mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-14 11:32:34 +00:00
ec31a302b7
It's also possible to just write "= nullptr", but there's some question of whether that's as readable, so I leave it up to authors to pick which they prefer for now. If we want to discuss standardizing on one or the other, we can do that at some point in the future. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213438 91177308-0d34-0410-b5e6-96231b3b80d8
522 lines
19 KiB
C++
522 lines
19 KiB
C++
//===- DAGISelMatcherOpt.cpp - Optimize a DAG Matcher ---------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the DAG Matcher optimizer.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "DAGISelMatcher.h"
|
|
#include "CodeGenDAGPatterns.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/StringSet.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "isel-opt"
|
|
|
|
/// ContractNodes - Turn multiple matcher node patterns like 'MoveChild+Record'
|
|
/// into single compound nodes like RecordChild.
|
|
static void ContractNodes(std::unique_ptr<Matcher> &MatcherPtr,
|
|
const CodeGenDAGPatterns &CGP) {
|
|
// If we reached the end of the chain, we're done.
|
|
Matcher *N = MatcherPtr.get();
|
|
if (!N) return;
|
|
|
|
// If we have a scope node, walk down all of the children.
|
|
if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) {
|
|
for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
|
|
std::unique_ptr<Matcher> Child(Scope->takeChild(i));
|
|
ContractNodes(Child, CGP);
|
|
Scope->resetChild(i, Child.release());
|
|
}
|
|
return;
|
|
}
|
|
|
|
// If we found a movechild node with a node that comes in a 'foochild' form,
|
|
// transform it.
|
|
if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N)) {
|
|
Matcher *New = nullptr;
|
|
if (RecordMatcher *RM = dyn_cast<RecordMatcher>(MC->getNext()))
|
|
if (MC->getChildNo() < 8) // Only have RecordChild0...7
|
|
New = new RecordChildMatcher(MC->getChildNo(), RM->getWhatFor(),
|
|
RM->getResultNo());
|
|
|
|
if (CheckTypeMatcher *CT = dyn_cast<CheckTypeMatcher>(MC->getNext()))
|
|
if (MC->getChildNo() < 8 && // Only have CheckChildType0...7
|
|
CT->getResNo() == 0) // CheckChildType checks res #0
|
|
New = new CheckChildTypeMatcher(MC->getChildNo(), CT->getType());
|
|
|
|
if (CheckSameMatcher *CS = dyn_cast<CheckSameMatcher>(MC->getNext()))
|
|
if (MC->getChildNo() < 4) // Only have CheckChildSame0...3
|
|
New = new CheckChildSameMatcher(MC->getChildNo(), CS->getMatchNumber());
|
|
|
|
if (CheckIntegerMatcher *CS = dyn_cast<CheckIntegerMatcher>(MC->getNext()))
|
|
if (MC->getChildNo() < 5) // Only have CheckChildInteger0...4
|
|
New = new CheckChildIntegerMatcher(MC->getChildNo(), CS->getValue());
|
|
|
|
if (New) {
|
|
// Insert the new node.
|
|
New->setNext(MatcherPtr.release());
|
|
MatcherPtr.reset(New);
|
|
// Remove the old one.
|
|
MC->setNext(MC->getNext()->takeNext());
|
|
return ContractNodes(MatcherPtr, CGP);
|
|
}
|
|
}
|
|
|
|
// Zap movechild -> moveparent.
|
|
if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N))
|
|
if (MoveParentMatcher *MP =
|
|
dyn_cast<MoveParentMatcher>(MC->getNext())) {
|
|
MatcherPtr.reset(MP->takeNext());
|
|
return ContractNodes(MatcherPtr, CGP);
|
|
}
|
|
|
|
// Turn EmitNode->MarkFlagResults->CompleteMatch into
|
|
// MarkFlagResults->EmitNode->CompleteMatch when we can to encourage
|
|
// MorphNodeTo formation. This is safe because MarkFlagResults never refers
|
|
// to the root of the pattern.
|
|
if (isa<EmitNodeMatcher>(N) && isa<MarkGlueResultsMatcher>(N->getNext()) &&
|
|
isa<CompleteMatchMatcher>(N->getNext()->getNext())) {
|
|
// Unlink the two nodes from the list.
|
|
Matcher *EmitNode = MatcherPtr.release();
|
|
Matcher *MFR = EmitNode->takeNext();
|
|
Matcher *Tail = MFR->takeNext();
|
|
|
|
// Relink them.
|
|
MatcherPtr.reset(MFR);
|
|
MFR->setNext(EmitNode);
|
|
EmitNode->setNext(Tail);
|
|
return ContractNodes(MatcherPtr, CGP);
|
|
}
|
|
|
|
// Turn EmitNode->CompleteMatch into MorphNodeTo if we can.
|
|
if (EmitNodeMatcher *EN = dyn_cast<EmitNodeMatcher>(N))
|
|
if (CompleteMatchMatcher *CM =
|
|
dyn_cast<CompleteMatchMatcher>(EN->getNext())) {
|
|
// We can only use MorphNodeTo if the result values match up.
|
|
unsigned RootResultFirst = EN->getFirstResultSlot();
|
|
bool ResultsMatch = true;
|
|
for (unsigned i = 0, e = CM->getNumResults(); i != e; ++i)
|
|
if (CM->getResult(i) != RootResultFirst+i)
|
|
ResultsMatch = false;
|
|
|
|
// If the selected node defines a subset of the glue/chain results, we
|
|
// can't use MorphNodeTo. For example, we can't use MorphNodeTo if the
|
|
// matched pattern has a chain but the root node doesn't.
|
|
const PatternToMatch &Pattern = CM->getPattern();
|
|
|
|
if (!EN->hasChain() &&
|
|
Pattern.getSrcPattern()->NodeHasProperty(SDNPHasChain, CGP))
|
|
ResultsMatch = false;
|
|
|
|
// If the matched node has glue and the output root doesn't, we can't
|
|
// use MorphNodeTo.
|
|
//
|
|
// NOTE: Strictly speaking, we don't have to check for glue here
|
|
// because the code in the pattern generator doesn't handle it right. We
|
|
// do it anyway for thoroughness.
|
|
if (!EN->hasOutFlag() &&
|
|
Pattern.getSrcPattern()->NodeHasProperty(SDNPOutGlue, CGP))
|
|
ResultsMatch = false;
|
|
|
|
|
|
// If the root result node defines more results than the source root node
|
|
// *and* has a chain or glue input, then we can't match it because it
|
|
// would end up replacing the extra result with the chain/glue.
|
|
#if 0
|
|
if ((EN->hasGlue() || EN->hasChain()) &&
|
|
EN->getNumNonChainGlueVTs() > ... need to get no results reliably ...)
|
|
ResultMatch = false;
|
|
#endif
|
|
|
|
if (ResultsMatch) {
|
|
const SmallVectorImpl<MVT::SimpleValueType> &VTs = EN->getVTList();
|
|
const SmallVectorImpl<unsigned> &Operands = EN->getOperandList();
|
|
MatcherPtr.reset(new MorphNodeToMatcher(EN->getOpcodeName(),
|
|
VTs, Operands,
|
|
EN->hasChain(), EN->hasInFlag(),
|
|
EN->hasOutFlag(),
|
|
EN->hasMemRefs(),
|
|
EN->getNumFixedArityOperands(),
|
|
Pattern));
|
|
return;
|
|
}
|
|
|
|
// FIXME2: Kill off all the SelectionDAG::SelectNodeTo and getMachineNode
|
|
// variants.
|
|
}
|
|
|
|
ContractNodes(N->getNextPtr(), CGP);
|
|
|
|
|
|
// If we have a CheckType/CheckChildType/Record node followed by a
|
|
// CheckOpcode, invert the two nodes. We prefer to do structural checks
|
|
// before type checks, as this opens opportunities for factoring on targets
|
|
// like X86 where many operations are valid on multiple types.
|
|
if ((isa<CheckTypeMatcher>(N) || isa<CheckChildTypeMatcher>(N) ||
|
|
isa<RecordMatcher>(N)) &&
|
|
isa<CheckOpcodeMatcher>(N->getNext())) {
|
|
// Unlink the two nodes from the list.
|
|
Matcher *CheckType = MatcherPtr.release();
|
|
Matcher *CheckOpcode = CheckType->takeNext();
|
|
Matcher *Tail = CheckOpcode->takeNext();
|
|
|
|
// Relink them.
|
|
MatcherPtr.reset(CheckOpcode);
|
|
CheckOpcode->setNext(CheckType);
|
|
CheckType->setNext(Tail);
|
|
return ContractNodes(MatcherPtr, CGP);
|
|
}
|
|
}
|
|
|
|
/// SinkPatternPredicates - Pattern predicates can be checked at any level of
|
|
/// the matching tree. The generator dumps them at the top level of the pattern
|
|
/// though, which prevents factoring from being able to see past them. This
|
|
/// optimization sinks them as far down into the pattern as possible.
|
|
///
|
|
/// Conceptually, we'd like to sink these predicates all the way to the last
|
|
/// matcher predicate in the series. However, it turns out that some
|
|
/// ComplexPatterns have side effects on the graph, so we really don't want to
|
|
/// run a the complex pattern if the pattern predicate will fail. For this
|
|
/// reason, we refuse to sink the pattern predicate past a ComplexPattern.
|
|
///
|
|
static void SinkPatternPredicates(std::unique_ptr<Matcher> &MatcherPtr) {
|
|
// Recursively scan for a PatternPredicate.
|
|
// If we reached the end of the chain, we're done.
|
|
Matcher *N = MatcherPtr.get();
|
|
if (!N) return;
|
|
|
|
// Walk down all members of a scope node.
|
|
if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) {
|
|
for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
|
|
std::unique_ptr<Matcher> Child(Scope->takeChild(i));
|
|
SinkPatternPredicates(Child);
|
|
Scope->resetChild(i, Child.release());
|
|
}
|
|
return;
|
|
}
|
|
|
|
// If this node isn't a CheckPatternPredicateMatcher we keep scanning until
|
|
// we find one.
|
|
CheckPatternPredicateMatcher *CPPM =dyn_cast<CheckPatternPredicateMatcher>(N);
|
|
if (!CPPM)
|
|
return SinkPatternPredicates(N->getNextPtr());
|
|
|
|
// Ok, we found one, lets try to sink it. Check if we can sink it past the
|
|
// next node in the chain. If not, we won't be able to change anything and
|
|
// might as well bail.
|
|
if (!CPPM->getNext()->isSafeToReorderWithPatternPredicate())
|
|
return;
|
|
|
|
// Okay, we know we can sink it past at least one node. Unlink it from the
|
|
// chain and scan for the new insertion point.
|
|
MatcherPtr.release(); // Don't delete CPPM.
|
|
MatcherPtr.reset(CPPM->takeNext());
|
|
|
|
N = MatcherPtr.get();
|
|
while (N->getNext()->isSafeToReorderWithPatternPredicate())
|
|
N = N->getNext();
|
|
|
|
// At this point, we want to insert CPPM after N.
|
|
CPPM->setNext(N->takeNext());
|
|
N->setNext(CPPM);
|
|
}
|
|
|
|
/// FindNodeWithKind - Scan a series of matchers looking for a matcher with a
|
|
/// specified kind. Return null if we didn't find one otherwise return the
|
|
/// matcher.
|
|
static Matcher *FindNodeWithKind(Matcher *M, Matcher::KindTy Kind) {
|
|
for (; M; M = M->getNext())
|
|
if (M->getKind() == Kind)
|
|
return M;
|
|
return nullptr;
|
|
}
|
|
|
|
|
|
/// FactorNodes - Turn matches like this:
|
|
/// Scope
|
|
/// OPC_CheckType i32
|
|
/// ABC
|
|
/// OPC_CheckType i32
|
|
/// XYZ
|
|
/// into:
|
|
/// OPC_CheckType i32
|
|
/// Scope
|
|
/// ABC
|
|
/// XYZ
|
|
///
|
|
static void FactorNodes(std::unique_ptr<Matcher> &MatcherPtr) {
|
|
// If we reached the end of the chain, we're done.
|
|
Matcher *N = MatcherPtr.get();
|
|
if (!N) return;
|
|
|
|
// If this is not a push node, just scan for one.
|
|
ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N);
|
|
if (!Scope)
|
|
return FactorNodes(N->getNextPtr());
|
|
|
|
// Okay, pull together the children of the scope node into a vector so we can
|
|
// inspect it more easily. While we're at it, bucket them up by the hash
|
|
// code of their first predicate.
|
|
SmallVector<Matcher*, 32> OptionsToMatch;
|
|
|
|
for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
|
|
// Factor the subexpression.
|
|
std::unique_ptr<Matcher> Child(Scope->takeChild(i));
|
|
FactorNodes(Child);
|
|
|
|
if (Matcher *N = Child.release())
|
|
OptionsToMatch.push_back(N);
|
|
}
|
|
|
|
SmallVector<Matcher*, 32> NewOptionsToMatch;
|
|
|
|
// Loop over options to match, merging neighboring patterns with identical
|
|
// starting nodes into a shared matcher.
|
|
for (unsigned OptionIdx = 0, e = OptionsToMatch.size(); OptionIdx != e;) {
|
|
// Find the set of matchers that start with this node.
|
|
Matcher *Optn = OptionsToMatch[OptionIdx++];
|
|
|
|
if (OptionIdx == e) {
|
|
NewOptionsToMatch.push_back(Optn);
|
|
continue;
|
|
}
|
|
|
|
// See if the next option starts with the same matcher. If the two
|
|
// neighbors *do* start with the same matcher, we can factor the matcher out
|
|
// of at least these two patterns. See what the maximal set we can merge
|
|
// together is.
|
|
SmallVector<Matcher*, 8> EqualMatchers;
|
|
EqualMatchers.push_back(Optn);
|
|
|
|
// Factor all of the known-equal matchers after this one into the same
|
|
// group.
|
|
while (OptionIdx != e && OptionsToMatch[OptionIdx]->isEqual(Optn))
|
|
EqualMatchers.push_back(OptionsToMatch[OptionIdx++]);
|
|
|
|
// If we found a non-equal matcher, see if it is contradictory with the
|
|
// current node. If so, we know that the ordering relation between the
|
|
// current sets of nodes and this node don't matter. Look past it to see if
|
|
// we can merge anything else into this matching group.
|
|
unsigned Scan = OptionIdx;
|
|
while (1) {
|
|
// If we ran out of stuff to scan, we're done.
|
|
if (Scan == e) break;
|
|
|
|
Matcher *ScanMatcher = OptionsToMatch[Scan];
|
|
|
|
// If we found an entry that matches out matcher, merge it into the set to
|
|
// handle.
|
|
if (Optn->isEqual(ScanMatcher)) {
|
|
// If is equal after all, add the option to EqualMatchers and remove it
|
|
// from OptionsToMatch.
|
|
EqualMatchers.push_back(ScanMatcher);
|
|
OptionsToMatch.erase(OptionsToMatch.begin()+Scan);
|
|
--e;
|
|
continue;
|
|
}
|
|
|
|
// If the option we're checking for contradicts the start of the list,
|
|
// skip over it.
|
|
if (Optn->isContradictory(ScanMatcher)) {
|
|
++Scan;
|
|
continue;
|
|
}
|
|
|
|
// If we're scanning for a simple node, see if it occurs later in the
|
|
// sequence. If so, and if we can move it up, it might be contradictory
|
|
// or the same as what we're looking for. If so, reorder it.
|
|
if (Optn->isSimplePredicateOrRecordNode()) {
|
|
Matcher *M2 = FindNodeWithKind(ScanMatcher, Optn->getKind());
|
|
if (M2 && M2 != ScanMatcher &&
|
|
M2->canMoveBefore(ScanMatcher) &&
|
|
(M2->isEqual(Optn) || M2->isContradictory(Optn))) {
|
|
Matcher *MatcherWithoutM2 = ScanMatcher->unlinkNode(M2);
|
|
M2->setNext(MatcherWithoutM2);
|
|
OptionsToMatch[Scan] = M2;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Otherwise, we don't know how to handle this entry, we have to bail.
|
|
break;
|
|
}
|
|
|
|
if (Scan != e &&
|
|
// Don't print it's obvious nothing extra could be merged anyway.
|
|
Scan+1 != e) {
|
|
DEBUG(errs() << "Couldn't merge this:\n";
|
|
Optn->print(errs(), 4);
|
|
errs() << "into this:\n";
|
|
OptionsToMatch[Scan]->print(errs(), 4);
|
|
if (Scan+1 != e)
|
|
OptionsToMatch[Scan+1]->printOne(errs());
|
|
if (Scan+2 < e)
|
|
OptionsToMatch[Scan+2]->printOne(errs());
|
|
errs() << "\n");
|
|
}
|
|
|
|
// If we only found one option starting with this matcher, no factoring is
|
|
// possible.
|
|
if (EqualMatchers.size() == 1) {
|
|
NewOptionsToMatch.push_back(EqualMatchers[0]);
|
|
continue;
|
|
}
|
|
|
|
// Factor these checks by pulling the first node off each entry and
|
|
// discarding it. Take the first one off the first entry to reuse.
|
|
Matcher *Shared = Optn;
|
|
Optn = Optn->takeNext();
|
|
EqualMatchers[0] = Optn;
|
|
|
|
// Remove and delete the first node from the other matchers we're factoring.
|
|
for (unsigned i = 1, e = EqualMatchers.size(); i != e; ++i) {
|
|
Matcher *Tmp = EqualMatchers[i]->takeNext();
|
|
delete EqualMatchers[i];
|
|
EqualMatchers[i] = Tmp;
|
|
}
|
|
|
|
Shared->setNext(new ScopeMatcher(EqualMatchers));
|
|
|
|
// Recursively factor the newly created node.
|
|
FactorNodes(Shared->getNextPtr());
|
|
|
|
NewOptionsToMatch.push_back(Shared);
|
|
}
|
|
|
|
// If we're down to a single pattern to match, then we don't need this scope
|
|
// anymore.
|
|
if (NewOptionsToMatch.size() == 1) {
|
|
MatcherPtr.reset(NewOptionsToMatch[0]);
|
|
return;
|
|
}
|
|
|
|
if (NewOptionsToMatch.empty()) {
|
|
MatcherPtr.reset();
|
|
return;
|
|
}
|
|
|
|
// If our factoring failed (didn't achieve anything) see if we can simplify in
|
|
// other ways.
|
|
|
|
// Check to see if all of the leading entries are now opcode checks. If so,
|
|
// we can convert this Scope to be a OpcodeSwitch instead.
|
|
bool AllOpcodeChecks = true, AllTypeChecks = true;
|
|
for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
|
|
// Check to see if this breaks a series of CheckOpcodeMatchers.
|
|
if (AllOpcodeChecks &&
|
|
!isa<CheckOpcodeMatcher>(NewOptionsToMatch[i])) {
|
|
#if 0
|
|
if (i > 3) {
|
|
errs() << "FAILING OPC #" << i << "\n";
|
|
NewOptionsToMatch[i]->dump();
|
|
}
|
|
#endif
|
|
AllOpcodeChecks = false;
|
|
}
|
|
|
|
// Check to see if this breaks a series of CheckTypeMatcher's.
|
|
if (AllTypeChecks) {
|
|
CheckTypeMatcher *CTM =
|
|
cast_or_null<CheckTypeMatcher>(FindNodeWithKind(NewOptionsToMatch[i],
|
|
Matcher::CheckType));
|
|
if (!CTM ||
|
|
// iPTR checks could alias any other case without us knowing, don't
|
|
// bother with them.
|
|
CTM->getType() == MVT::iPTR ||
|
|
// SwitchType only works for result #0.
|
|
CTM->getResNo() != 0 ||
|
|
// If the CheckType isn't at the start of the list, see if we can move
|
|
// it there.
|
|
!CTM->canMoveBefore(NewOptionsToMatch[i])) {
|
|
#if 0
|
|
if (i > 3 && AllTypeChecks) {
|
|
errs() << "FAILING TYPE #" << i << "\n";
|
|
NewOptionsToMatch[i]->dump();
|
|
}
|
|
#endif
|
|
AllTypeChecks = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If all the options are CheckOpcode's, we can form the SwitchOpcode, woot.
|
|
if (AllOpcodeChecks) {
|
|
StringSet<> Opcodes;
|
|
SmallVector<std::pair<const SDNodeInfo*, Matcher*>, 8> Cases;
|
|
for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
|
|
CheckOpcodeMatcher *COM = cast<CheckOpcodeMatcher>(NewOptionsToMatch[i]);
|
|
assert(Opcodes.insert(COM->getOpcode().getEnumName()) &&
|
|
"Duplicate opcodes not factored?");
|
|
Cases.push_back(std::make_pair(&COM->getOpcode(), COM->getNext()));
|
|
}
|
|
|
|
MatcherPtr.reset(new SwitchOpcodeMatcher(Cases));
|
|
return;
|
|
}
|
|
|
|
// If all the options are CheckType's, we can form the SwitchType, woot.
|
|
if (AllTypeChecks) {
|
|
DenseMap<unsigned, unsigned> TypeEntry;
|
|
SmallVector<std::pair<MVT::SimpleValueType, Matcher*>, 8> Cases;
|
|
for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
|
|
CheckTypeMatcher *CTM =
|
|
cast_or_null<CheckTypeMatcher>(FindNodeWithKind(NewOptionsToMatch[i],
|
|
Matcher::CheckType));
|
|
Matcher *MatcherWithoutCTM = NewOptionsToMatch[i]->unlinkNode(CTM);
|
|
MVT::SimpleValueType CTMTy = CTM->getType();
|
|
delete CTM;
|
|
|
|
unsigned &Entry = TypeEntry[CTMTy];
|
|
if (Entry != 0) {
|
|
// If we have unfactored duplicate types, then we should factor them.
|
|
Matcher *PrevMatcher = Cases[Entry-1].second;
|
|
if (ScopeMatcher *SM = dyn_cast<ScopeMatcher>(PrevMatcher)) {
|
|
SM->setNumChildren(SM->getNumChildren()+1);
|
|
SM->resetChild(SM->getNumChildren()-1, MatcherWithoutCTM);
|
|
continue;
|
|
}
|
|
|
|
Matcher *Entries[2] = { PrevMatcher, MatcherWithoutCTM };
|
|
Cases[Entry-1].second = new ScopeMatcher(Entries);
|
|
continue;
|
|
}
|
|
|
|
Entry = Cases.size()+1;
|
|
Cases.push_back(std::make_pair(CTMTy, MatcherWithoutCTM));
|
|
}
|
|
|
|
if (Cases.size() != 1) {
|
|
MatcherPtr.reset(new SwitchTypeMatcher(Cases));
|
|
} else {
|
|
// If we factored and ended up with one case, create it now.
|
|
MatcherPtr.reset(new CheckTypeMatcher(Cases[0].first, 0));
|
|
MatcherPtr->setNext(Cases[0].second);
|
|
}
|
|
return;
|
|
}
|
|
|
|
|
|
// Reassemble the Scope node with the adjusted children.
|
|
Scope->setNumChildren(NewOptionsToMatch.size());
|
|
for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i)
|
|
Scope->resetChild(i, NewOptionsToMatch[i]);
|
|
}
|
|
|
|
Matcher *llvm::OptimizeMatcher(Matcher *TheMatcher,
|
|
const CodeGenDAGPatterns &CGP) {
|
|
std::unique_ptr<Matcher> MatcherPtr(TheMatcher);
|
|
ContractNodes(MatcherPtr, CGP);
|
|
SinkPatternPredicates(MatcherPtr);
|
|
FactorNodes(MatcherPtr);
|
|
return MatcherPtr.release();
|
|
}
|