llvm-6502/lib/Target/R600/SIISelLowering.cpp
2014-04-03 20:19:27 +00:00

1513 lines
53 KiB
C++

//===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief Custom DAG lowering for SI
//
//===----------------------------------------------------------------------===//
#include "SIISelLowering.h"
#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "AMDILIntrinsicInfo.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "SIRegisterInfo.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/IR/Function.h"
using namespace llvm;
SITargetLowering::SITargetLowering(TargetMachine &TM) :
AMDGPUTargetLowering(TM) {
addRegisterClass(MVT::i1, &AMDGPU::SReg_64RegClass);
addRegisterClass(MVT::i64, &AMDGPU::VSrc_64RegClass);
addRegisterClass(MVT::v32i8, &AMDGPU::SReg_256RegClass);
addRegisterClass(MVT::v64i8, &AMDGPU::SReg_512RegClass);
addRegisterClass(MVT::i32, &AMDGPU::VSrc_32RegClass);
addRegisterClass(MVT::f32, &AMDGPU::VSrc_32RegClass);
addRegisterClass(MVT::f64, &AMDGPU::VSrc_64RegClass);
addRegisterClass(MVT::v2i32, &AMDGPU::VSrc_64RegClass);
addRegisterClass(MVT::v2f32, &AMDGPU::VSrc_64RegClass);
addRegisterClass(MVT::v4i32, &AMDGPU::VReg_128RegClass);
addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
addRegisterClass(MVT::i128, &AMDGPU::SReg_128RegClass);
addRegisterClass(MVT::v8i32, &AMDGPU::VReg_256RegClass);
addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
addRegisterClass(MVT::v16i32, &AMDGPU::VReg_512RegClass);
addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
computeRegisterProperties();
// Condition Codes
setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
setCondCodeAction(ISD::SETUGE, MVT::f32, Expand);
setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
setCondCodeAction(ISD::SETULE, MVT::f32, Expand);
setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
setCondCodeAction(ISD::SETUGE, MVT::f64, Expand);
setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
setCondCodeAction(ISD::SETULE, MVT::f64, Expand);
setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
setOperationAction(ISD::ADD, MVT::i32, Legal);
setOperationAction(ISD::ADDC, MVT::i32, Legal);
setOperationAction(ISD::ADDE, MVT::i32, Legal);
setOperationAction(ISD::BITCAST, MVT::i128, Legal);
// We need to custom lower vector stores from local memory
setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
setOperationAction(ISD::STORE, MVT::v8i32, Custom);
setOperationAction(ISD::STORE, MVT::v16i32, Custom);
// We need to custom lower loads/stores from private memory
setOperationAction(ISD::LOAD, MVT::i32, Custom);
setOperationAction(ISD::LOAD, MVT::i64, Custom);
setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
setOperationAction(ISD::STORE, MVT::i1, Custom);
setOperationAction(ISD::STORE, MVT::i32, Custom);
setOperationAction(ISD::STORE, MVT::i64, Custom);
setOperationAction(ISD::STORE, MVT::i128, Custom);
setOperationAction(ISD::STORE, MVT::v2i32, Custom);
setOperationAction(ISD::STORE, MVT::v4i32, Custom);
setOperationAction(ISD::SELECT, MVT::i64, Custom);
setOperationAction(ISD::SELECT, MVT::f64, Promote);
AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::Other, Expand);
setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
setOperationAction(ISD::ANY_EXTEND, MVT::i64, Custom);
setOperationAction(ISD::SIGN_EXTEND, MVT::i64, Custom);
setOperationAction(ISD::ZERO_EXTEND, MVT::i64, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v16i8, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Expand);
setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Custom);
setLoadExtAction(ISD::SEXTLOAD, MVT::i16, Custom);
setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Expand);
setLoadExtAction(ISD::ZEXTLOAD, MVT::i8, Custom);
setLoadExtAction(ISD::ZEXTLOAD, MVT::i16, Custom);
setLoadExtAction(ISD::SEXTLOAD, MVT::v8i16, Expand);
setLoadExtAction(ISD::SEXTLOAD, MVT::v16i16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::i8, Custom);
setLoadExtAction(ISD::EXTLOAD, MVT::i16, Custom);
setLoadExtAction(ISD::EXTLOAD, MVT::i32, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
setTruncStoreAction(MVT::i32, MVT::i8, Custom);
setTruncStoreAction(MVT::i32, MVT::i16, Custom);
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
setTruncStoreAction(MVT::i64, MVT::i32, Expand);
setTruncStoreAction(MVT::i128, MVT::i64, Expand);
setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
// We only support LOAD/STORE and vector manipulation ops for vectors
// with > 4 elements.
MVT VecTypes[] = {
MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32
};
const size_t NumVecTypes = array_lengthof(VecTypes);
for (unsigned Type = 0; Type < NumVecTypes; ++Type) {
for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
switch(Op) {
case ISD::LOAD:
case ISD::STORE:
case ISD::BUILD_VECTOR:
case ISD::BITCAST:
case ISD::EXTRACT_VECTOR_ELT:
case ISD::INSERT_VECTOR_ELT:
case ISD::CONCAT_VECTORS:
case ISD::INSERT_SUBVECTOR:
case ISD::EXTRACT_SUBVECTOR:
break;
default:
setOperationAction(Op, VecTypes[Type], Expand);
break;
}
}
}
for (int I = MVT::v1f64; I <= MVT::v8f64; ++I) {
MVT::SimpleValueType VT = static_cast<MVT::SimpleValueType>(I);
setOperationAction(ISD::FTRUNC, VT, Expand);
setOperationAction(ISD::FCEIL, VT, Expand);
setOperationAction(ISD::FFLOOR, VT, Expand);
}
if (Subtarget->getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) {
setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
setOperationAction(ISD::FCEIL, MVT::f64, Legal);
setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
}
setTargetDAGCombine(ISD::SELECT_CC);
setTargetDAGCombine(ISD::SETCC);
setSchedulingPreference(Sched::RegPressure);
}
//===----------------------------------------------------------------------===//
// TargetLowering queries
//===----------------------------------------------------------------------===//
bool SITargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
unsigned AddrSpace,
bool *IsFast) const {
// XXX: This depends on the address space and also we may want to revist
// the alignment values we specify in the DataLayout.
if (!VT.isSimple() || VT == MVT::Other)
return false;
return VT.bitsGT(MVT::i32);
}
bool SITargetLowering::shouldSplitVectorType(EVT VT) const {
return VT.getScalarType().bitsLE(MVT::i16);
}
bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
Type *Ty) const {
const SIInstrInfo *TII =
static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
return TII->isInlineConstant(Imm);
}
SDValue SITargetLowering::LowerParameter(SelectionDAG &DAG, EVT VT, EVT MemVT,
SDLoc DL, SDValue Chain,
unsigned Offset) const {
MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
PointerType *PtrTy = PointerType::get(VT.getTypeForEVT(*DAG.getContext()),
AMDGPUAS::CONSTANT_ADDRESS);
SDValue BasePtr = DAG.getCopyFromReg(Chain, DL,
MRI.getLiveInVirtReg(AMDGPU::SGPR0_SGPR1), MVT::i64);
SDValue Ptr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
DAG.getConstant(Offset, MVT::i64));
return DAG.getExtLoad(ISD::SEXTLOAD, DL, VT, Chain, Ptr,
MachinePointerInfo(UndefValue::get(PtrTy)), MemVT,
false, false, MemVT.getSizeInBits() >> 3);
}
SDValue SITargetLowering::LowerFormalArguments(
SDValue Chain,
CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
SDLoc DL, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
MachineFunction &MF = DAG.getMachineFunction();
FunctionType *FType = MF.getFunction()->getFunctionType();
SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
assert(CallConv == CallingConv::C);
SmallVector<ISD::InputArg, 16> Splits;
uint32_t Skipped = 0;
for (unsigned i = 0, e = Ins.size(), PSInputNum = 0; i != e; ++i) {
const ISD::InputArg &Arg = Ins[i];
// First check if it's a PS input addr
if (Info->ShaderType == ShaderType::PIXEL && !Arg.Flags.isInReg() &&
!Arg.Flags.isByVal()) {
assert((PSInputNum <= 15) && "Too many PS inputs!");
if (!Arg.Used) {
// We can savely skip PS inputs
Skipped |= 1 << i;
++PSInputNum;
continue;
}
Info->PSInputAddr |= 1 << PSInputNum++;
}
// Second split vertices into their elements
if (Info->ShaderType != ShaderType::COMPUTE && Arg.VT.isVector()) {
ISD::InputArg NewArg = Arg;
NewArg.Flags.setSplit();
NewArg.VT = Arg.VT.getVectorElementType();
// We REALLY want the ORIGINAL number of vertex elements here, e.g. a
// three or five element vertex only needs three or five registers,
// NOT four or eigth.
Type *ParamType = FType->getParamType(Arg.OrigArgIndex);
unsigned NumElements = ParamType->getVectorNumElements();
for (unsigned j = 0; j != NumElements; ++j) {
Splits.push_back(NewArg);
NewArg.PartOffset += NewArg.VT.getStoreSize();
}
} else if (Info->ShaderType != ShaderType::COMPUTE) {
Splits.push_back(Arg);
}
}
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
getTargetMachine(), ArgLocs, *DAG.getContext());
// At least one interpolation mode must be enabled or else the GPU will hang.
if (Info->ShaderType == ShaderType::PIXEL && (Info->PSInputAddr & 0x7F) == 0) {
Info->PSInputAddr |= 1;
CCInfo.AllocateReg(AMDGPU::VGPR0);
CCInfo.AllocateReg(AMDGPU::VGPR1);
}
// The pointer to the list of arguments is stored in SGPR0, SGPR1
if (Info->ShaderType == ShaderType::COMPUTE) {
CCInfo.AllocateReg(AMDGPU::SGPR0);
CCInfo.AllocateReg(AMDGPU::SGPR1);
MF.addLiveIn(AMDGPU::SGPR0_SGPR1, &AMDGPU::SReg_64RegClass);
}
if (Info->ShaderType == ShaderType::COMPUTE) {
getOriginalFunctionArgs(DAG, DAG.getMachineFunction().getFunction(), Ins,
Splits);
}
AnalyzeFormalArguments(CCInfo, Splits);
for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
const ISD::InputArg &Arg = Ins[i];
if (Skipped & (1 << i)) {
InVals.push_back(DAG.getUNDEF(Arg.VT));
continue;
}
CCValAssign &VA = ArgLocs[ArgIdx++];
EVT VT = VA.getLocVT();
if (VA.isMemLoc()) {
VT = Ins[i].VT;
EVT MemVT = Splits[i].VT;
// The first 36 bytes of the input buffer contains information about
// thread group and global sizes.
SDValue Arg = LowerParameter(DAG, VT, MemVT, DL, DAG.getRoot(),
36 + VA.getLocMemOffset());
InVals.push_back(Arg);
continue;
}
assert(VA.isRegLoc() && "Parameter must be in a register!");
unsigned Reg = VA.getLocReg();
if (VT == MVT::i64) {
// For now assume it is a pointer
Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0,
&AMDGPU::SReg_64RegClass);
Reg = MF.addLiveIn(Reg, &AMDGPU::SReg_64RegClass);
InVals.push_back(DAG.getCopyFromReg(Chain, DL, Reg, VT));
continue;
}
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
Reg = MF.addLiveIn(Reg, RC);
SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
if (Arg.VT.isVector()) {
// Build a vector from the registers
Type *ParamType = FType->getParamType(Arg.OrigArgIndex);
unsigned NumElements = ParamType->getVectorNumElements();
SmallVector<SDValue, 4> Regs;
Regs.push_back(Val);
for (unsigned j = 1; j != NumElements; ++j) {
Reg = ArgLocs[ArgIdx++].getLocReg();
Reg = MF.addLiveIn(Reg, RC);
Regs.push_back(DAG.getCopyFromReg(Chain, DL, Reg, VT));
}
// Fill up the missing vector elements
NumElements = Arg.VT.getVectorNumElements() - NumElements;
for (unsigned j = 0; j != NumElements; ++j)
Regs.push_back(DAG.getUNDEF(VT));
InVals.push_back(DAG.getNode(ISD::BUILD_VECTOR, DL, Arg.VT,
Regs.data(), Regs.size()));
continue;
}
InVals.push_back(Val);
}
return Chain;
}
MachineBasicBlock * SITargetLowering::EmitInstrWithCustomInserter(
MachineInstr * MI, MachineBasicBlock * BB) const {
MachineBasicBlock::iterator I = *MI;
switch (MI->getOpcode()) {
default:
return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
case AMDGPU::BRANCH: return BB;
case AMDGPU::SI_ADDR64_RSRC: {
const SIInstrInfo *TII =
static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
unsigned SuperReg = MI->getOperand(0).getReg();
unsigned SubRegLo = MRI.createVirtualRegister(&AMDGPU::SGPR_64RegClass);
unsigned SubRegHi = MRI.createVirtualRegister(&AMDGPU::SGPR_64RegClass);
unsigned SubRegHiHi = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
unsigned SubRegHiLo = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::S_MOV_B64), SubRegLo)
.addOperand(MI->getOperand(1));
BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::S_MOV_B32), SubRegHiLo)
.addImm(0);
BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::S_MOV_B32), SubRegHiHi)
.addImm(AMDGPU::RSRC_DATA_FORMAT >> 32);
BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::REG_SEQUENCE), SubRegHi)
.addReg(SubRegHiLo)
.addImm(AMDGPU::sub0)
.addReg(SubRegHiHi)
.addImm(AMDGPU::sub1);
BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::REG_SEQUENCE), SuperReg)
.addReg(SubRegLo)
.addImm(AMDGPU::sub0_sub1)
.addReg(SubRegHi)
.addImm(AMDGPU::sub2_sub3);
MI->eraseFromParent();
break;
}
case AMDGPU::V_SUB_F64: {
const SIInstrInfo *TII =
static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::V_ADD_F64),
MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addReg(MI->getOperand(2).getReg())
.addImm(0) /* src2 */
.addImm(0) /* ABS */
.addImm(0) /* CLAMP */
.addImm(0) /* OMOD */
.addImm(2); /* NEG */
MI->eraseFromParent();
break;
}
case AMDGPU::SI_RegisterStorePseudo: {
MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
const SIInstrInfo *TII =
static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
unsigned Reg = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
MachineInstrBuilder MIB =
BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::SI_RegisterStore),
Reg);
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
MIB.addOperand(MI->getOperand(i));
MI->eraseFromParent();
}
}
return BB;
}
EVT SITargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
if (!VT.isVector()) {
return MVT::i1;
}
return MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
}
MVT SITargetLowering::getScalarShiftAmountTy(EVT VT) const {
return MVT::i32;
}
bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
VT = VT.getScalarType();
if (!VT.isSimple())
return false;
switch (VT.getSimpleVT().SimpleTy) {
case MVT::f32:
return false; /* There is V_MAD_F32 for f32 */
case MVT::f64:
return true;
default:
break;
}
return false;
}
//===----------------------------------------------------------------------===//
// Custom DAG Lowering Operations
//===----------------------------------------------------------------------===//
SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
switch (Op.getOpcode()) {
default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
case ISD::BRCOND: return LowerBRCOND(Op, DAG);
case ISD::LOAD: {
LoadSDNode *Load = dyn_cast<LoadSDNode>(Op);
if (Op.getValueType().isVector() &&
(Load->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
Load->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS ||
(Load->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS &&
Op.getValueType().getVectorNumElements() > 4))) {
SDValue MergedValues[2] = {
SplitVectorLoad(Op, DAG),
Load->getChain()
};
return DAG.getMergeValues(MergedValues, 2, SDLoc(Op));
} else {
return LowerLOAD(Op, DAG);
}
}
case ISD::SELECT: return LowerSELECT(Op, DAG);
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
case ISD::SIGN_EXTEND: return LowerSIGN_EXTEND(Op, DAG);
case ISD::STORE: return LowerSTORE(Op, DAG);
case ISD::ANY_EXTEND: // Fall-through
case ISD::ZERO_EXTEND: return LowerZERO_EXTEND(Op, DAG);
case ISD::GlobalAddress: return LowerGlobalAddress(MFI, Op, DAG);
case ISD::INTRINSIC_WO_CHAIN: {
unsigned IntrinsicID =
cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
EVT VT = Op.getValueType();
SDLoc DL(Op);
//XXX: Hardcoded we only use two to store the pointer to the parameters.
unsigned NumUserSGPRs = 2;
switch (IntrinsicID) {
default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
case Intrinsic::r600_read_ngroups_x:
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 0);
case Intrinsic::r600_read_ngroups_y:
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 4);
case Intrinsic::r600_read_ngroups_z:
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 8);
case Intrinsic::r600_read_global_size_x:
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 12);
case Intrinsic::r600_read_global_size_y:
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 16);
case Intrinsic::r600_read_global_size_z:
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 20);
case Intrinsic::r600_read_local_size_x:
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 24);
case Intrinsic::r600_read_local_size_y:
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 28);
case Intrinsic::r600_read_local_size_z:
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 32);
case Intrinsic::r600_read_tgid_x:
return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
AMDGPU::SReg_32RegClass.getRegister(NumUserSGPRs + 0), VT);
case Intrinsic::r600_read_tgid_y:
return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
AMDGPU::SReg_32RegClass.getRegister(NumUserSGPRs + 1), VT);
case Intrinsic::r600_read_tgid_z:
return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
AMDGPU::SReg_32RegClass.getRegister(NumUserSGPRs + 2), VT);
case Intrinsic::r600_read_tidig_x:
return CreateLiveInRegister(DAG, &AMDGPU::VReg_32RegClass,
AMDGPU::VGPR0, VT);
case Intrinsic::r600_read_tidig_y:
return CreateLiveInRegister(DAG, &AMDGPU::VReg_32RegClass,
AMDGPU::VGPR1, VT);
case Intrinsic::r600_read_tidig_z:
return CreateLiveInRegister(DAG, &AMDGPU::VReg_32RegClass,
AMDGPU::VGPR2, VT);
case AMDGPUIntrinsic::SI_load_const: {
SDValue Ops [] = {
ResourceDescriptorToi128(Op.getOperand(1), DAG),
Op.getOperand(2)
};
MachineMemOperand *MMO = MF.getMachineMemOperand(
MachinePointerInfo(),
MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant,
VT.getSizeInBits() / 8, 4);
return DAG.getMemIntrinsicNode(AMDGPUISD::LOAD_CONSTANT, DL,
Op->getVTList(), Ops, 2, VT, MMO);
}
case AMDGPUIntrinsic::SI_sample:
return LowerSampleIntrinsic(AMDGPUISD::SAMPLE, Op, DAG);
case AMDGPUIntrinsic::SI_sampleb:
return LowerSampleIntrinsic(AMDGPUISD::SAMPLEB, Op, DAG);
case AMDGPUIntrinsic::SI_sampled:
return LowerSampleIntrinsic(AMDGPUISD::SAMPLED, Op, DAG);
case AMDGPUIntrinsic::SI_samplel:
return LowerSampleIntrinsic(AMDGPUISD::SAMPLEL, Op, DAG);
case AMDGPUIntrinsic::SI_vs_load_input:
return DAG.getNode(AMDGPUISD::LOAD_INPUT, DL, VT,
ResourceDescriptorToi128(Op.getOperand(1), DAG),
Op.getOperand(2),
Op.getOperand(3));
}
}
case ISD::INTRINSIC_VOID:
SDValue Chain = Op.getOperand(0);
unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
switch (IntrinsicID) {
case AMDGPUIntrinsic::SI_tbuffer_store: {
SDLoc DL(Op);
SDValue Ops [] = {
Chain,
ResourceDescriptorToi128(Op.getOperand(2), DAG),
Op.getOperand(3),
Op.getOperand(4),
Op.getOperand(5),
Op.getOperand(6),
Op.getOperand(7),
Op.getOperand(8),
Op.getOperand(9),
Op.getOperand(10),
Op.getOperand(11),
Op.getOperand(12),
Op.getOperand(13),
Op.getOperand(14)
};
EVT VT = Op.getOperand(3).getValueType();
MachineMemOperand *MMO = MF.getMachineMemOperand(
MachinePointerInfo(),
MachineMemOperand::MOStore,
VT.getSizeInBits() / 8, 4);
return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_STORE_FORMAT, DL,
Op->getVTList(), Ops,
sizeof(Ops)/sizeof(Ops[0]), VT, MMO);
}
default:
break;
}
}
return SDValue();
}
/// \brief Helper function for LowerBRCOND
static SDNode *findUser(SDValue Value, unsigned Opcode) {
SDNode *Parent = Value.getNode();
for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
I != E; ++I) {
if (I.getUse().get() != Value)
continue;
if (I->getOpcode() == Opcode)
return *I;
}
return 0;
}
/// This transforms the control flow intrinsics to get the branch destination as
/// last parameter, also switches branch target with BR if the need arise
SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
SelectionDAG &DAG) const {
SDLoc DL(BRCOND);
SDNode *Intr = BRCOND.getOperand(1).getNode();
SDValue Target = BRCOND.getOperand(2);
SDNode *BR = 0;
if (Intr->getOpcode() == ISD::SETCC) {
// As long as we negate the condition everything is fine
SDNode *SetCC = Intr;
assert(SetCC->getConstantOperandVal(1) == 1);
assert(cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
ISD::SETNE);
Intr = SetCC->getOperand(0).getNode();
} else {
// Get the target from BR if we don't negate the condition
BR = findUser(BRCOND, ISD::BR);
Target = BR->getOperand(1);
}
assert(Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN);
// Build the result and
SmallVector<EVT, 4> Res;
for (unsigned i = 1, e = Intr->getNumValues(); i != e; ++i)
Res.push_back(Intr->getValueType(i));
// operands of the new intrinsic call
SmallVector<SDValue, 4> Ops;
Ops.push_back(BRCOND.getOperand(0));
for (unsigned i = 1, e = Intr->getNumOperands(); i != e; ++i)
Ops.push_back(Intr->getOperand(i));
Ops.push_back(Target);
// build the new intrinsic call
SDNode *Result = DAG.getNode(
Res.size() > 1 ? ISD::INTRINSIC_W_CHAIN : ISD::INTRINSIC_VOID, DL,
DAG.getVTList(Res.data(), Res.size()), Ops.data(), Ops.size()).getNode();
if (BR) {
// Give the branch instruction our target
SDValue Ops[] = {
BR->getOperand(0),
BRCOND.getOperand(2)
};
DAG.MorphNodeTo(BR, ISD::BR, BR->getVTList(), Ops, 2);
}
SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
// Copy the intrinsic results to registers
for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
if (!CopyToReg)
continue;
Chain = DAG.getCopyToReg(
Chain, DL,
CopyToReg->getOperand(1),
SDValue(Result, i - 1),
SDValue());
DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
}
// Remove the old intrinsic from the chain
DAG.ReplaceAllUsesOfValueWith(
SDValue(Intr, Intr->getNumValues() - 1),
Intr->getOperand(0));
return Chain;
}
SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
LoadSDNode *Load = cast<LoadSDNode>(Op);
SDValue Ret = AMDGPUTargetLowering::LowerLOAD(Op, DAG);
SDValue MergedValues[2];
MergedValues[1] = Load->getChain();
if (Ret.getNode()) {
MergedValues[0] = Ret;
return DAG.getMergeValues(MergedValues, 2, DL);
}
if (Load->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) {
return SDValue();
}
EVT MemVT = Load->getMemoryVT();
assert(!MemVT.isVector() && "Private loads should be scalarized");
assert(!MemVT.isFloatingPoint() && "FP loads should be promoted to int");
SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Load->getBasePtr(),
DAG.getConstant(2, MVT::i32));
Ret = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, MVT::i32,
Load->getChain(), Ptr,
DAG.getTargetConstant(0, MVT::i32),
Op.getOperand(2));
if (MemVT.getSizeInBits() == 64) {
SDValue IncPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, Ptr,
DAG.getConstant(1, MVT::i32));
SDValue LoadUpper = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, MVT::i32,
Load->getChain(), IncPtr,
DAG.getTargetConstant(0, MVT::i32),
Op.getOperand(2));
Ret = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ret, LoadUpper);
}
MergedValues[0] = Ret;
return DAG.getMergeValues(MergedValues, 2, DL);
}
SDValue SITargetLowering::ResourceDescriptorToi128(SDValue Op,
SelectionDAG &DAG) const {
if (Op.getValueType() == MVT::i128) {
return Op;
}
assert(Op.getOpcode() == ISD::UNDEF);
return DAG.getNode(ISD::BUILD_PAIR, SDLoc(Op), MVT::i128,
DAG.getConstant(0, MVT::i64),
DAG.getConstant(0, MVT::i64));
}
SDValue SITargetLowering::LowerSampleIntrinsic(unsigned Opcode,
const SDValue &Op,
SelectionDAG &DAG) const {
return DAG.getNode(Opcode, SDLoc(Op), Op.getValueType(), Op.getOperand(1),
Op.getOperand(2),
ResourceDescriptorToi128(Op.getOperand(3), DAG),
Op.getOperand(4));
}
SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
if (Op.getValueType() != MVT::i64)
return SDValue();
SDLoc DL(Op);
SDValue Cond = Op.getOperand(0);
SDValue Zero = DAG.getConstant(0, MVT::i32);
SDValue One = DAG.getConstant(1, MVT::i32);
SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i32, Lo, Hi);
return DAG.getNode(ISD::BITCAST, DL, MVT::i64, Res);
}
SDValue SITargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDValue True = Op.getOperand(2);
SDValue False = Op.getOperand(3);
SDValue CC = Op.getOperand(4);
EVT VT = Op.getValueType();
SDLoc DL(Op);
// Possible Min/Max pattern
SDValue MinMax = LowerMinMax(Op, DAG);
if (MinMax.getNode()) {
return MinMax;
}
SDValue Cond = DAG.getNode(ISD::SETCC, DL, MVT::i1, LHS, RHS, CC);
return DAG.getNode(ISD::SELECT, DL, VT, Cond, True, False);
}
SDValue SITargetLowering::LowerSIGN_EXTEND(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
SDLoc DL(Op);
if (VT != MVT::i64) {
return SDValue();
}
SDValue Hi = DAG.getNode(ISD::SRA, DL, MVT::i32, Op.getOperand(0),
DAG.getConstant(31, MVT::i32));
return DAG.getNode(ISD::BUILD_PAIR, DL, VT, Op.getOperand(0), Hi);
}
SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
StoreSDNode *Store = cast<StoreSDNode>(Op);
EVT VT = Store->getMemoryVT();
SDValue Ret = AMDGPUTargetLowering::LowerSTORE(Op, DAG);
if (Ret.getNode())
return Ret;
if (VT.isVector() && VT.getVectorNumElements() >= 8)
return SplitVectorStore(Op, DAG);
if (VT == MVT::i1)
return DAG.getTruncStore(Store->getChain(), DL,
DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
Store->getBasePtr(), MVT::i1, Store->getMemOperand());
if (Store->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS)
return SDValue();
SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Store->getBasePtr(),
DAG.getConstant(2, MVT::i32));
SDValue Chain = Store->getChain();
SmallVector<SDValue, 8> Values;
if (Store->isTruncatingStore()) {
unsigned Mask = 0;
if (Store->getMemoryVT() == MVT::i8) {
Mask = 0xff;
} else if (Store->getMemoryVT() == MVT::i16) {
Mask = 0xffff;
}
SDValue Dst = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, MVT::i32,
Chain, Store->getBasePtr(),
DAG.getConstant(0, MVT::i32));
SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, Store->getBasePtr(),
DAG.getConstant(0x3, MVT::i32));
SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
DAG.getConstant(3, MVT::i32));
SDValue MaskedValue = DAG.getNode(ISD::AND, DL, MVT::i32, Store->getValue(),
DAG.getConstant(Mask, MVT::i32));
SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32,
MaskedValue, ShiftAmt);
SDValue RotrAmt = DAG.getNode(ISD::SUB, DL, MVT::i32,
DAG.getConstant(32, MVT::i32), ShiftAmt);
SDValue DstMask = DAG.getNode(ISD::ROTR, DL, MVT::i32,
DAG.getConstant(Mask, MVT::i32),
RotrAmt);
Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask);
Dst = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue);
Values.push_back(Dst);
} else if (VT == MVT::i64) {
for (unsigned i = 0; i < 2; ++i) {
Values.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32,
Store->getValue(), DAG.getConstant(i, MVT::i32)));
}
} else if (VT == MVT::i128) {
for (unsigned i = 0; i < 2; ++i) {
for (unsigned j = 0; j < 2; ++j) {
Values.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32,
DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64,
Store->getValue(), DAG.getConstant(i, MVT::i32)),
DAG.getConstant(j, MVT::i32)));
}
}
} else {
Values.push_back(Store->getValue());
}
for (unsigned i = 0; i < Values.size(); ++i) {
SDValue PartPtr = DAG.getNode(ISD::ADD, DL, MVT::i32,
Ptr, DAG.getConstant(i, MVT::i32));
Chain = DAG.getNode(AMDGPUISD::REGISTER_STORE, DL, MVT::Other,
Chain, Values[i], PartPtr,
DAG.getTargetConstant(0, MVT::i32));
}
return Chain;
}
SDValue SITargetLowering::LowerZERO_EXTEND(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
SDLoc DL(Op);
if (VT != MVT::i64) {
return SDValue();
}
return DAG.getNode(ISD::BUILD_PAIR, DL, VT, Op.getOperand(0),
DAG.getConstant(0, MVT::i32));
}
//===----------------------------------------------------------------------===//
// Custom DAG optimizations
//===----------------------------------------------------------------------===//
SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
EVT VT = N->getValueType(0);
switch (N->getOpcode()) {
default: break;
case ISD::SELECT_CC: {
ConstantSDNode *True, *False;
// i1 selectcc(l, r, -1, 0, cc) -> i1 setcc(l, r, cc)
if ((True = dyn_cast<ConstantSDNode>(N->getOperand(2)))
&& (False = dyn_cast<ConstantSDNode>(N->getOperand(3)))
&& True->isAllOnesValue()
&& False->isNullValue()
&& VT == MVT::i1) {
return DAG.getNode(ISD::SETCC, DL, VT, N->getOperand(0),
N->getOperand(1), N->getOperand(4));
}
break;
}
case ISD::SETCC: {
SDValue Arg0 = N->getOperand(0);
SDValue Arg1 = N->getOperand(1);
SDValue CC = N->getOperand(2);
ConstantSDNode * C = NULL;
ISD::CondCode CCOp = dyn_cast<CondCodeSDNode>(CC)->get();
// i1 setcc (sext(i1), 0, setne) -> i1 setcc(i1, 0, setne)
if (VT == MVT::i1
&& Arg0.getOpcode() == ISD::SIGN_EXTEND
&& Arg0.getOperand(0).getValueType() == MVT::i1
&& (C = dyn_cast<ConstantSDNode>(Arg1))
&& C->isNullValue()
&& CCOp == ISD::SETNE) {
return SimplifySetCC(VT, Arg0.getOperand(0),
DAG.getConstant(0, MVT::i1), CCOp, true, DCI, DL);
}
break;
}
}
return SDValue();
}
/// \brief Test if RegClass is one of the VSrc classes
static bool isVSrc(unsigned RegClass) {
return AMDGPU::VSrc_32RegClassID == RegClass ||
AMDGPU::VSrc_64RegClassID == RegClass;
}
/// \brief Test if RegClass is one of the SSrc classes
static bool isSSrc(unsigned RegClass) {
return AMDGPU::SSrc_32RegClassID == RegClass ||
AMDGPU::SSrc_64RegClassID == RegClass;
}
/// \brief Analyze the possible immediate value Op
///
/// Returns -1 if it isn't an immediate, 0 if it's and inline immediate
/// and the immediate value if it's a literal immediate
int32_t SITargetLowering::analyzeImmediate(const SDNode *N) const {
union {
int32_t I;
float F;
} Imm;
if (const ConstantSDNode *Node = dyn_cast<ConstantSDNode>(N)) {
if (Node->getZExtValue() >> 32) {
return -1;
}
Imm.I = Node->getSExtValue();
} else if (const ConstantFPSDNode *Node = dyn_cast<ConstantFPSDNode>(N)) {
if (N->getValueType(0) != MVT::f32)
return -1;
Imm.F = Node->getValueAPF().convertToFloat();
} else
return -1; // It isn't an immediate
if ((Imm.I >= -16 && Imm.I <= 64) ||
Imm.F == 0.5f || Imm.F == -0.5f ||
Imm.F == 1.0f || Imm.F == -1.0f ||
Imm.F == 2.0f || Imm.F == -2.0f ||
Imm.F == 4.0f || Imm.F == -4.0f)
return 0; // It's an inline immediate
return Imm.I; // It's a literal immediate
}
/// \brief Try to fold an immediate directly into an instruction
bool SITargetLowering::foldImm(SDValue &Operand, int32_t &Immediate,
bool &ScalarSlotUsed) const {
MachineSDNode *Mov = dyn_cast<MachineSDNode>(Operand);
const SIInstrInfo *TII =
static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
if (Mov == 0 || !TII->isMov(Mov->getMachineOpcode()))
return false;
const SDValue &Op = Mov->getOperand(0);
int32_t Value = analyzeImmediate(Op.getNode());
if (Value == -1) {
// Not an immediate at all
return false;
} else if (Value == 0) {
// Inline immediates can always be fold
Operand = Op;
return true;
} else if (Value == Immediate) {
// Already fold literal immediate
Operand = Op;
return true;
} else if (!ScalarSlotUsed && !Immediate) {
// Fold this literal immediate
ScalarSlotUsed = true;
Immediate = Value;
Operand = Op;
return true;
}
return false;
}
const TargetRegisterClass *SITargetLowering::getRegClassForNode(
SelectionDAG &DAG, const SDValue &Op) const {
const SIInstrInfo *TII =
static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
const SIRegisterInfo &TRI = TII->getRegisterInfo();
if (!Op->isMachineOpcode()) {
switch(Op->getOpcode()) {
case ISD::CopyFromReg: {
MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
unsigned Reg = cast<RegisterSDNode>(Op->getOperand(1))->getReg();
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
return MRI.getRegClass(Reg);
}
return TRI.getPhysRegClass(Reg);
}
default: return NULL;
}
}
const MCInstrDesc &Desc = TII->get(Op->getMachineOpcode());
int OpClassID = Desc.OpInfo[Op.getResNo()].RegClass;
if (OpClassID != -1) {
return TRI.getRegClass(OpClassID);
}
switch(Op.getMachineOpcode()) {
case AMDGPU::COPY_TO_REGCLASS:
// Operand 1 is the register class id for COPY_TO_REGCLASS instructions.
OpClassID = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
// If the COPY_TO_REGCLASS instruction is copying to a VSrc register
// class, then the register class for the value could be either a
// VReg or and SReg. In order to get a more accurate
if (OpClassID == AMDGPU::VSrc_32RegClassID ||
OpClassID == AMDGPU::VSrc_64RegClassID) {
return getRegClassForNode(DAG, Op.getOperand(0));
}
return TRI.getRegClass(OpClassID);
case AMDGPU::EXTRACT_SUBREG: {
int SubIdx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
const TargetRegisterClass *SuperClass =
getRegClassForNode(DAG, Op.getOperand(0));
return TRI.getSubClassWithSubReg(SuperClass, SubIdx);
}
case AMDGPU::REG_SEQUENCE:
// Operand 0 is the register class id for REG_SEQUENCE instructions.
return TRI.getRegClass(
cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue());
default:
return getRegClassFor(Op.getSimpleValueType());
}
}
/// \brief Does "Op" fit into register class "RegClass" ?
bool SITargetLowering::fitsRegClass(SelectionDAG &DAG, const SDValue &Op,
unsigned RegClass) const {
const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
const TargetRegisterClass *RC = getRegClassForNode(DAG, Op);
if (!RC) {
return false;
}
return TRI->getRegClass(RegClass)->hasSubClassEq(RC);
}
/// \brief Make sure that we don't exeed the number of allowed scalars
void SITargetLowering::ensureSRegLimit(SelectionDAG &DAG, SDValue &Operand,
unsigned RegClass,
bool &ScalarSlotUsed) const {
// First map the operands register class to a destination class
if (RegClass == AMDGPU::VSrc_32RegClassID)
RegClass = AMDGPU::VReg_32RegClassID;
else if (RegClass == AMDGPU::VSrc_64RegClassID)
RegClass = AMDGPU::VReg_64RegClassID;
else
return;
// Nothing to do if they fit naturally
if (fitsRegClass(DAG, Operand, RegClass))
return;
// If the scalar slot isn't used yet use it now
if (!ScalarSlotUsed) {
ScalarSlotUsed = true;
return;
}
// This is a conservative aproach. It is possible that we can't determine the
// correct register class and copy too often, but better safe than sorry.
SDValue RC = DAG.getTargetConstant(RegClass, MVT::i32);
SDNode *Node = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS, SDLoc(),
Operand.getValueType(), Operand, RC);
Operand = SDValue(Node, 0);
}
/// \returns true if \p Node's operands are different from the SDValue list
/// \p Ops
static bool isNodeChanged(const SDNode *Node, const std::vector<SDValue> &Ops) {
for (unsigned i = 0, e = Node->getNumOperands(); i < e; ++i) {
if (Ops[i].getNode() != Node->getOperand(i).getNode()) {
return true;
}
}
return false;
}
/// \brief Try to fold the Nodes operands into the Node
SDNode *SITargetLowering::foldOperands(MachineSDNode *Node,
SelectionDAG &DAG) const {
// Original encoding (either e32 or e64)
int Opcode = Node->getMachineOpcode();
const SIInstrInfo *TII =
static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
const MCInstrDesc *Desc = &TII->get(Opcode);
unsigned NumDefs = Desc->getNumDefs();
unsigned NumOps = Desc->getNumOperands();
// Commuted opcode if available
int OpcodeRev = Desc->isCommutable() ? TII->commuteOpcode(Opcode) : -1;
const MCInstrDesc *DescRev = OpcodeRev == -1 ? 0 : &TII->get(OpcodeRev);
assert(!DescRev || DescRev->getNumDefs() == NumDefs);
assert(!DescRev || DescRev->getNumOperands() == NumOps);
// e64 version if available, -1 otherwise
int OpcodeE64 = AMDGPU::getVOPe64(Opcode);
const MCInstrDesc *DescE64 = OpcodeE64 == -1 ? 0 : &TII->get(OpcodeE64);
assert(!DescE64 || DescE64->getNumDefs() == NumDefs);
assert(!DescE64 || DescE64->getNumOperands() == (NumOps + 4));
int32_t Immediate = Desc->getSize() == 4 ? 0 : -1;
bool HaveVSrc = false, HaveSSrc = false;
// First figure out what we alread have in this instruction
for (unsigned i = 0, e = Node->getNumOperands(), Op = NumDefs;
i != e && Op < NumOps; ++i, ++Op) {
unsigned RegClass = Desc->OpInfo[Op].RegClass;
if (isVSrc(RegClass))
HaveVSrc = true;
else if (isSSrc(RegClass))
HaveSSrc = true;
else
continue;
int32_t Imm = analyzeImmediate(Node->getOperand(i).getNode());
if (Imm != -1 && Imm != 0) {
// Literal immediate
Immediate = Imm;
}
}
// If we neither have VSrc nor SSrc it makes no sense to continue
if (!HaveVSrc && !HaveSSrc)
return Node;
// No scalar allowed when we have both VSrc and SSrc
bool ScalarSlotUsed = HaveVSrc && HaveSSrc;
// Second go over the operands and try to fold them
std::vector<SDValue> Ops;
bool Promote2e64 = false;
for (unsigned i = 0, e = Node->getNumOperands(), Op = NumDefs;
i != e && Op < NumOps; ++i, ++Op) {
const SDValue &Operand = Node->getOperand(i);
Ops.push_back(Operand);
// Already folded immediate ?
if (isa<ConstantSDNode>(Operand.getNode()) ||
isa<ConstantFPSDNode>(Operand.getNode()))
continue;
// Is this a VSrc or SSrc operand ?
unsigned RegClass = Desc->OpInfo[Op].RegClass;
if (isVSrc(RegClass) || isSSrc(RegClass)) {
// Try to fold the immediates
if (!foldImm(Ops[i], Immediate, ScalarSlotUsed)) {
// Folding didn't worked, make sure we don't hit the SReg limit
ensureSRegLimit(DAG, Ops[i], RegClass, ScalarSlotUsed);
}
continue;
}
if (i == 1 && DescRev && fitsRegClass(DAG, Ops[0], RegClass)) {
unsigned OtherRegClass = Desc->OpInfo[NumDefs].RegClass;
assert(isVSrc(OtherRegClass) || isSSrc(OtherRegClass));
// Test if it makes sense to swap operands
if (foldImm(Ops[1], Immediate, ScalarSlotUsed) ||
(!fitsRegClass(DAG, Ops[1], RegClass) &&
fitsRegClass(DAG, Ops[1], OtherRegClass))) {
// Swap commutable operands
SDValue Tmp = Ops[1];
Ops[1] = Ops[0];
Ops[0] = Tmp;
Desc = DescRev;
DescRev = 0;
continue;
}
}
if (DescE64 && !Immediate) {
// Test if it makes sense to switch to e64 encoding
unsigned OtherRegClass = DescE64->OpInfo[Op].RegClass;
if (!isVSrc(OtherRegClass) && !isSSrc(OtherRegClass))
continue;
int32_t TmpImm = -1;
if (foldImm(Ops[i], TmpImm, ScalarSlotUsed) ||
(!fitsRegClass(DAG, Ops[i], RegClass) &&
fitsRegClass(DAG, Ops[1], OtherRegClass))) {
// Switch to e64 encoding
Immediate = -1;
Promote2e64 = true;
Desc = DescE64;
DescE64 = 0;
}
}
}
if (Promote2e64) {
// Add the modifier flags while promoting
for (unsigned i = 0; i < 4; ++i)
Ops.push_back(DAG.getTargetConstant(0, MVT::i32));
}
// Add optional chain and glue
for (unsigned i = NumOps - NumDefs, e = Node->getNumOperands(); i < e; ++i)
Ops.push_back(Node->getOperand(i));
// Nodes that have a glue result are not CSE'd by getMachineNode(), so in
// this case a brand new node is always be created, even if the operands
// are the same as before. So, manually check if anything has been changed.
if (Desc->Opcode == Opcode && !isNodeChanged(Node, Ops)) {
return Node;
}
// Create a complete new instruction
return DAG.getMachineNode(Desc->Opcode, SDLoc(Node), Node->getVTList(), Ops);
}
/// \brief Helper function for adjustWritemask
static unsigned SubIdx2Lane(unsigned Idx) {
switch (Idx) {
default: return 0;
case AMDGPU::sub0: return 0;
case AMDGPU::sub1: return 1;
case AMDGPU::sub2: return 2;
case AMDGPU::sub3: return 3;
}
}
/// \brief Adjust the writemask of MIMG instructions
void SITargetLowering::adjustWritemask(MachineSDNode *&Node,
SelectionDAG &DAG) const {
SDNode *Users[4] = { };
unsigned Lane = 0;
unsigned OldDmask = Node->getConstantOperandVal(0);
unsigned NewDmask = 0;
// Try to figure out the used register components
for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
I != E; ++I) {
// Abort if we can't understand the usage
if (!I->isMachineOpcode() ||
I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
return;
// Lane means which subreg of %VGPRa_VGPRb_VGPRc_VGPRd is used.
// Note that subregs are packed, i.e. Lane==0 is the first bit set
// in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
// set, etc.
Lane = SubIdx2Lane(I->getConstantOperandVal(1));
// Set which texture component corresponds to the lane.
unsigned Comp;
for (unsigned i = 0, Dmask = OldDmask; i <= Lane; i++) {
assert(Dmask);
Comp = countTrailingZeros(Dmask);
Dmask &= ~(1 << Comp);
}
// Abort if we have more than one user per component
if (Users[Lane])
return;
Users[Lane] = *I;
NewDmask |= 1 << Comp;
}
// Abort if there's no change
if (NewDmask == OldDmask)
return;
// Adjust the writemask in the node
std::vector<SDValue> Ops;
Ops.push_back(DAG.getTargetConstant(NewDmask, MVT::i32));
for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
Ops.push_back(Node->getOperand(i));
Node = (MachineSDNode*)DAG.UpdateNodeOperands(Node, Ops.data(), Ops.size());
// If we only got one lane, replace it with a copy
// (if NewDmask has only one bit set...)
if (NewDmask && (NewDmask & (NewDmask-1)) == 0) {
SDValue RC = DAG.getTargetConstant(AMDGPU::VReg_32RegClassID, MVT::i32);
SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
SDLoc(), Users[Lane]->getValueType(0),
SDValue(Node, 0), RC);
DAG.ReplaceAllUsesWith(Users[Lane], Copy);
return;
}
// Update the users of the node with the new indices
for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) {
SDNode *User = Users[i];
if (!User)
continue;
SDValue Op = DAG.getTargetConstant(Idx, MVT::i32);
DAG.UpdateNodeOperands(User, User->getOperand(0), Op);
switch (Idx) {
default: break;
case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
}
}
}
/// \brief Fold the instructions after slecting them
SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
SelectionDAG &DAG) const {
const SIInstrInfo *TII =
static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
Node = AdjustRegClass(Node, DAG);
if (TII->isMIMG(Node->getMachineOpcode()))
adjustWritemask(Node, DAG);
return foldOperands(Node, DAG);
}
/// \brief Assign the register class depending on the number of
/// bits set in the writemask
void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
SDNode *Node) const {
const SIInstrInfo *TII =
static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
if (!TII->isMIMG(MI->getOpcode()))
return;
unsigned VReg = MI->getOperand(0).getReg();
unsigned Writemask = MI->getOperand(1).getImm();
unsigned BitsSet = 0;
for (unsigned i = 0; i < 4; ++i)
BitsSet += Writemask & (1 << i) ? 1 : 0;
const TargetRegisterClass *RC;
switch (BitsSet) {
default: return;
case 1: RC = &AMDGPU::VReg_32RegClass; break;
case 2: RC = &AMDGPU::VReg_64RegClass; break;
case 3: RC = &AMDGPU::VReg_96RegClass; break;
}
unsigned NewOpcode = TII->getMaskedMIMGOp(MI->getOpcode(), BitsSet);
MI->setDesc(TII->get(NewOpcode));
MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
MRI.setRegClass(VReg, RC);
}
MachineSDNode *SITargetLowering::AdjustRegClass(MachineSDNode *N,
SelectionDAG &DAG) const {
SDLoc DL(N);
unsigned NewOpcode = N->getMachineOpcode();
switch (N->getMachineOpcode()) {
default: return N;
case AMDGPU::S_LOAD_DWORD_IMM:
NewOpcode = AMDGPU::BUFFER_LOAD_DWORD_ADDR64;
// Fall-through
case AMDGPU::S_LOAD_DWORDX2_SGPR:
if (NewOpcode == N->getMachineOpcode()) {
NewOpcode = AMDGPU::BUFFER_LOAD_DWORDX2_ADDR64;
}
// Fall-through
case AMDGPU::S_LOAD_DWORDX4_IMM:
case AMDGPU::S_LOAD_DWORDX4_SGPR: {
if (NewOpcode == N->getMachineOpcode()) {
NewOpcode = AMDGPU::BUFFER_LOAD_DWORDX4_ADDR64;
}
if (fitsRegClass(DAG, N->getOperand(0), AMDGPU::SReg_64RegClassID)) {
return N;
}
ConstantSDNode *Offset = cast<ConstantSDNode>(N->getOperand(1));
SDValue Ops[] = {
SDValue(DAG.getMachineNode(AMDGPU::SI_ADDR64_RSRC, DL, MVT::i128,
DAG.getConstant(0, MVT::i64)), 0),
N->getOperand(0),
DAG.getConstant(Offset->getSExtValue() << 2, MVT::i32)
};
return DAG.getMachineNode(NewOpcode, DL, N->getVTList(), Ops);
}
}
}
SDValue SITargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
const TargetRegisterClass *RC,
unsigned Reg, EVT VT) const {
SDValue VReg = AMDGPUTargetLowering::CreateLiveInRegister(DAG, RC, Reg, VT);
return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(DAG.getEntryNode()),
cast<RegisterSDNode>(VReg)->getReg(), VT);
}