|
|
OI != E; ++OI) {
|
|
if (MDNode *MD = dyn_cast<MDNode>(*OI))
|
|
if (MD->isFunctionLocal() && MD->getFunction())
|
|
// Enumerate metadata after the instructions they might refer to.
|
|
FnLocalMDVector.push_back(MD);
|
|
}
|
|
|
|
SmallVector<std::pair<unsigned, MDNode*>, 8> MDs;
|
|
I->getAllMetadataOtherThanDebugLoc(MDs);
|
|
for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
|
|
MDNode *N = MDs[i].second;
|
|
if (N->isFunctionLocal() && N->getFunction())
|
|
FnLocalMDVector.push_back(N);
|
|
}
|
|
|
|
if (!I->getType()->isVoidTy())
|
|
EnumerateValue(I);
|
|
}
|
|
}
|
|
|
|
// Add all of the function-local metadata.
|
|
for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i)
|
|
EnumerateFunctionLocalMetadata(FnLocalMDVector[i]);
|
|
}
|
|
|
|
void ValueEnumerator::purgeFunction() {
|
|
/// Remove purged values from the ValueMap.
|
|
for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
|
|
ValueMap.erase(Values[i].first);
|
|
for (unsigned i = NumModuleMDValues, e = MDValues.size(); i != e; ++i)
|
|
MDValueMap.erase(MDValues[i].first);
|
|
for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
|
|
ValueMap.erase(BasicBlocks[i]);
|
|
|
|
Values.resize(NumModuleValues);
|
|
MDValues.resize(NumModuleMDValues);
|
|
BasicBlocks.clear();
|
|
FunctionLocalMDs.clear();
|
|
}
|
|
|
|
static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
|
|
DenseMap<const BasicBlock*, unsigned> &IDMap) {
|
|
unsigned Counter = 0;
|
|
for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
|
|
IDMap[BB] = ++Counter;
|
|
}
|
|
|
|
/// getGlobalBasicBlockID - This returns the function-specific ID for the
|
|
/// specified basic block. This is relatively expensive information, so it
|
|
/// should only be used by rare constructs such as address-of-label.
|
|
unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
|
|
unsigned &Idx = GlobalBasicBlockIDs[BB];
|
|
if (Idx != 0)
|
|
return Idx-1;
|
|
|
|
IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
|
|
return getGlobalBasicBlockID(BB);
|
|
}
|
|
|