mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-05 13:09:10 +00:00
64849ce66f
these patterns. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125759 91177308-0d34-0410-b5e6-96231b3b80d8
1627 lines
72 KiB
TableGen
1627 lines
72 KiB
TableGen
//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file describes the various pseudo instructions used by the compiler,
|
|
// as well as Pat patterns used during instruction selection.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Pattern Matching Support
|
|
|
|
def GetLo32XForm : SDNodeXForm<imm, [{
|
|
// Transformation function: get the low 32 bits.
|
|
return getI32Imm((unsigned)N->getZExtValue());
|
|
}]>;
|
|
|
|
def GetLo8XForm : SDNodeXForm<imm, [{
|
|
// Transformation function: get the low 8 bits.
|
|
return getI8Imm((uint8_t)N->getZExtValue());
|
|
}]>;
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Random Pseudo Instructions.
|
|
|
|
// PIC base construction. This expands to code that looks like this:
|
|
// call $next_inst
|
|
// popl %destreg"
|
|
let neverHasSideEffects = 1, isNotDuplicable = 1, Uses = [ESP] in
|
|
def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
|
|
"", []>;
|
|
|
|
|
|
// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
|
|
// a stack adjustment and the codegen must know that they may modify the stack
|
|
// pointer before prolog-epilog rewriting occurs.
|
|
// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
|
|
// sub / add which can clobber EFLAGS.
|
|
let Defs = [ESP, EFLAGS], Uses = [ESP] in {
|
|
def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt),
|
|
"#ADJCALLSTACKDOWN",
|
|
[(X86callseq_start timm:$amt)]>,
|
|
Requires<[In32BitMode]>;
|
|
def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
|
|
"#ADJCALLSTACKUP",
|
|
[(X86callseq_end timm:$amt1, timm:$amt2)]>,
|
|
Requires<[In32BitMode]>;
|
|
}
|
|
|
|
// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
|
|
// a stack adjustment and the codegen must know that they may modify the stack
|
|
// pointer before prolog-epilog rewriting occurs.
|
|
// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
|
|
// sub / add which can clobber EFLAGS.
|
|
let Defs = [RSP, EFLAGS], Uses = [RSP] in {
|
|
def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt),
|
|
"#ADJCALLSTACKDOWN",
|
|
[(X86callseq_start timm:$amt)]>,
|
|
Requires<[In64BitMode]>;
|
|
def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
|
|
"#ADJCALLSTACKUP",
|
|
[(X86callseq_end timm:$amt1, timm:$amt2)]>,
|
|
Requires<[In64BitMode]>;
|
|
}
|
|
|
|
|
|
|
|
// x86-64 va_start lowering magic.
|
|
let usesCustomInserter = 1 in {
|
|
def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
|
|
(outs),
|
|
(ins GR8:$al,
|
|
i64imm:$regsavefi, i64imm:$offset,
|
|
variable_ops),
|
|
"#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
|
|
[(X86vastart_save_xmm_regs GR8:$al,
|
|
imm:$regsavefi,
|
|
imm:$offset)]>;
|
|
|
|
// The VAARG_64 pseudo-instruction takes the address of the va_list,
|
|
// and places the address of the next argument into a register.
|
|
let Defs = [EFLAGS] in
|
|
def VAARG_64 : I<0, Pseudo,
|
|
(outs GR64:$dst),
|
|
(ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
|
|
"#VAARG_64 $dst, $ap, $size, $mode, $align",
|
|
[(set GR64:$dst,
|
|
(X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)),
|
|
(implicit EFLAGS)]>;
|
|
|
|
// Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
|
|
// targets. These calls are needed to probe the stack when allocating more than
|
|
// 4k bytes in one go. Touching the stack at 4K increments is necessary to
|
|
// ensure that the guard pages used by the OS virtual memory manager are
|
|
// allocated in correct sequence.
|
|
// The main point of having separate instruction are extra unmodelled effects
|
|
// (compared to ordinary calls) like stack pointer change.
|
|
|
|
let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
|
|
def WIN_ALLOCA : I<0, Pseudo, (outs), (ins),
|
|
"# dynamic stack allocation",
|
|
[(X86WinAlloca)]>;
|
|
}
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// EH Pseudo Instructions
|
|
//
|
|
let isTerminator = 1, isReturn = 1, isBarrier = 1,
|
|
hasCtrlDep = 1, isCodeGenOnly = 1 in {
|
|
def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
|
|
"ret\t#eh_return, addr: $addr",
|
|
[(X86ehret GR32:$addr)]>;
|
|
|
|
}
|
|
|
|
let isTerminator = 1, isReturn = 1, isBarrier = 1,
|
|
hasCtrlDep = 1, isCodeGenOnly = 1 in {
|
|
def EH_RETURN64 : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
|
|
"ret\t#eh_return, addr: $addr",
|
|
[(X86ehret GR64:$addr)]>;
|
|
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Alias Instructions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Alias instructions that map movr0 to xor.
|
|
// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
|
|
// FIXME: Set encoding to pseudo.
|
|
let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
|
|
isCodeGenOnly = 1 in {
|
|
def MOV8r0 : I<0x30, MRMInitReg, (outs GR8 :$dst), (ins), "",
|
|
[(set GR8:$dst, 0)]>;
|
|
|
|
// We want to rewrite MOV16r0 in terms of MOV32r0, because it's a smaller
|
|
// encoding and avoids a partial-register update sometimes, but doing so
|
|
// at isel time interferes with rematerialization in the current register
|
|
// allocator. For now, this is rewritten when the instruction is lowered
|
|
// to an MCInst.
|
|
def MOV16r0 : I<0x31, MRMInitReg, (outs GR16:$dst), (ins),
|
|
"",
|
|
[(set GR16:$dst, 0)]>, OpSize;
|
|
|
|
// FIXME: Set encoding to pseudo.
|
|
def MOV32r0 : I<0x31, MRMInitReg, (outs GR32:$dst), (ins), "",
|
|
[(set GR32:$dst, 0)]>;
|
|
}
|
|
|
|
// We want to rewrite MOV64r0 in terms of MOV32r0, because it's sometimes a
|
|
// smaller encoding, but doing so at isel time interferes with rematerialization
|
|
// in the current register allocator. For now, this is rewritten when the
|
|
// instruction is lowered to an MCInst.
|
|
// FIXME: AddedComplexity gives this a higher priority than MOV64ri32. Remove
|
|
// when we have a better way to specify isel priority.
|
|
let Defs = [EFLAGS], isCodeGenOnly=1,
|
|
AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1 in
|
|
def MOV64r0 : I<0x31, MRMInitReg, (outs GR64:$dst), (ins), "",
|
|
[(set GR64:$dst, 0)]>;
|
|
|
|
// Materialize i64 constant where top 32-bits are zero. This could theoretically
|
|
// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
|
|
// that would make it more difficult to rematerialize.
|
|
let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1,
|
|
isCodeGenOnly = 1 in
|
|
def MOV64ri64i32 : Ii32<0xB8, AddRegFrm, (outs GR64:$dst), (ins i64i32imm:$src),
|
|
"", [(set GR64:$dst, i64immZExt32:$src)]>;
|
|
|
|
// Use sbb to materialize carry bit.
|
|
let Uses = [EFLAGS], Defs = [EFLAGS], isCodeGenOnly = 1 in {
|
|
// FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
|
|
// However, Pat<> can't replicate the destination reg into the inputs of the
|
|
// result.
|
|
// FIXME: Change these to have encoding Pseudo when X86MCCodeEmitter replaces
|
|
// X86CodeEmitter.
|
|
def SETB_C8r : I<0x18, MRMInitReg, (outs GR8:$dst), (ins), "",
|
|
[(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
|
|
def SETB_C16r : I<0x19, MRMInitReg, (outs GR16:$dst), (ins), "",
|
|
[(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>,
|
|
OpSize;
|
|
def SETB_C32r : I<0x19, MRMInitReg, (outs GR32:$dst), (ins), "",
|
|
[(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
|
|
def SETB_C64r : RI<0x19, MRMInitReg, (outs GR64:$dst), (ins), "",
|
|
[(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
|
|
} // isCodeGenOnly
|
|
|
|
|
|
def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
|
|
(SETB_C16r)>;
|
|
def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
|
|
(SETB_C32r)>;
|
|
def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
|
|
(SETB_C64r)>;
|
|
|
|
def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
|
|
(SETB_C16r)>;
|
|
def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
|
|
(SETB_C32r)>;
|
|
def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
|
|
(SETB_C64r)>;
|
|
|
|
// We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and
|
|
// will be eliminated and that the sbb can be extended up to a wider type. When
|
|
// this happens, it is great. However, if we are left with an 8-bit sbb and an
|
|
// and, we might as well just match it as a setb.
|
|
def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1),
|
|
(SETBr)>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// String Pseudo Instructions
|
|
//
|
|
let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
|
|
def REP_MOVSB : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
|
|
[(X86rep_movs i8)]>, REP;
|
|
def REP_MOVSW : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
|
|
[(X86rep_movs i16)]>, REP, OpSize;
|
|
def REP_MOVSD : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
|
|
[(X86rep_movs i32)]>, REP;
|
|
}
|
|
|
|
let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in
|
|
def REP_MOVSQ : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
|
|
[(X86rep_movs i64)]>, REP;
|
|
|
|
|
|
// FIXME: Should use "(X86rep_stos AL)" as the pattern.
|
|
let Defs = [ECX,EDI], Uses = [AL,ECX,EDI], isCodeGenOnly = 1 in
|
|
def REP_STOSB : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
|
|
[(X86rep_stos i8)]>, REP;
|
|
let Defs = [ECX,EDI], Uses = [AX,ECX,EDI], isCodeGenOnly = 1 in
|
|
def REP_STOSW : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
|
|
[(X86rep_stos i16)]>, REP, OpSize;
|
|
let Defs = [ECX,EDI], Uses = [EAX,ECX,EDI], isCodeGenOnly = 1 in
|
|
def REP_STOSD : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
|
|
[(X86rep_stos i32)]>, REP;
|
|
|
|
let Defs = [RCX,RDI], Uses = [RAX,RCX,RDI], isCodeGenOnly = 1 in
|
|
def REP_STOSQ : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
|
|
[(X86rep_stos i64)]>, REP;
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Thread Local Storage Instructions
|
|
//
|
|
|
|
// ELF TLS Support
|
|
// All calls clobber the non-callee saved registers. ESP is marked as
|
|
// a use to prevent stack-pointer assignments that appear immediately
|
|
// before calls from potentially appearing dead.
|
|
let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,
|
|
MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
|
|
XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
|
|
XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
|
|
Uses = [ESP] in
|
|
def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
|
|
"# TLS_addr32",
|
|
[(X86tlsaddr tls32addr:$sym)]>,
|
|
Requires<[In32BitMode]>;
|
|
|
|
// All calls clobber the non-callee saved registers. RSP is marked as
|
|
// a use to prevent stack-pointer assignments that appear immediately
|
|
// before calls from potentially appearing dead.
|
|
let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
|
|
FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, ST1,
|
|
MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
|
|
XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
|
|
XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
|
|
Uses = [RSP] in
|
|
def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
|
|
"# TLS_addr64",
|
|
[(X86tlsaddr tls64addr:$sym)]>,
|
|
Requires<[In64BitMode]>;
|
|
|
|
// Darwin TLS Support
|
|
// For i386, the address of the thunk is passed on the stack, on return the
|
|
// address of the variable is in %eax. %ecx is trashed during the function
|
|
// call. All other registers are preserved.
|
|
let Defs = [EAX, ECX, EFLAGS],
|
|
Uses = [ESP],
|
|
usesCustomInserter = 1 in
|
|
def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
|
|
"# TLSCall_32",
|
|
[(X86TLSCall addr:$sym)]>,
|
|
Requires<[In32BitMode]>;
|
|
|
|
// For x86_64, the address of the thunk is passed in %rdi, on return
|
|
// the address of the variable is in %rax. All other registers are preserved.
|
|
let Defs = [RAX, EFLAGS],
|
|
Uses = [RSP, RDI],
|
|
usesCustomInserter = 1 in
|
|
def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
|
|
"# TLSCall_64",
|
|
[(X86TLSCall addr:$sym)]>,
|
|
Requires<[In64BitMode]>;
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Conditional Move Pseudo Instructions
|
|
|
|
let Constraints = "$src1 = $dst" in {
|
|
|
|
// Conditional moves
|
|
let Uses = [EFLAGS] in {
|
|
|
|
// X86 doesn't have 8-bit conditional moves. Use a customInserter to
|
|
// emit control flow. An alternative to this is to mark i8 SELECT as Promote,
|
|
// however that requires promoting the operands, and can induce additional
|
|
// i8 register pressure. Note that CMOV_GR8 is conservatively considered to
|
|
// clobber EFLAGS, because if one of the operands is zero, the expansion
|
|
// could involve an xor.
|
|
let usesCustomInserter = 1, Constraints = "", Defs = [EFLAGS] in {
|
|
def CMOV_GR8 : I<0, Pseudo,
|
|
(outs GR8:$dst), (ins GR8:$src1, GR8:$src2, i8imm:$cond),
|
|
"#CMOV_GR8 PSEUDO!",
|
|
[(set GR8:$dst, (X86cmov GR8:$src1, GR8:$src2,
|
|
imm:$cond, EFLAGS))]>;
|
|
|
|
let Predicates = [NoCMov] in {
|
|
def CMOV_GR32 : I<0, Pseudo,
|
|
(outs GR32:$dst), (ins GR32:$src1, GR32:$src2, i8imm:$cond),
|
|
"#CMOV_GR32* PSEUDO!",
|
|
[(set GR32:$dst,
|
|
(X86cmov GR32:$src1, GR32:$src2, imm:$cond, EFLAGS))]>;
|
|
def CMOV_GR16 : I<0, Pseudo,
|
|
(outs GR16:$dst), (ins GR16:$src1, GR16:$src2, i8imm:$cond),
|
|
"#CMOV_GR16* PSEUDO!",
|
|
[(set GR16:$dst,
|
|
(X86cmov GR16:$src1, GR16:$src2, imm:$cond, EFLAGS))]>;
|
|
def CMOV_RFP32 : I<0, Pseudo,
|
|
(outs RFP32:$dst),
|
|
(ins RFP32:$src1, RFP32:$src2, i8imm:$cond),
|
|
"#CMOV_RFP32 PSEUDO!",
|
|
[(set RFP32:$dst,
|
|
(X86cmov RFP32:$src1, RFP32:$src2, imm:$cond,
|
|
EFLAGS))]>;
|
|
def CMOV_RFP64 : I<0, Pseudo,
|
|
(outs RFP64:$dst),
|
|
(ins RFP64:$src1, RFP64:$src2, i8imm:$cond),
|
|
"#CMOV_RFP64 PSEUDO!",
|
|
[(set RFP64:$dst,
|
|
(X86cmov RFP64:$src1, RFP64:$src2, imm:$cond,
|
|
EFLAGS))]>;
|
|
def CMOV_RFP80 : I<0, Pseudo,
|
|
(outs RFP80:$dst),
|
|
(ins RFP80:$src1, RFP80:$src2, i8imm:$cond),
|
|
"#CMOV_RFP80 PSEUDO!",
|
|
[(set RFP80:$dst,
|
|
(X86cmov RFP80:$src1, RFP80:$src2, imm:$cond,
|
|
EFLAGS))]>;
|
|
} // Predicates = [NoCMov]
|
|
} // UsesCustomInserter = 1, Constraints = "", Defs = [EFLAGS]
|
|
} // Uses = [EFLAGS]
|
|
|
|
} // Constraints = "$src1 = $dst" in
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Atomic Instruction Pseudo Instructions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Atomic exchange, and, or, xor
|
|
let Constraints = "$val = $dst", Defs = [EFLAGS],
|
|
usesCustomInserter = 1 in {
|
|
|
|
def ATOMAND8 : I<0, Pseudo, (outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
|
|
"#ATOMAND8 PSEUDO!",
|
|
[(set GR8:$dst, (atomic_load_and_8 addr:$ptr, GR8:$val))]>;
|
|
def ATOMOR8 : I<0, Pseudo, (outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
|
|
"#ATOMOR8 PSEUDO!",
|
|
[(set GR8:$dst, (atomic_load_or_8 addr:$ptr, GR8:$val))]>;
|
|
def ATOMXOR8 : I<0, Pseudo,(outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
|
|
"#ATOMXOR8 PSEUDO!",
|
|
[(set GR8:$dst, (atomic_load_xor_8 addr:$ptr, GR8:$val))]>;
|
|
def ATOMNAND8 : I<0, Pseudo,(outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
|
|
"#ATOMNAND8 PSEUDO!",
|
|
[(set GR8:$dst, (atomic_load_nand_8 addr:$ptr, GR8:$val))]>;
|
|
|
|
def ATOMAND16 : I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
|
|
"#ATOMAND16 PSEUDO!",
|
|
[(set GR16:$dst, (atomic_load_and_16 addr:$ptr, GR16:$val))]>;
|
|
def ATOMOR16 : I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
|
|
"#ATOMOR16 PSEUDO!",
|
|
[(set GR16:$dst, (atomic_load_or_16 addr:$ptr, GR16:$val))]>;
|
|
def ATOMXOR16 : I<0, Pseudo,(outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
|
|
"#ATOMXOR16 PSEUDO!",
|
|
[(set GR16:$dst, (atomic_load_xor_16 addr:$ptr, GR16:$val))]>;
|
|
def ATOMNAND16 : I<0, Pseudo,(outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
|
|
"#ATOMNAND16 PSEUDO!",
|
|
[(set GR16:$dst, (atomic_load_nand_16 addr:$ptr, GR16:$val))]>;
|
|
def ATOMMIN16: I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$ptr, GR16:$val),
|
|
"#ATOMMIN16 PSEUDO!",
|
|
[(set GR16:$dst, (atomic_load_min_16 addr:$ptr, GR16:$val))]>;
|
|
def ATOMMAX16: I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
|
|
"#ATOMMAX16 PSEUDO!",
|
|
[(set GR16:$dst, (atomic_load_max_16 addr:$ptr, GR16:$val))]>;
|
|
def ATOMUMIN16: I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
|
|
"#ATOMUMIN16 PSEUDO!",
|
|
[(set GR16:$dst, (atomic_load_umin_16 addr:$ptr, GR16:$val))]>;
|
|
def ATOMUMAX16: I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
|
|
"#ATOMUMAX16 PSEUDO!",
|
|
[(set GR16:$dst, (atomic_load_umax_16 addr:$ptr, GR16:$val))]>;
|
|
|
|
|
|
def ATOMAND32 : I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
|
|
"#ATOMAND32 PSEUDO!",
|
|
[(set GR32:$dst, (atomic_load_and_32 addr:$ptr, GR32:$val))]>;
|
|
def ATOMOR32 : I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
|
|
"#ATOMOR32 PSEUDO!",
|
|
[(set GR32:$dst, (atomic_load_or_32 addr:$ptr, GR32:$val))]>;
|
|
def ATOMXOR32 : I<0, Pseudo,(outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
|
|
"#ATOMXOR32 PSEUDO!",
|
|
[(set GR32:$dst, (atomic_load_xor_32 addr:$ptr, GR32:$val))]>;
|
|
def ATOMNAND32 : I<0, Pseudo,(outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
|
|
"#ATOMNAND32 PSEUDO!",
|
|
[(set GR32:$dst, (atomic_load_nand_32 addr:$ptr, GR32:$val))]>;
|
|
def ATOMMIN32: I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$ptr, GR32:$val),
|
|
"#ATOMMIN32 PSEUDO!",
|
|
[(set GR32:$dst, (atomic_load_min_32 addr:$ptr, GR32:$val))]>;
|
|
def ATOMMAX32: I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
|
|
"#ATOMMAX32 PSEUDO!",
|
|
[(set GR32:$dst, (atomic_load_max_32 addr:$ptr, GR32:$val))]>;
|
|
def ATOMUMIN32: I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
|
|
"#ATOMUMIN32 PSEUDO!",
|
|
[(set GR32:$dst, (atomic_load_umin_32 addr:$ptr, GR32:$val))]>;
|
|
def ATOMUMAX32: I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
|
|
"#ATOMUMAX32 PSEUDO!",
|
|
[(set GR32:$dst, (atomic_load_umax_32 addr:$ptr, GR32:$val))]>;
|
|
|
|
|
|
|
|
def ATOMAND64 : I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
|
|
"#ATOMAND64 PSEUDO!",
|
|
[(set GR64:$dst, (atomic_load_and_64 addr:$ptr, GR64:$val))]>;
|
|
def ATOMOR64 : I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
|
|
"#ATOMOR64 PSEUDO!",
|
|
[(set GR64:$dst, (atomic_load_or_64 addr:$ptr, GR64:$val))]>;
|
|
def ATOMXOR64 : I<0, Pseudo,(outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
|
|
"#ATOMXOR64 PSEUDO!",
|
|
[(set GR64:$dst, (atomic_load_xor_64 addr:$ptr, GR64:$val))]>;
|
|
def ATOMNAND64 : I<0, Pseudo,(outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
|
|
"#ATOMNAND64 PSEUDO!",
|
|
[(set GR64:$dst, (atomic_load_nand_64 addr:$ptr, GR64:$val))]>;
|
|
def ATOMMIN64: I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$ptr, GR64:$val),
|
|
"#ATOMMIN64 PSEUDO!",
|
|
[(set GR64:$dst, (atomic_load_min_64 addr:$ptr, GR64:$val))]>;
|
|
def ATOMMAX64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
|
|
"#ATOMMAX64 PSEUDO!",
|
|
[(set GR64:$dst, (atomic_load_max_64 addr:$ptr, GR64:$val))]>;
|
|
def ATOMUMIN64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
|
|
"#ATOMUMIN64 PSEUDO!",
|
|
[(set GR64:$dst, (atomic_load_umin_64 addr:$ptr, GR64:$val))]>;
|
|
def ATOMUMAX64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
|
|
"#ATOMUMAX64 PSEUDO!",
|
|
[(set GR64:$dst, (atomic_load_umax_64 addr:$ptr, GR64:$val))]>;
|
|
}
|
|
|
|
let Constraints = "$val1 = $dst1, $val2 = $dst2",
|
|
Defs = [EFLAGS, EAX, EBX, ECX, EDX],
|
|
Uses = [EAX, EBX, ECX, EDX],
|
|
mayLoad = 1, mayStore = 1,
|
|
usesCustomInserter = 1 in {
|
|
def ATOMAND6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
|
|
(ins i64mem:$ptr, GR32:$val1, GR32:$val2),
|
|
"#ATOMAND6432 PSEUDO!", []>;
|
|
def ATOMOR6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
|
|
(ins i64mem:$ptr, GR32:$val1, GR32:$val2),
|
|
"#ATOMOR6432 PSEUDO!", []>;
|
|
def ATOMXOR6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
|
|
(ins i64mem:$ptr, GR32:$val1, GR32:$val2),
|
|
"#ATOMXOR6432 PSEUDO!", []>;
|
|
def ATOMNAND6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
|
|
(ins i64mem:$ptr, GR32:$val1, GR32:$val2),
|
|
"#ATOMNAND6432 PSEUDO!", []>;
|
|
def ATOMADD6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
|
|
(ins i64mem:$ptr, GR32:$val1, GR32:$val2),
|
|
"#ATOMADD6432 PSEUDO!", []>;
|
|
def ATOMSUB6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
|
|
(ins i64mem:$ptr, GR32:$val1, GR32:$val2),
|
|
"#ATOMSUB6432 PSEUDO!", []>;
|
|
def ATOMSWAP6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
|
|
(ins i64mem:$ptr, GR32:$val1, GR32:$val2),
|
|
"#ATOMSWAP6432 PSEUDO!", []>;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// FIXME: Use normal instructions and add lock prefix dynamically.
|
|
|
|
// Memory barriers
|
|
|
|
// TODO: Get this to fold the constant into the instruction.
|
|
let isCodeGenOnly = 1 in
|
|
def OR32mrLocked : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
|
|
"lock\n\t"
|
|
"or{l}\t{$zero, $dst|$dst, $zero}",
|
|
[]>, Requires<[In32BitMode]>, LOCK;
|
|
|
|
let hasSideEffects = 1 in
|
|
def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
|
|
"#MEMBARRIER",
|
|
[(X86MemBarrier)]>, Requires<[HasSSE2]>;
|
|
|
|
// TODO: Get this to fold the constant into the instruction.
|
|
let hasSideEffects = 1, Defs = [ESP], isCodeGenOnly = 1 in
|
|
def Int_MemBarrierNoSSE64 : RI<0x09, MRM1r, (outs), (ins GR64:$zero),
|
|
"lock\n\t"
|
|
"or{q}\t{$zero, (%rsp)|(%rsp), $zero}",
|
|
[(X86MemBarrierNoSSE GR64:$zero)]>,
|
|
Requires<[In64BitMode]>, LOCK;
|
|
|
|
|
|
// Optimized codegen when the non-memory output is not used.
|
|
let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1 in {
|
|
def LOCK_ADD8mr : I<0x00, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
|
|
"lock\n\t"
|
|
"add{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
|
|
def LOCK_ADD16mr : I<0x01, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
|
|
"lock\n\t"
|
|
"add{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
|
|
def LOCK_ADD32mr : I<0x01, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
|
|
"lock\n\t"
|
|
"add{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
|
|
def LOCK_ADD64mr : RI<0x01, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
|
|
"lock\n\t"
|
|
"add{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
|
|
|
|
def LOCK_ADD8mi : Ii8<0x80, MRM0m, (outs), (ins i8mem :$dst, i8imm :$src2),
|
|
"lock\n\t"
|
|
"add{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
|
|
def LOCK_ADD16mi : Ii16<0x81, MRM0m, (outs), (ins i16mem:$dst, i16imm:$src2),
|
|
"lock\n\t"
|
|
"add{w}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
|
|
def LOCK_ADD32mi : Ii32<0x81, MRM0m, (outs), (ins i32mem:$dst, i32imm:$src2),
|
|
"lock\n\t"
|
|
"add{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
|
|
def LOCK_ADD64mi32 : RIi32<0x81, MRM0m, (outs),
|
|
(ins i64mem:$dst, i64i32imm :$src2),
|
|
"lock\n\t"
|
|
"add{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
|
|
|
|
def LOCK_ADD16mi8 : Ii8<0x83, MRM0m, (outs), (ins i16mem:$dst, i16i8imm :$src2),
|
|
"lock\n\t"
|
|
"add{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
|
|
def LOCK_ADD32mi8 : Ii8<0x83, MRM0m, (outs), (ins i32mem:$dst, i32i8imm :$src2),
|
|
"lock\n\t"
|
|
"add{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
|
|
def LOCK_ADD64mi8 : RIi8<0x83, MRM0m, (outs),
|
|
(ins i64mem:$dst, i64i8imm :$src2),
|
|
"lock\n\t"
|
|
"add{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
|
|
|
|
def LOCK_SUB8mr : I<0x28, MRMDestMem, (outs), (ins i8mem :$dst, GR8 :$src2),
|
|
"lock\n\t"
|
|
"sub{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
|
|
def LOCK_SUB16mr : I<0x29, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
|
|
"lock\n\t"
|
|
"sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
|
|
def LOCK_SUB32mr : I<0x29, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
|
|
"lock\n\t"
|
|
"sub{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
|
|
def LOCK_SUB64mr : RI<0x29, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
|
|
"lock\n\t"
|
|
"sub{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
|
|
|
|
|
|
def LOCK_SUB8mi : Ii8<0x80, MRM5m, (outs), (ins i8mem :$dst, i8imm:$src2),
|
|
"lock\n\t"
|
|
"sub{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
|
|
def LOCK_SUB16mi : Ii16<0x81, MRM5m, (outs), (ins i16mem:$dst, i16imm:$src2),
|
|
"lock\n\t"
|
|
"sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
|
|
def LOCK_SUB32mi : Ii32<0x81, MRM5m, (outs), (ins i32mem:$dst, i32imm:$src2),
|
|
"lock\n\t"
|
|
"sub{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
|
|
def LOCK_SUB64mi32 : RIi32<0x81, MRM5m, (outs),
|
|
(ins i64mem:$dst, i64i32imm:$src2),
|
|
"lock\n\t"
|
|
"sub{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
|
|
|
|
|
|
def LOCK_SUB16mi8 : Ii8<0x83, MRM5m, (outs), (ins i16mem:$dst, i16i8imm :$src2),
|
|
"lock\n\t"
|
|
"sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
|
|
def LOCK_SUB32mi8 : Ii8<0x83, MRM5m, (outs), (ins i32mem:$dst, i32i8imm :$src2),
|
|
"lock\n\t"
|
|
"sub{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
|
|
def LOCK_SUB64mi8 : RIi8<0x83, MRM5m, (outs),
|
|
(ins i64mem:$dst, i64i8imm :$src2),
|
|
"lock\n\t"
|
|
"sub{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
|
|
|
|
def LOCK_INC8m : I<0xFE, MRM0m, (outs), (ins i8mem :$dst),
|
|
"lock\n\t"
|
|
"inc{b}\t$dst", []>, LOCK;
|
|
def LOCK_INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst),
|
|
"lock\n\t"
|
|
"inc{w}\t$dst", []>, OpSize, LOCK;
|
|
def LOCK_INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst),
|
|
"lock\n\t"
|
|
"inc{l}\t$dst", []>, LOCK;
|
|
def LOCK_INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst),
|
|
"lock\n\t"
|
|
"inc{q}\t$dst", []>, LOCK;
|
|
|
|
def LOCK_DEC8m : I<0xFE, MRM1m, (outs), (ins i8mem :$dst),
|
|
"lock\n\t"
|
|
"dec{b}\t$dst", []>, LOCK;
|
|
def LOCK_DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst),
|
|
"lock\n\t"
|
|
"dec{w}\t$dst", []>, OpSize, LOCK;
|
|
def LOCK_DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst),
|
|
"lock\n\t"
|
|
"dec{l}\t$dst", []>, LOCK;
|
|
def LOCK_DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst),
|
|
"lock\n\t"
|
|
"dec{q}\t$dst", []>, LOCK;
|
|
}
|
|
|
|
// Atomic compare and swap.
|
|
let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX],
|
|
isCodeGenOnly = 1 in {
|
|
def LCMPXCHG8B : I<0xC7, MRM1m, (outs), (ins i64mem:$ptr),
|
|
"lock\n\t"
|
|
"cmpxchg8b\t$ptr",
|
|
[(X86cas8 addr:$ptr)]>, TB, LOCK;
|
|
}
|
|
let Defs = [AL, EFLAGS], Uses = [AL], isCodeGenOnly = 1 in {
|
|
def LCMPXCHG8 : I<0xB0, MRMDestMem, (outs), (ins i8mem:$ptr, GR8:$swap),
|
|
"lock\n\t"
|
|
"cmpxchg{b}\t{$swap, $ptr|$ptr, $swap}",
|
|
[(X86cas addr:$ptr, GR8:$swap, 1)]>, TB, LOCK;
|
|
}
|
|
|
|
let Defs = [AX, EFLAGS], Uses = [AX], isCodeGenOnly = 1 in {
|
|
def LCMPXCHG16 : I<0xB1, MRMDestMem, (outs), (ins i16mem:$ptr, GR16:$swap),
|
|
"lock\n\t"
|
|
"cmpxchg{w}\t{$swap, $ptr|$ptr, $swap}",
|
|
[(X86cas addr:$ptr, GR16:$swap, 2)]>, TB, OpSize, LOCK;
|
|
}
|
|
|
|
let Defs = [EAX, EFLAGS], Uses = [EAX], isCodeGenOnly = 1 in {
|
|
def LCMPXCHG32 : I<0xB1, MRMDestMem, (outs), (ins i32mem:$ptr, GR32:$swap),
|
|
"lock\n\t"
|
|
"cmpxchg{l}\t{$swap, $ptr|$ptr, $swap}",
|
|
[(X86cas addr:$ptr, GR32:$swap, 4)]>, TB, LOCK;
|
|
}
|
|
|
|
let Defs = [RAX, EFLAGS], Uses = [RAX], isCodeGenOnly = 1 in {
|
|
def LCMPXCHG64 : RI<0xB1, MRMDestMem, (outs), (ins i64mem:$ptr, GR64:$swap),
|
|
"lock\n\t"
|
|
"cmpxchgq\t$swap,$ptr",
|
|
[(X86cas addr:$ptr, GR64:$swap, 8)]>, TB, LOCK;
|
|
}
|
|
|
|
// Atomic exchange and add
|
|
let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1 in {
|
|
def LXADD8 : I<0xC0, MRMSrcMem, (outs GR8:$dst), (ins GR8:$val, i8mem:$ptr),
|
|
"lock\n\t"
|
|
"xadd{b}\t{$val, $ptr|$ptr, $val}",
|
|
[(set GR8:$dst, (atomic_load_add_8 addr:$ptr, GR8:$val))]>,
|
|
TB, LOCK;
|
|
def LXADD16 : I<0xC1, MRMSrcMem, (outs GR16:$dst), (ins GR16:$val, i16mem:$ptr),
|
|
"lock\n\t"
|
|
"xadd{w}\t{$val, $ptr|$ptr, $val}",
|
|
[(set GR16:$dst, (atomic_load_add_16 addr:$ptr, GR16:$val))]>,
|
|
TB, OpSize, LOCK;
|
|
def LXADD32 : I<0xC1, MRMSrcMem, (outs GR32:$dst), (ins GR32:$val, i32mem:$ptr),
|
|
"lock\n\t"
|
|
"xadd{l}\t{$val, $ptr|$ptr, $val}",
|
|
[(set GR32:$dst, (atomic_load_add_32 addr:$ptr, GR32:$val))]>,
|
|
TB, LOCK;
|
|
def LXADD64 : RI<0xC1, MRMSrcMem, (outs GR64:$dst), (ins GR64:$val,i64mem:$ptr),
|
|
"lock\n\t"
|
|
"xadd\t$val, $ptr",
|
|
[(set GR64:$dst, (atomic_load_add_64 addr:$ptr, GR64:$val))]>,
|
|
TB, LOCK;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Conditional Move Pseudo Instructions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
// CMOV* - Used to implement the SSE SELECT DAG operation. Expanded after
|
|
// instruction selection into a branch sequence.
|
|
let Uses = [EFLAGS], usesCustomInserter = 1 in {
|
|
def CMOV_FR32 : I<0, Pseudo,
|
|
(outs FR32:$dst), (ins FR32:$t, FR32:$f, i8imm:$cond),
|
|
"#CMOV_FR32 PSEUDO!",
|
|
[(set FR32:$dst, (X86cmov FR32:$t, FR32:$f, imm:$cond,
|
|
EFLAGS))]>;
|
|
def CMOV_FR64 : I<0, Pseudo,
|
|
(outs FR64:$dst), (ins FR64:$t, FR64:$f, i8imm:$cond),
|
|
"#CMOV_FR64 PSEUDO!",
|
|
[(set FR64:$dst, (X86cmov FR64:$t, FR64:$f, imm:$cond,
|
|
EFLAGS))]>;
|
|
def CMOV_V4F32 : I<0, Pseudo,
|
|
(outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
|
|
"#CMOV_V4F32 PSEUDO!",
|
|
[(set VR128:$dst,
|
|
(v4f32 (X86cmov VR128:$t, VR128:$f, imm:$cond,
|
|
EFLAGS)))]>;
|
|
def CMOV_V2F64 : I<0, Pseudo,
|
|
(outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
|
|
"#CMOV_V2F64 PSEUDO!",
|
|
[(set VR128:$dst,
|
|
(v2f64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
|
|
EFLAGS)))]>;
|
|
def CMOV_V2I64 : I<0, Pseudo,
|
|
(outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
|
|
"#CMOV_V2I64 PSEUDO!",
|
|
[(set VR128:$dst,
|
|
(v2i64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
|
|
EFLAGS)))]>;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DAG Pattern Matching Rules
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
|
|
def : Pat<(i32 (X86Wrapper tconstpool :$dst)), (MOV32ri tconstpool :$dst)>;
|
|
def : Pat<(i32 (X86Wrapper tjumptable :$dst)), (MOV32ri tjumptable :$dst)>;
|
|
def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>;
|
|
def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>;
|
|
def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
|
|
def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>;
|
|
|
|
def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)),
|
|
(ADD32ri GR32:$src1, tconstpool:$src2)>;
|
|
def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)),
|
|
(ADD32ri GR32:$src1, tjumptable:$src2)>;
|
|
def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)),
|
|
(ADD32ri GR32:$src1, tglobaladdr:$src2)>;
|
|
def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)),
|
|
(ADD32ri GR32:$src1, texternalsym:$src2)>;
|
|
def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)),
|
|
(ADD32ri GR32:$src1, tblockaddress:$src2)>;
|
|
|
|
def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst),
|
|
(MOV32mi addr:$dst, tglobaladdr:$src)>;
|
|
def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst),
|
|
(MOV32mi addr:$dst, texternalsym:$src)>;
|
|
def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst),
|
|
(MOV32mi addr:$dst, tblockaddress:$src)>;
|
|
|
|
|
|
|
|
// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small
|
|
// code model mode, should use 'movabs'. FIXME: This is really a hack, the
|
|
// 'movabs' predicate should handle this sort of thing.
|
|
def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
|
|
(MOV64ri tconstpool :$dst)>, Requires<[FarData]>;
|
|
def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
|
|
(MOV64ri tjumptable :$dst)>, Requires<[FarData]>;
|
|
def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
|
|
(MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>;
|
|
def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
|
|
(MOV64ri texternalsym:$dst)>, Requires<[FarData]>;
|
|
def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
|
|
(MOV64ri tblockaddress:$dst)>, Requires<[FarData]>;
|
|
|
|
// In static codegen with small code model, we can get the address of a label
|
|
// into a register with 'movl'. FIXME: This is a hack, the 'imm' predicate of
|
|
// the MOV64ri64i32 should accept these.
|
|
def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
|
|
(MOV64ri64i32 tconstpool :$dst)>, Requires<[SmallCode]>;
|
|
def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
|
|
(MOV64ri64i32 tjumptable :$dst)>, Requires<[SmallCode]>;
|
|
def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
|
|
(MOV64ri64i32 tglobaladdr :$dst)>, Requires<[SmallCode]>;
|
|
def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
|
|
(MOV64ri64i32 texternalsym:$dst)>, Requires<[SmallCode]>;
|
|
def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
|
|
(MOV64ri64i32 tblockaddress:$dst)>, Requires<[SmallCode]>;
|
|
|
|
// In kernel code model, we can get the address of a label
|
|
// into a register with 'movq'. FIXME: This is a hack, the 'imm' predicate of
|
|
// the MOV64ri32 should accept these.
|
|
def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
|
|
(MOV64ri32 tconstpool :$dst)>, Requires<[KernelCode]>;
|
|
def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
|
|
(MOV64ri32 tjumptable :$dst)>, Requires<[KernelCode]>;
|
|
def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
|
|
(MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
|
|
def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
|
|
(MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
|
|
def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
|
|
(MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
|
|
|
|
// If we have small model and -static mode, it is safe to store global addresses
|
|
// directly as immediates. FIXME: This is really a hack, the 'imm' predicate
|
|
// for MOV64mi32 should handle this sort of thing.
|
|
def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
|
|
(MOV64mi32 addr:$dst, tconstpool:$src)>,
|
|
Requires<[NearData, IsStatic]>;
|
|
def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
|
|
(MOV64mi32 addr:$dst, tjumptable:$src)>,
|
|
Requires<[NearData, IsStatic]>;
|
|
def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
|
|
(MOV64mi32 addr:$dst, tglobaladdr:$src)>,
|
|
Requires<[NearData, IsStatic]>;
|
|
def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
|
|
(MOV64mi32 addr:$dst, texternalsym:$src)>,
|
|
Requires<[NearData, IsStatic]>;
|
|
def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
|
|
(MOV64mi32 addr:$dst, tblockaddress:$src)>,
|
|
Requires<[NearData, IsStatic]>;
|
|
|
|
|
|
|
|
// Calls
|
|
|
|
// tls has some funny stuff here...
|
|
// This corresponds to movabs $foo@tpoff, %rax
|
|
def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
|
|
(MOV64ri tglobaltlsaddr :$dst)>;
|
|
// This corresponds to add $foo@tpoff, %rax
|
|
def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
|
|
(ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
|
|
// This corresponds to mov foo@tpoff(%rbx), %eax
|
|
def : Pat<(load (i64 (X86Wrapper tglobaltlsaddr :$dst))),
|
|
(MOV64rm tglobaltlsaddr :$dst)>;
|
|
|
|
|
|
// Direct PC relative function call for small code model. 32-bit displacement
|
|
// sign extended to 64-bit.
|
|
def : Pat<(X86call (i64 tglobaladdr:$dst)),
|
|
(CALL64pcrel32 tglobaladdr:$dst)>, Requires<[NotWin64]>;
|
|
def : Pat<(X86call (i64 texternalsym:$dst)),
|
|
(CALL64pcrel32 texternalsym:$dst)>, Requires<[NotWin64]>;
|
|
|
|
def : Pat<(X86call (i64 tglobaladdr:$dst)),
|
|
(WINCALL64pcrel32 tglobaladdr:$dst)>, Requires<[IsWin64]>;
|
|
def : Pat<(X86call (i64 texternalsym:$dst)),
|
|
(WINCALL64pcrel32 texternalsym:$dst)>, Requires<[IsWin64]>;
|
|
|
|
// tailcall stuff
|
|
def : Pat<(X86tcret GR32_TC:$dst, imm:$off),
|
|
(TCRETURNri GR32_TC:$dst, imm:$off)>,
|
|
Requires<[In32BitMode]>;
|
|
|
|
// FIXME: This is disabled for 32-bit PIC mode because the global base
|
|
// register which is part of the address mode may be assigned a
|
|
// callee-saved register.
|
|
def : Pat<(X86tcret (load addr:$dst), imm:$off),
|
|
(TCRETURNmi addr:$dst, imm:$off)>,
|
|
Requires<[In32BitMode, IsNotPIC]>;
|
|
|
|
def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
|
|
(TCRETURNdi texternalsym:$dst, imm:$off)>,
|
|
Requires<[In32BitMode]>;
|
|
|
|
def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
|
|
(TCRETURNdi texternalsym:$dst, imm:$off)>,
|
|
Requires<[In32BitMode]>;
|
|
|
|
def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
|
|
(TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>,
|
|
Requires<[In64BitMode]>;
|
|
|
|
def : Pat<(X86tcret (load addr:$dst), imm:$off),
|
|
(TCRETURNmi64 addr:$dst, imm:$off)>,
|
|
Requires<[In64BitMode]>;
|
|
|
|
def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
|
|
(TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
|
|
Requires<[In64BitMode]>;
|
|
|
|
def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
|
|
(TCRETURNdi64 texternalsym:$dst, imm:$off)>,
|
|
Requires<[In64BitMode]>;
|
|
|
|
// Normal calls, with various flavors of addresses.
|
|
def : Pat<(X86call (i32 tglobaladdr:$dst)),
|
|
(CALLpcrel32 tglobaladdr:$dst)>;
|
|
def : Pat<(X86call (i32 texternalsym:$dst)),
|
|
(CALLpcrel32 texternalsym:$dst)>;
|
|
def : Pat<(X86call (i32 imm:$dst)),
|
|
(CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
|
|
|
|
// Comparisons.
|
|
|
|
// TEST R,R is smaller than CMP R,0
|
|
def : Pat<(X86cmp GR8:$src1, 0),
|
|
(TEST8rr GR8:$src1, GR8:$src1)>;
|
|
def : Pat<(X86cmp GR16:$src1, 0),
|
|
(TEST16rr GR16:$src1, GR16:$src1)>;
|
|
def : Pat<(X86cmp GR32:$src1, 0),
|
|
(TEST32rr GR32:$src1, GR32:$src1)>;
|
|
def : Pat<(X86cmp GR64:$src1, 0),
|
|
(TEST64rr GR64:$src1, GR64:$src1)>;
|
|
|
|
// Conditional moves with folded loads with operands swapped and conditions
|
|
// inverted.
|
|
multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32,
|
|
Instruction Inst64> {
|
|
def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS),
|
|
(Inst16 GR16:$src2, addr:$src1)>;
|
|
def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS),
|
|
(Inst32 GR32:$src2, addr:$src1)>;
|
|
def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS),
|
|
(Inst64 GR64:$src2, addr:$src1)>;
|
|
}
|
|
|
|
defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>;
|
|
defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>;
|
|
defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>;
|
|
defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>;
|
|
defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>;
|
|
defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>;
|
|
defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>;
|
|
defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>;
|
|
defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>;
|
|
defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>;
|
|
defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>;
|
|
defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>;
|
|
defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>;
|
|
defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>;
|
|
defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>;
|
|
defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>;
|
|
|
|
// zextload bool -> zextload byte
|
|
def : Pat<(zextloadi8i1 addr:$src), (MOV8rm addr:$src)>;
|
|
def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
|
|
def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
|
|
def : Pat<(zextloadi64i1 addr:$src), (MOVZX64rm8 addr:$src)>;
|
|
|
|
// extload bool -> extload byte
|
|
// When extloading from 16-bit and smaller memory locations into 64-bit
|
|
// registers, use zero-extending loads so that the entire 64-bit register is
|
|
// defined, avoiding partial-register updates.
|
|
|
|
def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>;
|
|
def : Pat<(extloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
|
|
def : Pat<(extloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
|
|
def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>;
|
|
def : Pat<(extloadi32i8 addr:$src), (MOVZX32rm8 addr:$src)>;
|
|
def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
|
|
|
|
def : Pat<(extloadi64i1 addr:$src), (MOVZX64rm8 addr:$src)>;
|
|
def : Pat<(extloadi64i8 addr:$src), (MOVZX64rm8 addr:$src)>;
|
|
def : Pat<(extloadi64i16 addr:$src), (MOVZX64rm16 addr:$src)>;
|
|
// For other extloads, use subregs, since the high contents of the register are
|
|
// defined after an extload.
|
|
def : Pat<(extloadi64i32 addr:$src),
|
|
(SUBREG_TO_REG (i64 0), (MOV32rm addr:$src),
|
|
sub_32bit)>;
|
|
|
|
// anyext. Define these to do an explicit zero-extend to
|
|
// avoid partial-register updates.
|
|
def : Pat<(i16 (anyext GR8 :$src)), (MOVZX16rr8 GR8 :$src)>;
|
|
def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>;
|
|
|
|
// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
|
|
def : Pat<(i32 (anyext GR16:$src)),
|
|
(INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
|
|
|
|
def : Pat<(i64 (anyext GR8 :$src)), (MOVZX64rr8 GR8 :$src)>;
|
|
def : Pat<(i64 (anyext GR16:$src)), (MOVZX64rr16 GR16 :$src)>;
|
|
def : Pat<(i64 (anyext GR32:$src)),
|
|
(SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
|
|
|
|
|
|
// Any instruction that defines a 32-bit result leaves the high half of the
|
|
// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
|
|
// be copying from a truncate. And x86's cmov doesn't do anything if the
|
|
// condition is false. But any other 32-bit operation will zero-extend
|
|
// up to 64 bits.
|
|
def def32 : PatLeaf<(i32 GR32:$src), [{
|
|
return N->getOpcode() != ISD::TRUNCATE &&
|
|
N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
|
|
N->getOpcode() != ISD::CopyFromReg &&
|
|
N->getOpcode() != X86ISD::CMOV;
|
|
}]>;
|
|
|
|
// In the case of a 32-bit def that is known to implicitly zero-extend,
|
|
// we can use a SUBREG_TO_REG.
|
|
def : Pat<(i64 (zext def32:$src)),
|
|
(SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Pattern match OR as ADD
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
|
|
// 3-addressified into an LEA instruction to avoid copies. However, we also
|
|
// want to finally emit these instructions as an or at the end of the code
|
|
// generator to make the generated code easier to read. To do this, we select
|
|
// into "disjoint bits" pseudo ops.
|
|
|
|
// Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
|
|
def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
|
|
return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
|
|
|
|
unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits();
|
|
APInt Mask = APInt::getAllOnesValue(BitWidth);
|
|
APInt KnownZero0, KnownOne0;
|
|
CurDAG->ComputeMaskedBits(N->getOperand(0), Mask, KnownZero0, KnownOne0, 0);
|
|
APInt KnownZero1, KnownOne1;
|
|
CurDAG->ComputeMaskedBits(N->getOperand(1), Mask, KnownZero1, KnownOne1, 0);
|
|
return (~KnownZero0 & ~KnownZero1) == 0;
|
|
}]>;
|
|
|
|
|
|
// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
|
|
let AddedComplexity = 5 in { // Try this before the selecting to OR
|
|
|
|
let isConvertibleToThreeAddress = 1,
|
|
Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
|
|
let isCommutable = 1 in {
|
|
def ADD16rr_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
|
|
"", // orw/addw REG, REG
|
|
[(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
|
|
def ADD32rr_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
|
|
"", // orl/addl REG, REG
|
|
[(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
|
|
def ADD64rr_DB : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
|
|
"", // orq/addq REG, REG
|
|
[(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
|
|
} // isCommutable
|
|
|
|
// NOTE: These are order specific, we want the ri8 forms to be listed
|
|
// first so that they are slightly preferred to the ri forms.
|
|
|
|
def ADD16ri8_DB : I<0, Pseudo,
|
|
(outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
|
|
"", // orw/addw REG, imm8
|
|
[(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
|
|
def ADD16ri_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
|
|
"", // orw/addw REG, imm
|
|
[(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;
|
|
|
|
def ADD32ri8_DB : I<0, Pseudo,
|
|
(outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
|
|
"", // orl/addl REG, imm8
|
|
[(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
|
|
def ADD32ri_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
|
|
"", // orl/addl REG, imm
|
|
[(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;
|
|
|
|
|
|
def ADD64ri8_DB : I<0, Pseudo,
|
|
(outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
|
|
"", // orq/addq REG, imm8
|
|
[(set GR64:$dst, (or_is_add GR64:$src1,
|
|
i64immSExt8:$src2))]>;
|
|
def ADD64ri32_DB : I<0, Pseudo,
|
|
(outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
|
|
"", // orq/addq REG, imm
|
|
[(set GR64:$dst, (or_is_add GR64:$src1,
|
|
i64immSExt32:$src2))]>;
|
|
}
|
|
} // AddedComplexity
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Some peepholes
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Odd encoding trick: -128 fits into an 8-bit immediate field while
|
|
// +128 doesn't, so in this special case use a sub instead of an add.
|
|
def : Pat<(add GR16:$src1, 128),
|
|
(SUB16ri8 GR16:$src1, -128)>;
|
|
def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
|
|
(SUB16mi8 addr:$dst, -128)>;
|
|
|
|
def : Pat<(add GR32:$src1, 128),
|
|
(SUB32ri8 GR32:$src1, -128)>;
|
|
def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
|
|
(SUB32mi8 addr:$dst, -128)>;
|
|
|
|
def : Pat<(add GR64:$src1, 128),
|
|
(SUB64ri8 GR64:$src1, -128)>;
|
|
def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
|
|
(SUB64mi8 addr:$dst, -128)>;
|
|
|
|
// The same trick applies for 32-bit immediate fields in 64-bit
|
|
// instructions.
|
|
def : Pat<(add GR64:$src1, 0x0000000080000000),
|
|
(SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
|
|
def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst),
|
|
(SUB64mi32 addr:$dst, 0xffffffff80000000)>;
|
|
|
|
// To avoid needing to materialize an immediate in a register, use a 32-bit and
|
|
// with implicit zero-extension instead of a 64-bit and if the immediate has at
|
|
// least 32 bits of leading zeros. If in addition the last 32 bits can be
|
|
// represented with a sign extension of a 8 bit constant, use that.
|
|
|
|
def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm),
|
|
(SUBREG_TO_REG
|
|
(i64 0),
|
|
(AND32ri8
|
|
(EXTRACT_SUBREG GR64:$src, sub_32bit),
|
|
(i32 (GetLo8XForm imm:$imm))),
|
|
sub_32bit)>;
|
|
|
|
def : Pat<(and GR64:$src, i64immZExt32:$imm),
|
|
(SUBREG_TO_REG
|
|
(i64 0),
|
|
(AND32ri
|
|
(EXTRACT_SUBREG GR64:$src, sub_32bit),
|
|
(i32 (GetLo32XForm imm:$imm))),
|
|
sub_32bit)>;
|
|
|
|
|
|
// r & (2^16-1) ==> movz
|
|
def : Pat<(and GR32:$src1, 0xffff),
|
|
(MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
|
|
// r & (2^8-1) ==> movz
|
|
def : Pat<(and GR32:$src1, 0xff),
|
|
(MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1,
|
|
GR32_ABCD)),
|
|
sub_8bit))>,
|
|
Requires<[In32BitMode]>;
|
|
// r & (2^8-1) ==> movz
|
|
def : Pat<(and GR16:$src1, 0xff),
|
|
(MOVZX16rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src1,
|
|
GR16_ABCD)),
|
|
sub_8bit))>,
|
|
Requires<[In32BitMode]>;
|
|
|
|
// r & (2^32-1) ==> movz
|
|
def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
|
|
(MOVZX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
|
|
// r & (2^16-1) ==> movz
|
|
def : Pat<(and GR64:$src, 0xffff),
|
|
(MOVZX64rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit)))>;
|
|
// r & (2^8-1) ==> movz
|
|
def : Pat<(and GR64:$src, 0xff),
|
|
(MOVZX64rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit)))>;
|
|
// r & (2^8-1) ==> movz
|
|
def : Pat<(and GR32:$src1, 0xff),
|
|
(MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
|
|
Requires<[In64BitMode]>;
|
|
// r & (2^8-1) ==> movz
|
|
def : Pat<(and GR16:$src1, 0xff),
|
|
(MOVZX16rr8 (i8 (EXTRACT_SUBREG GR16:$src1, sub_8bit)))>,
|
|
Requires<[In64BitMode]>;
|
|
|
|
|
|
// sext_inreg patterns
|
|
def : Pat<(sext_inreg GR32:$src, i16),
|
|
(MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
|
|
def : Pat<(sext_inreg GR32:$src, i8),
|
|
(MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
|
|
GR32_ABCD)),
|
|
sub_8bit))>,
|
|
Requires<[In32BitMode]>;
|
|
def : Pat<(sext_inreg GR16:$src, i8),
|
|
(MOVSX16rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
|
|
GR16_ABCD)),
|
|
sub_8bit))>,
|
|
Requires<[In32BitMode]>;
|
|
|
|
def : Pat<(sext_inreg GR64:$src, i32),
|
|
(MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
|
|
def : Pat<(sext_inreg GR64:$src, i16),
|
|
(MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
|
|
def : Pat<(sext_inreg GR64:$src, i8),
|
|
(MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
|
|
def : Pat<(sext_inreg GR32:$src, i8),
|
|
(MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
|
|
Requires<[In64BitMode]>;
|
|
def : Pat<(sext_inreg GR16:$src, i8),
|
|
(MOVSX16rr8 (i8 (EXTRACT_SUBREG GR16:$src, sub_8bit)))>,
|
|
Requires<[In64BitMode]>;
|
|
|
|
|
|
// trunc patterns
|
|
def : Pat<(i16 (trunc GR32:$src)),
|
|
(EXTRACT_SUBREG GR32:$src, sub_16bit)>;
|
|
def : Pat<(i8 (trunc GR32:$src)),
|
|
(EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
|
|
sub_8bit)>,
|
|
Requires<[In32BitMode]>;
|
|
def : Pat<(i8 (trunc GR16:$src)),
|
|
(EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
|
|
sub_8bit)>,
|
|
Requires<[In32BitMode]>;
|
|
def : Pat<(i32 (trunc GR64:$src)),
|
|
(EXTRACT_SUBREG GR64:$src, sub_32bit)>;
|
|
def : Pat<(i16 (trunc GR64:$src)),
|
|
(EXTRACT_SUBREG GR64:$src, sub_16bit)>;
|
|
def : Pat<(i8 (trunc GR64:$src)),
|
|
(EXTRACT_SUBREG GR64:$src, sub_8bit)>;
|
|
def : Pat<(i8 (trunc GR32:$src)),
|
|
(EXTRACT_SUBREG GR32:$src, sub_8bit)>,
|
|
Requires<[In64BitMode]>;
|
|
def : Pat<(i8 (trunc GR16:$src)),
|
|
(EXTRACT_SUBREG GR16:$src, sub_8bit)>,
|
|
Requires<[In64BitMode]>;
|
|
|
|
// h-register tricks
|
|
def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
|
|
(EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
|
|
sub_8bit_hi)>,
|
|
Requires<[In32BitMode]>;
|
|
def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
|
|
(EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
|
|
sub_8bit_hi)>,
|
|
Requires<[In32BitMode]>;
|
|
def : Pat<(srl GR16:$src, (i8 8)),
|
|
(EXTRACT_SUBREG
|
|
(MOVZX32rr8
|
|
(EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
|
|
sub_8bit_hi)),
|
|
sub_16bit)>,
|
|
Requires<[In32BitMode]>;
|
|
def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
|
|
(MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
|
|
GR16_ABCD)),
|
|
sub_8bit_hi))>,
|
|
Requires<[In32BitMode]>;
|
|
def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
|
|
(MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
|
|
GR16_ABCD)),
|
|
sub_8bit_hi))>,
|
|
Requires<[In32BitMode]>;
|
|
def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
|
|
(MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
|
|
GR32_ABCD)),
|
|
sub_8bit_hi))>,
|
|
Requires<[In32BitMode]>;
|
|
def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
|
|
(MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
|
|
GR32_ABCD)),
|
|
sub_8bit_hi))>,
|
|
Requires<[In32BitMode]>;
|
|
|
|
// h-register tricks.
|
|
// For now, be conservative on x86-64 and use an h-register extract only if the
|
|
// value is immediately zero-extended or stored, which are somewhat common
|
|
// cases. This uses a bunch of code to prevent a register requiring a REX prefix
|
|
// from being allocated in the same instruction as the h register, as there's
|
|
// currently no way to describe this requirement to the register allocator.
|
|
|
|
// h-register extract and zero-extend.
|
|
def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
|
|
(SUBREG_TO_REG
|
|
(i64 0),
|
|
(MOVZX32_NOREXrr8
|
|
(EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
|
|
sub_8bit_hi)),
|
|
sub_32bit)>;
|
|
def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
|
|
(MOVZX32_NOREXrr8
|
|
(EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
|
|
sub_8bit_hi))>,
|
|
Requires<[In64BitMode]>;
|
|
def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
|
|
(MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
|
|
GR32_ABCD)),
|
|
sub_8bit_hi))>,
|
|
Requires<[In64BitMode]>;
|
|
def : Pat<(srl GR16:$src, (i8 8)),
|
|
(EXTRACT_SUBREG
|
|
(MOVZX32_NOREXrr8
|
|
(EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
|
|
sub_8bit_hi)),
|
|
sub_16bit)>,
|
|
Requires<[In64BitMode]>;
|
|
def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
|
|
(MOVZX32_NOREXrr8
|
|
(EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
|
|
sub_8bit_hi))>,
|
|
Requires<[In64BitMode]>;
|
|
def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
|
|
(MOVZX32_NOREXrr8
|
|
(EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
|
|
sub_8bit_hi))>,
|
|
Requires<[In64BitMode]>;
|
|
def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
|
|
(SUBREG_TO_REG
|
|
(i64 0),
|
|
(MOVZX32_NOREXrr8
|
|
(EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
|
|
sub_8bit_hi)),
|
|
sub_32bit)>;
|
|
def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
|
|
(SUBREG_TO_REG
|
|
(i64 0),
|
|
(MOVZX32_NOREXrr8
|
|
(EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
|
|
sub_8bit_hi)),
|
|
sub_32bit)>;
|
|
|
|
// h-register extract and store.
|
|
def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
|
|
(MOV8mr_NOREX
|
|
addr:$dst,
|
|
(EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
|
|
sub_8bit_hi))>;
|
|
def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
|
|
(MOV8mr_NOREX
|
|
addr:$dst,
|
|
(EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
|
|
sub_8bit_hi))>,
|
|
Requires<[In64BitMode]>;
|
|
def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
|
|
(MOV8mr_NOREX
|
|
addr:$dst,
|
|
(EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
|
|
sub_8bit_hi))>,
|
|
Requires<[In64BitMode]>;
|
|
|
|
|
|
// (shl x, 1) ==> (add x, x)
|
|
def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr GR8 :$src1, GR8 :$src1)>;
|
|
def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
|
|
def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
|
|
def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
|
|
|
|
// (shl x (and y, 31)) ==> (shl x, y)
|
|
def : Pat<(shl GR8:$src1, (and CL, 31)),
|
|
(SHL8rCL GR8:$src1)>;
|
|
def : Pat<(shl GR16:$src1, (and CL, 31)),
|
|
(SHL16rCL GR16:$src1)>;
|
|
def : Pat<(shl GR32:$src1, (and CL, 31)),
|
|
(SHL32rCL GR32:$src1)>;
|
|
def : Pat<(store (shl (loadi8 addr:$dst), (and CL, 31)), addr:$dst),
|
|
(SHL8mCL addr:$dst)>;
|
|
def : Pat<(store (shl (loadi16 addr:$dst), (and CL, 31)), addr:$dst),
|
|
(SHL16mCL addr:$dst)>;
|
|
def : Pat<(store (shl (loadi32 addr:$dst), (and CL, 31)), addr:$dst),
|
|
(SHL32mCL addr:$dst)>;
|
|
|
|
def : Pat<(srl GR8:$src1, (and CL, 31)),
|
|
(SHR8rCL GR8:$src1)>;
|
|
def : Pat<(srl GR16:$src1, (and CL, 31)),
|
|
(SHR16rCL GR16:$src1)>;
|
|
def : Pat<(srl GR32:$src1, (and CL, 31)),
|
|
(SHR32rCL GR32:$src1)>;
|
|
def : Pat<(store (srl (loadi8 addr:$dst), (and CL, 31)), addr:$dst),
|
|
(SHR8mCL addr:$dst)>;
|
|
def : Pat<(store (srl (loadi16 addr:$dst), (and CL, 31)), addr:$dst),
|
|
(SHR16mCL addr:$dst)>;
|
|
def : Pat<(store (srl (loadi32 addr:$dst), (and CL, 31)), addr:$dst),
|
|
(SHR32mCL addr:$dst)>;
|
|
|
|
def : Pat<(sra GR8:$src1, (and CL, 31)),
|
|
(SAR8rCL GR8:$src1)>;
|
|
def : Pat<(sra GR16:$src1, (and CL, 31)),
|
|
(SAR16rCL GR16:$src1)>;
|
|
def : Pat<(sra GR32:$src1, (and CL, 31)),
|
|
(SAR32rCL GR32:$src1)>;
|
|
def : Pat<(store (sra (loadi8 addr:$dst), (and CL, 31)), addr:$dst),
|
|
(SAR8mCL addr:$dst)>;
|
|
def : Pat<(store (sra (loadi16 addr:$dst), (and CL, 31)), addr:$dst),
|
|
(SAR16mCL addr:$dst)>;
|
|
def : Pat<(store (sra (loadi32 addr:$dst), (and CL, 31)), addr:$dst),
|
|
(SAR32mCL addr:$dst)>;
|
|
|
|
// (shl x (and y, 63)) ==> (shl x, y)
|
|
def : Pat<(shl GR64:$src1, (and CL, 63)),
|
|
(SHL64rCL GR64:$src1)>;
|
|
def : Pat<(store (shl (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
|
|
(SHL64mCL addr:$dst)>;
|
|
|
|
def : Pat<(srl GR64:$src1, (and CL, 63)),
|
|
(SHR64rCL GR64:$src1)>;
|
|
def : Pat<(store (srl (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
|
|
(SHR64mCL addr:$dst)>;
|
|
|
|
def : Pat<(sra GR64:$src1, (and CL, 63)),
|
|
(SAR64rCL GR64:$src1)>;
|
|
def : Pat<(store (sra (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
|
|
(SAR64mCL addr:$dst)>;
|
|
|
|
|
|
// (anyext (setcc_carry)) -> (setcc_carry)
|
|
def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
|
|
(SETB_C16r)>;
|
|
def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
|
|
(SETB_C32r)>;
|
|
def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
|
|
(SETB_C32r)>;
|
|
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// EFLAGS-defining Patterns
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// add reg, reg
|
|
def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr GR8 :$src1, GR8 :$src2)>;
|
|
def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
|
|
def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
|
|
|
|
// add reg, mem
|
|
def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
|
|
(ADD8rm GR8:$src1, addr:$src2)>;
|
|
def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
|
|
(ADD16rm GR16:$src1, addr:$src2)>;
|
|
def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
|
|
(ADD32rm GR32:$src1, addr:$src2)>;
|
|
|
|
// add reg, imm
|
|
def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri GR8:$src1 , imm:$src2)>;
|
|
def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
|
|
def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
|
|
def : Pat<(add GR16:$src1, i16immSExt8:$src2),
|
|
(ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
|
|
def : Pat<(add GR32:$src1, i32immSExt8:$src2),
|
|
(ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
|
|
|
|
// sub reg, reg
|
|
def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr GR8 :$src1, GR8 :$src2)>;
|
|
def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
|
|
def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
|
|
|
|
// sub reg, mem
|
|
def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
|
|
(SUB8rm GR8:$src1, addr:$src2)>;
|
|
def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
|
|
(SUB16rm GR16:$src1, addr:$src2)>;
|
|
def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
|
|
(SUB32rm GR32:$src1, addr:$src2)>;
|
|
|
|
// sub reg, imm
|
|
def : Pat<(sub GR8:$src1, imm:$src2),
|
|
(SUB8ri GR8:$src1, imm:$src2)>;
|
|
def : Pat<(sub GR16:$src1, imm:$src2),
|
|
(SUB16ri GR16:$src1, imm:$src2)>;
|
|
def : Pat<(sub GR32:$src1, imm:$src2),
|
|
(SUB32ri GR32:$src1, imm:$src2)>;
|
|
def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
|
|
(SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
|
|
def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
|
|
(SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
|
|
|
|
// mul reg, reg
|
|
def : Pat<(mul GR16:$src1, GR16:$src2),
|
|
(IMUL16rr GR16:$src1, GR16:$src2)>;
|
|
def : Pat<(mul GR32:$src1, GR32:$src2),
|
|
(IMUL32rr GR32:$src1, GR32:$src2)>;
|
|
|
|
// mul reg, mem
|
|
def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
|
|
(IMUL16rm GR16:$src1, addr:$src2)>;
|
|
def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
|
|
(IMUL32rm GR32:$src1, addr:$src2)>;
|
|
|
|
// mul reg, imm
|
|
def : Pat<(mul GR16:$src1, imm:$src2),
|
|
(IMUL16rri GR16:$src1, imm:$src2)>;
|
|
def : Pat<(mul GR32:$src1, imm:$src2),
|
|
(IMUL32rri GR32:$src1, imm:$src2)>;
|
|
def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
|
|
(IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
|
|
def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
|
|
(IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
|
|
|
|
// reg = mul mem, imm
|
|
def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
|
|
(IMUL16rmi addr:$src1, imm:$src2)>;
|
|
def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
|
|
(IMUL32rmi addr:$src1, imm:$src2)>;
|
|
def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
|
|
(IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
|
|
def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
|
|
(IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
|
|
|
|
// Optimize multiply by 2 with EFLAGS result.
|
|
let AddedComplexity = 2 in {
|
|
def : Pat<(X86smul_flag GR16:$src1, 2), (ADD16rr GR16:$src1, GR16:$src1)>;
|
|
def : Pat<(X86smul_flag GR32:$src1, 2), (ADD32rr GR32:$src1, GR32:$src1)>;
|
|
}
|
|
|
|
// Patterns for nodes that do not produce flags, for instructions that do.
|
|
|
|
// addition
|
|
def : Pat<(add GR64:$src1, GR64:$src2),
|
|
(ADD64rr GR64:$src1, GR64:$src2)>;
|
|
def : Pat<(add GR64:$src1, i64immSExt8:$src2),
|
|
(ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
|
|
def : Pat<(add GR64:$src1, i64immSExt32:$src2),
|
|
(ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
|
|
def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
|
|
(ADD64rm GR64:$src1, addr:$src2)>;
|
|
|
|
// subtraction
|
|
def : Pat<(sub GR64:$src1, GR64:$src2),
|
|
(SUB64rr GR64:$src1, GR64:$src2)>;
|
|
def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
|
|
(SUB64rm GR64:$src1, addr:$src2)>;
|
|
def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
|
|
(SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
|
|
def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
|
|
(SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
|
|
|
|
// Multiply
|
|
def : Pat<(mul GR64:$src1, GR64:$src2),
|
|
(IMUL64rr GR64:$src1, GR64:$src2)>;
|
|
def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
|
|
(IMUL64rm GR64:$src1, addr:$src2)>;
|
|
def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
|
|
(IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
|
|
def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
|
|
(IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
|
|
def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
|
|
(IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
|
|
def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
|
|
(IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
|
|
|
|
// Increment reg.
|
|
def : Pat<(add GR8 :$src, 1), (INC8r GR8 :$src)>;
|
|
def : Pat<(add GR16:$src, 1), (INC16r GR16:$src)>, Requires<[In32BitMode]>;
|
|
def : Pat<(add GR16:$src, 1), (INC64_16r GR16:$src)>, Requires<[In64BitMode]>;
|
|
def : Pat<(add GR32:$src, 1), (INC32r GR32:$src)>, Requires<[In32BitMode]>;
|
|
def : Pat<(add GR32:$src, 1), (INC64_32r GR32:$src)>, Requires<[In64BitMode]>;
|
|
def : Pat<(add GR64:$src, 1), (INC64r GR64:$src)>;
|
|
|
|
// Decrement reg.
|
|
def : Pat<(add GR8 :$src, -1), (DEC8r GR8 :$src)>;
|
|
def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>, Requires<[In32BitMode]>;
|
|
def : Pat<(add GR16:$src, -1), (DEC64_16r GR16:$src)>, Requires<[In64BitMode]>;
|
|
def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>, Requires<[In32BitMode]>;
|
|
def : Pat<(add GR32:$src, -1), (DEC64_32r GR32:$src)>, Requires<[In64BitMode]>;
|
|
def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>;
|
|
|
|
// or reg/reg.
|
|
def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr GR8 :$src1, GR8 :$src2)>;
|
|
def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
|
|
def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
|
|
def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
|
|
|
|
// or reg/mem
|
|
def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
|
|
(OR8rm GR8:$src1, addr:$src2)>;
|
|
def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
|
|
(OR16rm GR16:$src1, addr:$src2)>;
|
|
def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
|
|
(OR32rm GR32:$src1, addr:$src2)>;
|
|
def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
|
|
(OR64rm GR64:$src1, addr:$src2)>;
|
|
|
|
// or reg/imm
|
|
def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri GR8 :$src1, imm:$src2)>;
|
|
def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
|
|
def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
|
|
def : Pat<(or GR16:$src1, i16immSExt8:$src2),
|
|
(OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
|
|
def : Pat<(or GR32:$src1, i32immSExt8:$src2),
|
|
(OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
|
|
def : Pat<(or GR64:$src1, i64immSExt8:$src2),
|
|
(OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
|
|
def : Pat<(or GR64:$src1, i64immSExt32:$src2),
|
|
(OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
|
|
|
|
// xor reg/reg
|
|
def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr GR8 :$src1, GR8 :$src2)>;
|
|
def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
|
|
def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
|
|
def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
|
|
|
|
// xor reg/mem
|
|
def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
|
|
(XOR8rm GR8:$src1, addr:$src2)>;
|
|
def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
|
|
(XOR16rm GR16:$src1, addr:$src2)>;
|
|
def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
|
|
(XOR32rm GR32:$src1, addr:$src2)>;
|
|
def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
|
|
(XOR64rm GR64:$src1, addr:$src2)>;
|
|
|
|
// xor reg/imm
|
|
def : Pat<(xor GR8:$src1, imm:$src2),
|
|
(XOR8ri GR8:$src1, imm:$src2)>;
|
|
def : Pat<(xor GR16:$src1, imm:$src2),
|
|
(XOR16ri GR16:$src1, imm:$src2)>;
|
|
def : Pat<(xor GR32:$src1, imm:$src2),
|
|
(XOR32ri GR32:$src1, imm:$src2)>;
|
|
def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
|
|
(XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
|
|
def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
|
|
(XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
|
|
def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
|
|
(XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
|
|
def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
|
|
(XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
|
|
|
|
// and reg/reg
|
|
def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr GR8 :$src1, GR8 :$src2)>;
|
|
def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
|
|
def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
|
|
def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
|
|
|
|
// and reg/mem
|
|
def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
|
|
(AND8rm GR8:$src1, addr:$src2)>;
|
|
def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
|
|
(AND16rm GR16:$src1, addr:$src2)>;
|
|
def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
|
|
(AND32rm GR32:$src1, addr:$src2)>;
|
|
def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
|
|
(AND64rm GR64:$src1, addr:$src2)>;
|
|
|
|
// and reg/imm
|
|
def : Pat<(and GR8:$src1, imm:$src2),
|
|
(AND8ri GR8:$src1, imm:$src2)>;
|
|
def : Pat<(and GR16:$src1, imm:$src2),
|
|
(AND16ri GR16:$src1, imm:$src2)>;
|
|
def : Pat<(and GR32:$src1, imm:$src2),
|
|
(AND32ri GR32:$src1, imm:$src2)>;
|
|
def : Pat<(and GR16:$src1, i16immSExt8:$src2),
|
|
(AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
|
|
def : Pat<(and GR32:$src1, i32immSExt8:$src2),
|
|
(AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
|
|
def : Pat<(and GR64:$src1, i64immSExt8:$src2),
|
|
(AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
|
|
def : Pat<(and GR64:$src1, i64immSExt32:$src2),
|
|
(AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
|