llvm-6502/include/llvm/Target/TargetLowering.h
Bill Wendling 13bbe1f52e Use the target options specified on a function to reset the back-end.
During LTO, the target options on functions within the same Module may
change. This would necessitate resetting some of the back-end. Do this for X86,
because it's a Friday afternoon.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178917 91177308-0d34-0410-b5e6-96231b3b80d8
2013-04-05 21:52:40 +00:00

2287 lines
97 KiB
C++

//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes how to lower LLVM code to machine code. This has two
// main components:
//
// 1. Which ValueTypes are natively supported by the target.
// 2. Which operations are supported for supported ValueTypes.
// 3. Cost thresholds for alternative implementations of certain operations.
//
// In addition it has a few other components, like information about FP
// immediates.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TARGET_TARGETLOWERING_H
#define LLVM_TARGET_TARGETLOWERING_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/CodeGen/DAGCombine.h"
#include "llvm/CodeGen/RuntimeLibcalls.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/DebugLoc.h"
#include "llvm/Target/TargetCallingConv.h"
#include "llvm/Target/TargetMachine.h"
#include <climits>
#include <map>
#include <vector>
namespace llvm {
class CallInst;
class CCState;
class FastISel;
class FunctionLoweringInfo;
class ImmutableCallSite;
class IntrinsicInst;
class MachineBasicBlock;
class MachineFunction;
class MachineInstr;
class MachineJumpTableInfo;
class MCContext;
class MCExpr;
template<typename T> class SmallVectorImpl;
class DataLayout;
class TargetRegisterClass;
class TargetLibraryInfo;
class TargetLoweringObjectFile;
class Value;
namespace Sched {
enum Preference {
None, // No preference
Source, // Follow source order.
RegPressure, // Scheduling for lowest register pressure.
Hybrid, // Scheduling for both latency and register pressure.
ILP, // Scheduling for ILP in low register pressure mode.
VLIW // Scheduling for VLIW targets.
};
}
/// TargetLoweringBase - This base class for TargetLowering contains the
/// SelectionDAG-independent parts that can be used from the rest of CodeGen.
class TargetLoweringBase {
TargetLoweringBase(const TargetLoweringBase&) LLVM_DELETED_FUNCTION;
void operator=(const TargetLoweringBase&) LLVM_DELETED_FUNCTION;
public:
/// LegalizeAction - This enum indicates whether operations are valid for a
/// target, and if not, what action should be used to make them valid.
enum LegalizeAction {
Legal, // The target natively supports this operation.
Promote, // This operation should be executed in a larger type.
Expand, // Try to expand this to other ops, otherwise use a libcall.
Custom // Use the LowerOperation hook to implement custom lowering.
};
/// LegalizeTypeAction - This enum indicates whether a types are legal for a
/// target, and if not, what action should be used to make them valid.
enum LegalizeTypeAction {
TypeLegal, // The target natively supports this type.
TypePromoteInteger, // Replace this integer with a larger one.
TypeExpandInteger, // Split this integer into two of half the size.
TypeSoftenFloat, // Convert this float to a same size integer type.
TypeExpandFloat, // Split this float into two of half the size.
TypeScalarizeVector, // Replace this one-element vector with its element.
TypeSplitVector, // Split this vector into two of half the size.
TypeWidenVector // This vector should be widened into a larger vector.
};
/// LegalizeKind holds the legalization kind that needs to happen to EVT
/// in order to type-legalize it.
typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind;
enum BooleanContent { // How the target represents true/false values.
UndefinedBooleanContent, // Only bit 0 counts, the rest can hold garbage.
ZeroOrOneBooleanContent, // All bits zero except for bit 0.
ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
};
enum SelectSupportKind {
ScalarValSelect, // The target supports scalar selects (ex: cmov).
ScalarCondVectorVal, // The target supports selects with a scalar condition
// and vector values (ex: cmov).
VectorMaskSelect // The target supports vector selects with a vector
// mask (ex: x86 blends).
};
static ISD::NodeType getExtendForContent(BooleanContent Content) {
switch (Content) {
case UndefinedBooleanContent:
// Extend by adding rubbish bits.
return ISD::ANY_EXTEND;
case ZeroOrOneBooleanContent:
// Extend by adding zero bits.
return ISD::ZERO_EXTEND;
case ZeroOrNegativeOneBooleanContent:
// Extend by copying the sign bit.
return ISD::SIGN_EXTEND;
}
llvm_unreachable("Invalid content kind");
}
/// NOTE: The constructor takes ownership of TLOF.
explicit TargetLoweringBase(const TargetMachine &TM,
const TargetLoweringObjectFile *TLOF);
virtual ~TargetLoweringBase();
protected:
/// \brief Initialize all of the actions to default values.
void initActions();
public:
const TargetMachine &getTargetMachine() const { return TM; }
const DataLayout *getDataLayout() const { return TD; }
const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
bool isBigEndian() const { return !IsLittleEndian; }
bool isLittleEndian() const { return IsLittleEndian; }
// Return the pointer type for the given address space, defaults to
// the pointer type from the data layout.
// FIXME: The default needs to be removed once all the code is updated.
virtual MVT getPointerTy(uint32_t AS = 0) const { return PointerTy; }
virtual MVT getScalarShiftAmountTy(EVT LHSTy) const;
EVT getShiftAmountTy(EVT LHSTy) const;
/// isSelectExpensive - Return true if the select operation is expensive for
/// this target.
bool isSelectExpensive() const { return SelectIsExpensive; }
virtual bool isSelectSupported(SelectSupportKind kind) const { return true; }
/// shouldSplitVectorElementType - Return true if a vector of the given type
/// should be split (TypeSplitVector) instead of promoted
/// (TypePromoteInteger) during type legalization.
virtual bool shouldSplitVectorElementType(EVT VT) const { return false; }
/// isIntDivCheap() - Return true if integer divide is usually cheaper than
/// a sequence of several shifts, adds, and multiplies for this target.
bool isIntDivCheap() const { return IntDivIsCheap; }
/// isSlowDivBypassed - Returns true if target has indicated at least one
/// type should be bypassed.
bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }
/// getBypassSlowDivTypes - Returns map of slow types for division or
/// remainder with corresponding fast types
const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const {
return BypassSlowDivWidths;
}
/// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
/// srl/add/sra.
bool isPow2DivCheap() const { return Pow2DivIsCheap; }
/// isJumpExpensive() - Return true if Flow Control is an expensive operation
/// that should be avoided.
bool isJumpExpensive() const { return JumpIsExpensive; }
/// isPredictableSelectExpensive - Return true if selects are only cheaper
/// than branches if the branch is unlikely to be predicted right.
bool isPredictableSelectExpensive() const {
return PredictableSelectIsExpensive;
}
/// getSetCCResultType - Return the ValueType of the result of SETCC
/// operations. Also used to obtain the target's preferred type for
/// the condition operand of SELECT and BRCOND nodes. In the case of
/// BRCOND the argument passed is MVT::Other since there are no other
/// operands to get a type hint from.
virtual EVT getSetCCResultType(EVT VT) const;
/// getCmpLibcallReturnType - Return the ValueType for comparison
/// libcalls. Comparions libcalls include floating point comparion calls,
/// and Ordered/Unordered check calls on floating point numbers.
virtual
MVT::SimpleValueType getCmpLibcallReturnType() const;
/// getBooleanContents - For targets without i1 registers, this gives the
/// nature of the high-bits of boolean values held in types wider than i1.
/// "Boolean values" are special true/false values produced by nodes like
/// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
/// Not to be confused with general values promoted from i1.
/// Some cpus distinguish between vectors of boolean and scalars; the isVec
/// parameter selects between the two kinds. For example on X86 a scalar
/// boolean should be zero extended from i1, while the elements of a vector
/// of booleans should be sign extended from i1.
BooleanContent getBooleanContents(bool isVec) const {
return isVec ? BooleanVectorContents : BooleanContents;
}
/// getSchedulingPreference - Return target scheduling preference.
Sched::Preference getSchedulingPreference() const {
return SchedPreferenceInfo;
}
/// getSchedulingPreference - Some scheduler, e.g. hybrid, can switch to
/// different scheduling heuristics for different nodes. This function returns
/// the preference (or none) for the given node.
virtual Sched::Preference getSchedulingPreference(SDNode *) const {
return Sched::None;
}
/// getRegClassFor - Return the register class that should be used for the
/// specified value type.
virtual const TargetRegisterClass *getRegClassFor(MVT VT) const {
const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
assert(RC && "This value type is not natively supported!");
return RC;
}
/// getRepRegClassFor - Return the 'representative' register class for the
/// specified value type. The 'representative' register class is the largest
/// legal super-reg register class for the register class of the value type.
/// For example, on i386 the rep register class for i8, i16, and i32 are GR32;
/// while the rep register class is GR64 on x86_64.
virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const {
const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy];
return RC;
}
/// getRepRegClassCostFor - Return the cost of the 'representative' register
/// class for the specified value type.
virtual uint8_t getRepRegClassCostFor(MVT VT) const {
return RepRegClassCostForVT[VT.SimpleTy];
}
/// isTypeLegal - Return true if the target has native support for the
/// specified value type. This means that it has a register that directly
/// holds it without promotions or expansions.
bool isTypeLegal(EVT VT) const {
assert(!VT.isSimple() ||
(unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
}
class ValueTypeActionImpl {
/// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
/// that indicates how instruction selection should deal with the type.
uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
public:
ValueTypeActionImpl() {
std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0);
}
LegalizeTypeAction getTypeAction(MVT VT) const {
return (LegalizeTypeAction)ValueTypeActions[VT.SimpleTy];
}
void setTypeAction(MVT VT, LegalizeTypeAction Action) {
unsigned I = VT.SimpleTy;
ValueTypeActions[I] = Action;
}
};
const ValueTypeActionImpl &getValueTypeActions() const {
return ValueTypeActions;
}
/// getTypeAction - Return how we should legalize values of this type, either
/// it is already legal (return 'Legal') or we need to promote it to a larger
/// type (return 'Promote'), or we need to expand it into multiple registers
/// of smaller integer type (return 'Expand'). 'Custom' is not an option.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
return getTypeConversion(Context, VT).first;
}
LegalizeTypeAction getTypeAction(MVT VT) const {
return ValueTypeActions.getTypeAction(VT);
}
/// getTypeToTransformTo - For types supported by the target, this is an
/// identity function. For types that must be promoted to larger types, this
/// returns the larger type to promote to. For integer types that are larger
/// than the largest integer register, this contains one step in the expansion
/// to get to the smaller register. For illegal floating point types, this
/// returns the integer type to transform to.
EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
return getTypeConversion(Context, VT).second;
}
/// getTypeToExpandTo - For types supported by the target, this is an
/// identity function. For types that must be expanded (i.e. integer types
/// that are larger than the largest integer register or illegal floating
/// point types), this returns the largest legal type it will be expanded to.
EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
assert(!VT.isVector());
while (true) {
switch (getTypeAction(Context, VT)) {
case TypeLegal:
return VT;
case TypeExpandInteger:
VT = getTypeToTransformTo(Context, VT);
break;
default:
llvm_unreachable("Type is not legal nor is it to be expanded!");
}
}
}
/// getVectorTypeBreakdown - Vector types are broken down into some number of
/// legal first class types. For example, EVT::v8f32 maps to 2 EVT::v4f32
/// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
/// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
///
/// This method returns the number of registers needed, and the VT for each
/// register. It also returns the VT and quantity of the intermediate values
/// before they are promoted/expanded.
///
unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
EVT &IntermediateVT,
unsigned &NumIntermediates,
MVT &RegisterVT) const;
/// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
/// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
/// this is the case, it returns true and store the intrinsic
/// information into the IntrinsicInfo that was passed to the function.
struct IntrinsicInfo {
unsigned opc; // target opcode
EVT memVT; // memory VT
const Value* ptrVal; // value representing memory location
int offset; // offset off of ptrVal
unsigned align; // alignment
bool vol; // is volatile?
bool readMem; // reads memory?
bool writeMem; // writes memory?
};
virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
unsigned /*Intrinsic*/) const {
return false;
}
/// isFPImmLegal - Returns true if the target can instruction select the
/// specified FP immediate natively. If false, the legalizer will materialize
/// the FP immediate as a load from a constant pool.
virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const {
return false;
}
/// isShuffleMaskLegal - Targets can use this to indicate that they only
/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
/// are assumed to be legal.
virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
EVT /*VT*/) const {
return true;
}
/// canOpTrap - Returns true if the operation can trap for the value type.
/// VT must be a legal type. By default, we optimistically assume most
/// operations don't trap except for divide and remainder.
virtual bool canOpTrap(unsigned Op, EVT VT) const;
/// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
/// used by Targets can use this to indicate if there is a suitable
/// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
/// pool entry.
virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
EVT /*VT*/) const {
return false;
}
/// getOperationAction - Return how this operation should be treated: either
/// it is legal, needs to be promoted to a larger size, needs to be
/// expanded to some other code sequence, or the target has a custom expander
/// for it.
LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
if (VT.isExtended()) return Expand;
// If a target-specific SDNode requires legalization, require the target
// to provide custom legalization for it.
if (Op > array_lengthof(OpActions[0])) return Custom;
unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
return (LegalizeAction)OpActions[I][Op];
}
/// isOperationLegalOrCustom - Return true if the specified operation is
/// legal on this target or can be made legal with custom lowering. This
/// is used to help guide high-level lowering decisions.
bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
return (VT == MVT::Other || isTypeLegal(VT)) &&
(getOperationAction(Op, VT) == Legal ||
getOperationAction(Op, VT) == Custom);
}
/// isOperationLegalOrPromote - Return true if the specified operation is
/// legal on this target or can be made legal using promotion. This
/// is used to help guide high-level lowering decisions.
bool isOperationLegalOrPromote(unsigned Op, EVT VT) const {
return (VT == MVT::Other || isTypeLegal(VT)) &&
(getOperationAction(Op, VT) == Legal ||
getOperationAction(Op, VT) == Promote);
}
/// isOperationExpand - Return true if the specified operation is illegal on
/// this target or unlikely to be made legal with custom lowering. This is
/// used to help guide high-level lowering decisions.
bool isOperationExpand(unsigned Op, EVT VT) const {
return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand);
}
/// isOperationLegal - Return true if the specified operation is legal on this
/// target.
bool isOperationLegal(unsigned Op, EVT VT) const {
return (VT == MVT::Other || isTypeLegal(VT)) &&
getOperationAction(Op, VT) == Legal;
}
/// getLoadExtAction - Return how this load with extension should be treated:
/// either it is legal, needs to be promoted to a larger size, needs to be
/// expanded to some other code sequence, or the target has a custom expander
/// for it.
LegalizeAction getLoadExtAction(unsigned ExtType, MVT VT) const {
assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
"Table isn't big enough!");
return (LegalizeAction)LoadExtActions[VT.SimpleTy][ExtType];
}
/// isLoadExtLegal - Return true if the specified load with extension is legal
/// on this target.
bool isLoadExtLegal(unsigned ExtType, EVT VT) const {
return VT.isSimple() &&
getLoadExtAction(ExtType, VT.getSimpleVT()) == Legal;
}
/// getTruncStoreAction - Return how this store with truncation should be
/// treated: either it is legal, needs to be promoted to a larger size, needs
/// to be expanded to some other code sequence, or the target has a custom
/// expander for it.
LegalizeAction getTruncStoreAction(MVT ValVT, MVT MemVT) const {
assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
"Table isn't big enough!");
return (LegalizeAction)TruncStoreActions[ValVT.SimpleTy]
[MemVT.SimpleTy];
}
/// isTruncStoreLegal - Return true if the specified store with truncation is
/// legal on this target.
bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
return isTypeLegal(ValVT) && MemVT.isSimple() &&
getTruncStoreAction(ValVT.getSimpleVT(), MemVT.getSimpleVT()) == Legal;
}
/// getIndexedLoadAction - Return how the indexed load should be treated:
/// either it is legal, needs to be promoted to a larger size, needs to be
/// expanded to some other code sequence, or the target has a custom expander
/// for it.
LegalizeAction
getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
assert(IdxMode < ISD::LAST_INDEXED_MODE && VT < MVT::LAST_VALUETYPE &&
"Table isn't big enough!");
unsigned Ty = (unsigned)VT.SimpleTy;
return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
}
/// isIndexedLoadLegal - Return true if the specified indexed load is legal
/// on this target.
bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
return VT.isSimple() &&
(getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
}
/// getIndexedStoreAction - Return how the indexed store should be treated:
/// either it is legal, needs to be promoted to a larger size, needs to be
/// expanded to some other code sequence, or the target has a custom expander
/// for it.
LegalizeAction
getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
assert(IdxMode < ISD::LAST_INDEXED_MODE && VT < MVT::LAST_VALUETYPE &&
"Table isn't big enough!");
unsigned Ty = (unsigned)VT.SimpleTy;
return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
}
/// isIndexedStoreLegal - Return true if the specified indexed load is legal
/// on this target.
bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
return VT.isSimple() &&
(getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
}
/// getCondCodeAction - Return how the condition code should be treated:
/// either it is legal, needs to be expanded to some other code sequence,
/// or the target has a custom expander for it.
LegalizeAction
getCondCodeAction(ISD::CondCode CC, MVT VT) const {
assert((unsigned)CC < array_lengthof(CondCodeActions) &&
(unsigned)VT.SimpleTy < sizeof(CondCodeActions[0])*4 &&
"Table isn't big enough!");
/// The lower 5 bits of the SimpleTy index into Nth 2bit set from the 64bit
/// value and the upper 27 bits index into the second dimension of the
/// array to select what 64bit value to use.
LegalizeAction Action = (LegalizeAction)
((CondCodeActions[CC][VT.SimpleTy >> 5] >> (2*(VT.SimpleTy & 0x1F))) & 3);
assert(Action != Promote && "Can't promote condition code!");
return Action;
}
/// isCondCodeLegal - Return true if the specified condition code is legal
/// on this target.
bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
return
getCondCodeAction(CC, VT) == Legal ||
getCondCodeAction(CC, VT) == Custom;
}
/// getTypeToPromoteTo - If the action for this operation is to promote, this
/// method returns the ValueType to promote to.
MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
assert(getOperationAction(Op, VT) == Promote &&
"This operation isn't promoted!");
// See if this has an explicit type specified.
std::map<std::pair<unsigned, MVT::SimpleValueType>,
MVT::SimpleValueType>::const_iterator PTTI =
PromoteToType.find(std::make_pair(Op, VT.SimpleTy));
if (PTTI != PromoteToType.end()) return PTTI->second;
assert((VT.isInteger() || VT.isFloatingPoint()) &&
"Cannot autopromote this type, add it with AddPromotedToType.");
MVT NVT = VT;
do {
NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1);
assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
"Didn't find type to promote to!");
} while (!isTypeLegal(NVT) ||
getOperationAction(Op, NVT) == Promote);
return NVT;
}
/// getValueType - Return the EVT corresponding to this LLVM type.
/// This is fixed by the LLVM operations except for the pointer size. If
/// AllowUnknown is true, this will return MVT::Other for types with no EVT
/// counterpart (e.g. structs), otherwise it will assert.
EVT getValueType(Type *Ty, bool AllowUnknown = false) const {
// Lower scalar pointers to native pointer types.
if (Ty->isPointerTy()) return PointerTy;
if (Ty->isVectorTy()) {
VectorType *VTy = cast<VectorType>(Ty);
Type *Elm = VTy->getElementType();
// Lower vectors of pointers to native pointer types.
if (Elm->isPointerTy())
Elm = EVT(PointerTy).getTypeForEVT(Ty->getContext());
return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
VTy->getNumElements());
}
return EVT::getEVT(Ty, AllowUnknown);
}
/// Return the MVT corresponding to this LLVM type. See getValueType.
MVT getSimpleValueType(Type *Ty, bool AllowUnknown = false) const {
return getValueType(Ty, AllowUnknown).getSimpleVT();
}
/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
/// function arguments in the caller parameter area. This is the actual
/// alignment, not its logarithm.
virtual unsigned getByValTypeAlignment(Type *Ty) const;
/// getRegisterType - Return the type of registers that this ValueType will
/// eventually require.
MVT getRegisterType(MVT VT) const {
assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
return RegisterTypeForVT[VT.SimpleTy];
}
/// getRegisterType - Return the type of registers that this ValueType will
/// eventually require.
MVT getRegisterType(LLVMContext &Context, EVT VT) const {
if (VT.isSimple()) {
assert((unsigned)VT.getSimpleVT().SimpleTy <
array_lengthof(RegisterTypeForVT));
return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
}
if (VT.isVector()) {
EVT VT1;
MVT RegisterVT;
unsigned NumIntermediates;
(void)getVectorTypeBreakdown(Context, VT, VT1,
NumIntermediates, RegisterVT);
return RegisterVT;
}
if (VT.isInteger()) {
return getRegisterType(Context, getTypeToTransformTo(Context, VT));
}
llvm_unreachable("Unsupported extended type!");
}
/// getNumRegisters - Return the number of registers that this ValueType will
/// eventually require. This is one for any types promoted to live in larger
/// registers, but may be more than one for types (like i64) that are split
/// into pieces. For types like i140, which are first promoted then expanded,
/// it is the number of registers needed to hold all the bits of the original
/// type. For an i140 on a 32 bit machine this means 5 registers.
unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
if (VT.isSimple()) {
assert((unsigned)VT.getSimpleVT().SimpleTy <
array_lengthof(NumRegistersForVT));
return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
}
if (VT.isVector()) {
EVT VT1;
MVT VT2;
unsigned NumIntermediates;
return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
}
if (VT.isInteger()) {
unsigned BitWidth = VT.getSizeInBits();
unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
return (BitWidth + RegWidth - 1) / RegWidth;
}
llvm_unreachable("Unsupported extended type!");
}
/// ShouldShrinkFPConstant - If true, then instruction selection should
/// seek to shrink the FP constant of the specified type to a smaller type
/// in order to save space and / or reduce runtime.
virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
/// hasTargetDAGCombine - If true, the target has custom DAG combine
/// transformations that it can perform for the specified node.
bool hasTargetDAGCombine(ISD::NodeType NT) const {
assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
}
/// This function returns the maximum number of store operations permitted
/// to replace a call to llvm.memset. The value is set by the target at the
/// performance threshold for such a replacement. If OptSize is true,
/// return the limit for functions that have OptSize attribute.
/// @brief Get maximum # of store operations permitted for llvm.memset
unsigned getMaxStoresPerMemset(bool OptSize) const {
return OptSize ? MaxStoresPerMemsetOptSize : MaxStoresPerMemset;
}
/// This function returns the maximum number of store operations permitted
/// to replace a call to llvm.memcpy. The value is set by the target at the
/// performance threshold for such a replacement. If OptSize is true,
/// return the limit for functions that have OptSize attribute.
/// @brief Get maximum # of store operations permitted for llvm.memcpy
unsigned getMaxStoresPerMemcpy(bool OptSize) const {
return OptSize ? MaxStoresPerMemcpyOptSize : MaxStoresPerMemcpy;
}
/// This function returns the maximum number of store operations permitted
/// to replace a call to llvm.memmove. The value is set by the target at the
/// performance threshold for such a replacement. If OptSize is true,
/// return the limit for functions that have OptSize attribute.
/// @brief Get maximum # of store operations permitted for llvm.memmove
unsigned getMaxStoresPerMemmove(bool OptSize) const {
return OptSize ? MaxStoresPerMemmoveOptSize : MaxStoresPerMemmove;
}
/// This function returns true if the target allows unaligned memory accesses.
/// of the specified type. If true, it also returns whether the unaligned
/// memory access is "fast" in the second argument by reference. This is used,
/// for example, in situations where an array copy/move/set is converted to a
/// sequence of store operations. It's use helps to ensure that such
/// replacements don't generate code that causes an alignment error (trap) on
/// the target machine.
/// @brief Determine if the target supports unaligned memory accesses.
virtual bool allowsUnalignedMemoryAccesses(EVT, bool *Fast = 0) const {
return false;
}
/// getOptimalMemOpType - Returns the target specific optimal type for load
/// and store operations as a result of memset, memcpy, and memmove
/// lowering. If DstAlign is zero that means it's safe to destination
/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
/// means there isn't a need to check it against alignment requirement,
/// probably because the source does not need to be loaded. If 'IsMemset' is
/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
/// source is constant so it does not need to be loaded.
/// It returns EVT::Other if the type should be determined using generic
/// target-independent logic.
virtual EVT getOptimalMemOpType(uint64_t /*Size*/,
unsigned /*DstAlign*/, unsigned /*SrcAlign*/,
bool /*IsMemset*/,
bool /*ZeroMemset*/,
bool /*MemcpyStrSrc*/,
MachineFunction &/*MF*/) const {
return MVT::Other;
}
/// isSafeMemOpType - Returns true if it's safe to use load / store of the
/// specified type to expand memcpy / memset inline. This is mostly true
/// for all types except for some special cases. For example, on X86
/// targets without SSE2 f64 load / store are done with fldl / fstpl which
/// also does type conversion. Note the specified type doesn't have to be
/// legal as the hook is used before type legalization.
virtual bool isSafeMemOpType(MVT VT) const {
return true;
}
/// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
/// to implement llvm.setjmp.
bool usesUnderscoreSetJmp() const {
return UseUnderscoreSetJmp;
}
/// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
/// to implement llvm.longjmp.
bool usesUnderscoreLongJmp() const {
return UseUnderscoreLongJmp;
}
/// supportJumpTables - return whether the target can generate code for
/// jump tables.
bool supportJumpTables() const {
return SupportJumpTables;
}
/// getMinimumJumpTableEntries - return integer threshold on number of
/// blocks to use jump tables rather than if sequence.
int getMinimumJumpTableEntries() const {
return MinimumJumpTableEntries;
}
/// getStackPointerRegisterToSaveRestore - If a physical register, this
/// specifies the register that llvm.savestack/llvm.restorestack should save
/// and restore.
unsigned getStackPointerRegisterToSaveRestore() const {
return StackPointerRegisterToSaveRestore;
}
/// getExceptionPointerRegister - If a physical register, this returns
/// the register that receives the exception address on entry to a landing
/// pad.
unsigned getExceptionPointerRegister() const {
return ExceptionPointerRegister;
}
/// getExceptionSelectorRegister - If a physical register, this returns
/// the register that receives the exception typeid on entry to a landing
/// pad.
unsigned getExceptionSelectorRegister() const {
return ExceptionSelectorRegister;
}
/// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
/// set, the default is 200)
unsigned getJumpBufSize() const {
return JumpBufSize;
}
/// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
/// (if never set, the default is 0)
unsigned getJumpBufAlignment() const {
return JumpBufAlignment;
}
/// getMinStackArgumentAlignment - return the minimum stack alignment of an
/// argument.
unsigned getMinStackArgumentAlignment() const {
return MinStackArgumentAlignment;
}
/// getMinFunctionAlignment - return the minimum function alignment.
///
unsigned getMinFunctionAlignment() const {
return MinFunctionAlignment;
}
/// getPrefFunctionAlignment - return the preferred function alignment.
///
unsigned getPrefFunctionAlignment() const {
return PrefFunctionAlignment;
}
/// getPrefLoopAlignment - return the preferred loop alignment.
///
unsigned getPrefLoopAlignment() const {
return PrefLoopAlignment;
}
/// getShouldFoldAtomicFences - return whether the combiner should fold
/// fence MEMBARRIER instructions into the atomic intrinsic instructions.
///
bool getShouldFoldAtomicFences() const {
return ShouldFoldAtomicFences;
}
/// getInsertFencesFor - return whether the DAG builder should automatically
/// insert fences and reduce ordering for atomics.
///
bool getInsertFencesForAtomic() const {
return InsertFencesForAtomic;
}
/// getStackCookieLocation - Return true if the target stores stack
/// protector cookies at a fixed offset in some non-standard address
/// space, and populates the address space and offset as
/// appropriate.
virtual bool getStackCookieLocation(unsigned &/*AddressSpace*/,
unsigned &/*Offset*/) const {
return false;
}
/// getMaximalGlobalOffset - Returns the maximal possible offset which can be
/// used for loads / stores from the global.
virtual unsigned getMaximalGlobalOffset() const {
return 0;
}
//===--------------------------------------------------------------------===//
/// \name Helpers for TargetTransformInfo implementations
/// @{
/// Get the ISD node that corresponds to the Instruction class opcode.
int InstructionOpcodeToISD(unsigned Opcode) const;
/// Estimate the cost of type-legalization and the legalized type.
std::pair<unsigned, MVT> getTypeLegalizationCost(Type *Ty) const;
/// @}
//===--------------------------------------------------------------------===//
// TargetLowering Configuration Methods - These methods should be invoked by
// the derived class constructor to configure this object for the target.
//
/// \brief Reset the operation actions based on target options.
virtual void resetOperationActions() {}
protected:
/// setBooleanContents - Specify how the target extends the result of a
/// boolean value from i1 to a wider type. See getBooleanContents.
void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
/// setBooleanVectorContents - Specify how the target extends the result
/// of a vector boolean value from a vector of i1 to a wider type. See
/// getBooleanContents.
void setBooleanVectorContents(BooleanContent Ty) {
BooleanVectorContents = Ty;
}
/// setSchedulingPreference - Specify the target scheduling preference.
void setSchedulingPreference(Sched::Preference Pref) {
SchedPreferenceInfo = Pref;
}
/// setUseUnderscoreSetJmp - Indicate whether this target prefers to
/// use _setjmp to implement llvm.setjmp or the non _ version.
/// Defaults to false.
void setUseUnderscoreSetJmp(bool Val) {
UseUnderscoreSetJmp = Val;
}
/// setUseUnderscoreLongJmp - Indicate whether this target prefers to
/// use _longjmp to implement llvm.longjmp or the non _ version.
/// Defaults to false.
void setUseUnderscoreLongJmp(bool Val) {
UseUnderscoreLongJmp = Val;
}
/// setSupportJumpTables - Indicate whether the target can generate code for
/// jump tables.
void setSupportJumpTables(bool Val) {
SupportJumpTables = Val;
}
/// setMinimumJumpTableEntries - Indicate the number of blocks to generate
/// jump tables rather than if sequence.
void setMinimumJumpTableEntries(int Val) {
MinimumJumpTableEntries = Val;
}
/// setStackPointerRegisterToSaveRestore - If set to a physical register, this
/// specifies the register that llvm.savestack/llvm.restorestack should save
/// and restore.
void setStackPointerRegisterToSaveRestore(unsigned R) {
StackPointerRegisterToSaveRestore = R;
}
/// setExceptionPointerRegister - If set to a physical register, this sets
/// the register that receives the exception address on entry to a landing
/// pad.
void setExceptionPointerRegister(unsigned R) {
ExceptionPointerRegister = R;
}
/// setExceptionSelectorRegister - If set to a physical register, this sets
/// the register that receives the exception typeid on entry to a landing
/// pad.
void setExceptionSelectorRegister(unsigned R) {
ExceptionSelectorRegister = R;
}
/// SelectIsExpensive - Tells the code generator not to expand operations
/// into sequences that use the select operations if possible.
void setSelectIsExpensive(bool isExpensive = true) {
SelectIsExpensive = isExpensive;
}
/// JumpIsExpensive - Tells the code generator not to expand sequence of
/// operations into a separate sequences that increases the amount of
/// flow control.
void setJumpIsExpensive(bool isExpensive = true) {
JumpIsExpensive = isExpensive;
}
/// setIntDivIsCheap - Tells the code generator that integer divide is
/// expensive, and if possible, should be replaced by an alternate sequence
/// of instructions not containing an integer divide.
void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
/// addBypassSlowDiv - Tells the code generator which bitwidths to bypass.
void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) {
BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
}
/// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
/// srl/add/sra for a signed divide by power of two, and let the target handle
/// it.
void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
/// addRegisterClass - Add the specified register class as an available
/// regclass for the specified value type. This indicates the selector can
/// handle values of that class natively.
void addRegisterClass(MVT VT, const TargetRegisterClass *RC) {
assert((unsigned)VT.SimpleTy < array_lengthof(RegClassForVT));
AvailableRegClasses.push_back(std::make_pair(VT, RC));
RegClassForVT[VT.SimpleTy] = RC;
}
/// clearRegisterClasses - Remove all register classes.
void clearRegisterClasses() {
memset(RegClassForVT, 0,MVT::LAST_VALUETYPE * sizeof(TargetRegisterClass*));
AvailableRegClasses.clear();
}
/// \brief Remove all operation actions.
void clearOperationActions() {
}
/// findRepresentativeClass - Return the largest legal super-reg register class
/// of the register class for the specified type and its associated "cost".
virtual std::pair<const TargetRegisterClass*, uint8_t>
findRepresentativeClass(MVT VT) const;
/// computeRegisterProperties - Once all of the register classes are added,
/// this allows us to compute derived properties we expose.
void computeRegisterProperties();
/// setOperationAction - Indicate that the specified operation does not work
/// with the specified type and indicate what to do about it.
void setOperationAction(unsigned Op, MVT VT,
LegalizeAction Action) {
assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
}
/// setLoadExtAction - Indicate that the specified load with extension does
/// not work with the specified type and indicate what to do about it.
void setLoadExtAction(unsigned ExtType, MVT VT,
LegalizeAction Action) {
assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
"Table isn't big enough!");
LoadExtActions[VT.SimpleTy][ExtType] = (uint8_t)Action;
}
/// setTruncStoreAction - Indicate that the specified truncating store does
/// not work with the specified type and indicate what to do about it.
void setTruncStoreAction(MVT ValVT, MVT MemVT,
LegalizeAction Action) {
assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
"Table isn't big enough!");
TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
}
/// setIndexedLoadAction - Indicate that the specified indexed load does or
/// does not work with the specified type and indicate what to do abort
/// it. NOTE: All indexed mode loads are initialized to Expand in
/// TargetLowering.cpp
void setIndexedLoadAction(unsigned IdxMode, MVT VT,
LegalizeAction Action) {
assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
(unsigned)Action < 0xf && "Table isn't big enough!");
// Load action are kept in the upper half.
IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
}
/// setIndexedStoreAction - Indicate that the specified indexed store does or
/// does not work with the specified type and indicate what to do about
/// it. NOTE: All indexed mode stores are initialized to Expand in
/// TargetLowering.cpp
void setIndexedStoreAction(unsigned IdxMode, MVT VT,
LegalizeAction Action) {
assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
(unsigned)Action < 0xf && "Table isn't big enough!");
// Store action are kept in the lower half.
IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
}
/// setCondCodeAction - Indicate that the specified condition code is or isn't
/// supported on the target and indicate what to do about it.
void setCondCodeAction(ISD::CondCode CC, MVT VT,
LegalizeAction Action) {
assert(VT < MVT::LAST_VALUETYPE &&
(unsigned)CC < array_lengthof(CondCodeActions) &&
"Table isn't big enough!");
/// The lower 5 bits of the SimpleTy index into Nth 2bit set from the 64bit
/// value and the upper 27 bits index into the second dimension of the
/// array to select what 64bit value to use.
CondCodeActions[(unsigned)CC][VT.SimpleTy >> 5]
&= ~(uint64_t(3UL) << (VT.SimpleTy & 0x1F)*2);
CondCodeActions[(unsigned)CC][VT.SimpleTy >> 5]
|= (uint64_t)Action << (VT.SimpleTy & 0x1F)*2;
}
/// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
/// promotion code defaults to trying a larger integer/fp until it can find
/// one that works. If that default is insufficient, this method can be used
/// by the target to override the default.
void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
}
/// setTargetDAGCombine - Targets should invoke this method for each target
/// independent node that they want to provide a custom DAG combiner for by
/// implementing the PerformDAGCombine virtual method.
void setTargetDAGCombine(ISD::NodeType NT) {
assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
}
/// setJumpBufSize - Set the target's required jmp_buf buffer size (in
/// bytes); default is 200
void setJumpBufSize(unsigned Size) {
JumpBufSize = Size;
}
/// setJumpBufAlignment - Set the target's required jmp_buf buffer
/// alignment (in bytes); default is 0
void setJumpBufAlignment(unsigned Align) {
JumpBufAlignment = Align;
}
/// setMinFunctionAlignment - Set the target's minimum function alignment (in
/// log2(bytes))
void setMinFunctionAlignment(unsigned Align) {
MinFunctionAlignment = Align;
}
/// setPrefFunctionAlignment - Set the target's preferred function alignment.
/// This should be set if there is a performance benefit to
/// higher-than-minimum alignment (in log2(bytes))
void setPrefFunctionAlignment(unsigned Align) {
PrefFunctionAlignment = Align;
}
/// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
/// alignment is zero, it means the target does not care about loop alignment.
/// The alignment is specified in log2(bytes).
void setPrefLoopAlignment(unsigned Align) {
PrefLoopAlignment = Align;
}
/// setMinStackArgumentAlignment - Set the minimum stack alignment of an
/// argument (in log2(bytes)).
void setMinStackArgumentAlignment(unsigned Align) {
MinStackArgumentAlignment = Align;
}
/// setShouldFoldAtomicFences - Set if the target's implementation of the
/// atomic operation intrinsics includes locking. Default is false.
void setShouldFoldAtomicFences(bool fold) {
ShouldFoldAtomicFences = fold;
}
/// setInsertFencesForAtomic - Set if the DAG builder should
/// automatically insert fences and reduce the order of atomic memory
/// operations to Monotonic.
void setInsertFencesForAtomic(bool fence) {
InsertFencesForAtomic = fence;
}
public:
//===--------------------------------------------------------------------===//
// Addressing mode description hooks (used by LSR etc).
//
/// GetAddrModeArguments - CodeGenPrepare sinks address calculations into the
/// same BB as Load/Store instructions reading the address. This allows as
/// much computation as possible to be done in the address mode for that
/// operand. This hook lets targets also pass back when this should be done
/// on intrinsics which load/store.
virtual bool GetAddrModeArguments(IntrinsicInst *I,
SmallVectorImpl<Value*> &Ops,
Type *&AccessTy) const {
return false;
}
/// AddrMode - This represents an addressing mode of:
/// BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
/// If BaseGV is null, there is no BaseGV.
/// If BaseOffs is zero, there is no base offset.
/// If HasBaseReg is false, there is no base register.
/// If Scale is zero, there is no ScaleReg. Scale of 1 indicates a reg with
/// no scale.
///
struct AddrMode {
GlobalValue *BaseGV;
int64_t BaseOffs;
bool HasBaseReg;
int64_t Scale;
AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
};
/// isLegalAddressingMode - Return true if the addressing mode represented by
/// AM is legal for this target, for a load/store of the specified type.
/// The type may be VoidTy, in which case only return true if the addressing
/// mode is legal for a load/store of any legal type.
/// TODO: Handle pre/postinc as well.
virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const;
/// isLegalICmpImmediate - Return true if the specified immediate is legal
/// icmp immediate, that is the target has icmp instructions which can compare
/// a register against the immediate without having to materialize the
/// immediate into a register.
virtual bool isLegalICmpImmediate(int64_t) const {
return true;
}
/// isLegalAddImmediate - Return true if the specified immediate is legal
/// add immediate, that is the target has add instructions which can add
/// a register with the immediate without having to materialize the
/// immediate into a register.
virtual bool isLegalAddImmediate(int64_t) const {
return true;
}
/// isTruncateFree - Return true if it's free to truncate a value of
/// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
/// register EAX to i16 by referencing its sub-register AX.
virtual bool isTruncateFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
return false;
}
virtual bool isTruncateFree(EVT /*VT1*/, EVT /*VT2*/) const {
return false;
}
/// isZExtFree - Return true if any actual instruction that defines a
/// value of type Ty1 implicitly zero-extends the value to Ty2 in the result
/// register. This does not necessarily include registers defined in
/// unknown ways, such as incoming arguments, or copies from unknown
/// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
/// does not necessarily apply to truncate instructions. e.g. on x86-64,
/// all instructions that define 32-bit values implicit zero-extend the
/// result out to 64 bits.
virtual bool isZExtFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
return false;
}
virtual bool isZExtFree(EVT /*VT1*/, EVT /*VT2*/) const {
return false;
}
/// isZExtFree - Return true if zero-extending the specific node Val to type
/// VT2 is free (either because it's implicitly zero-extended such as ARM
/// ldrb / ldrh or because it's folded such as X86 zero-extending loads).
virtual bool isZExtFree(SDValue Val, EVT VT2) const {
return isZExtFree(Val.getValueType(), VT2);
}
/// isFNegFree - Return true if an fneg operation is free to the point where
/// it is never worthwhile to replace it with a bitwise operation.
virtual bool isFNegFree(EVT) const {
return false;
}
/// isFAbsFree - Return true if an fneg operation is free to the point where
/// it is never worthwhile to replace it with a bitwise operation.
virtual bool isFAbsFree(EVT) const {
return false;
}
/// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than
/// a pair of mul and add instructions. fmuladd intrinsics will be expanded to
/// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd
/// is expanded to mul + add.
virtual bool isFMAFasterThanMulAndAdd(EVT) const {
return false;
}
/// isNarrowingProfitable - Return true if it's profitable to narrow
/// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
/// from i32 to i8 but not from i32 to i16.
virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
return false;
}
//===--------------------------------------------------------------------===//
// Runtime Library hooks
//
/// setLibcallName - Rename the default libcall routine name for the specified
/// libcall.
void setLibcallName(RTLIB::Libcall Call, const char *Name) {
LibcallRoutineNames[Call] = Name;
}
/// getLibcallName - Get the libcall routine name for the specified libcall.
///
const char *getLibcallName(RTLIB::Libcall Call) const {
return LibcallRoutineNames[Call];
}
/// setCmpLibcallCC - Override the default CondCode to be used to test the
/// result of the comparison libcall against zero.
void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
CmpLibcallCCs[Call] = CC;
}
/// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
/// the comparison libcall against zero.
ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
return CmpLibcallCCs[Call];
}
/// setLibcallCallingConv - Set the CallingConv that should be used for the
/// specified libcall.
void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
LibcallCallingConvs[Call] = CC;
}
/// getLibcallCallingConv - Get the CallingConv that should be used for the
/// specified libcall.
CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
return LibcallCallingConvs[Call];
}
private:
const TargetMachine &TM;
const DataLayout *TD;
const TargetLoweringObjectFile &TLOF;
/// PointerTy - The type to use for pointers for the default address space,
/// usually i32 or i64.
///
MVT PointerTy;
/// IsLittleEndian - True if this is a little endian target.
///
bool IsLittleEndian;
/// SelectIsExpensive - Tells the code generator not to expand operations
/// into sequences that use the select operations if possible.
bool SelectIsExpensive;
/// IntDivIsCheap - Tells the code generator not to expand integer divides by
/// constants into a sequence of muls, adds, and shifts. This is a hack until
/// a real cost model is in place. If we ever optimize for size, this will be
/// set to true unconditionally.
bool IntDivIsCheap;
/// BypassSlowDivMap - Tells the code generator to bypass slow divide or
/// remainder instructions. For example, BypassSlowDivWidths[32,8] tells the
/// code generator to bypass 32-bit integer div/rem with an 8-bit unsigned
/// integer div/rem when the operands are positive and less than 256.
DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
/// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
/// srl/add/sra for a signed divide by power of two, and let the target handle
/// it.
bool Pow2DivIsCheap;
/// JumpIsExpensive - Tells the code generator that it shouldn't generate
/// extra flow control instructions and should attempt to combine flow
/// control instructions via predication.
bool JumpIsExpensive;
/// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
/// llvm.setjmp. Defaults to false.
bool UseUnderscoreSetJmp;
/// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
/// llvm.longjmp. Defaults to false.
bool UseUnderscoreLongJmp;
/// SupportJumpTables - Whether the target can generate code for jumptables.
/// If it's not true, then each jumptable must be lowered into if-then-else's.
bool SupportJumpTables;
/// MinimumJumpTableEntries - Number of blocks threshold to use jump tables.
int MinimumJumpTableEntries;
/// BooleanContents - Information about the contents of the high-bits in
/// boolean values held in a type wider than i1. See getBooleanContents.
BooleanContent BooleanContents;
/// BooleanVectorContents - Information about the contents of the high-bits
/// in boolean vector values when the element type is wider than i1. See
/// getBooleanContents.
BooleanContent BooleanVectorContents;
/// SchedPreferenceInfo - The target scheduling preference: shortest possible
/// total cycles or lowest register usage.
Sched::Preference SchedPreferenceInfo;
/// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
unsigned JumpBufSize;
/// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
/// buffers
unsigned JumpBufAlignment;
/// MinStackArgumentAlignment - The minimum alignment that any argument
/// on the stack needs to have.
///
unsigned MinStackArgumentAlignment;
/// MinFunctionAlignment - The minimum function alignment (used when
/// optimizing for size, and to prevent explicitly provided alignment
/// from leading to incorrect code).
///
unsigned MinFunctionAlignment;
/// PrefFunctionAlignment - The preferred function alignment (used when
/// alignment unspecified and optimizing for speed).
///
unsigned PrefFunctionAlignment;
/// PrefLoopAlignment - The preferred loop alignment.
///
unsigned PrefLoopAlignment;
/// ShouldFoldAtomicFences - Whether fencing MEMBARRIER instructions should
/// be folded into the enclosed atomic intrinsic instruction by the
/// combiner.
bool ShouldFoldAtomicFences;
/// InsertFencesForAtomic - Whether the DAG builder should automatically
/// insert fences and reduce ordering for atomics. (This will be set for
/// for most architectures with weak memory ordering.)
bool InsertFencesForAtomic;
/// StackPointerRegisterToSaveRestore - If set to a physical register, this
/// specifies the register that llvm.savestack/llvm.restorestack should save
/// and restore.
unsigned StackPointerRegisterToSaveRestore;
/// ExceptionPointerRegister - If set to a physical register, this specifies
/// the register that receives the exception address on entry to a landing
/// pad.
unsigned ExceptionPointerRegister;
/// ExceptionSelectorRegister - If set to a physical register, this specifies
/// the register that receives the exception typeid on entry to a landing
/// pad.
unsigned ExceptionSelectorRegister;
/// RegClassForVT - This indicates the default register class to use for
/// each ValueType the target supports natively.
const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
MVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
/// RepRegClassForVT - This indicates the "representative" register class to
/// use for each ValueType the target supports natively. This information is
/// used by the scheduler to track register pressure. By default, the
/// representative register class is the largest legal super-reg register
/// class of the register class of the specified type. e.g. On x86, i8, i16,
/// and i32's representative class would be GR32.
const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
/// RepRegClassCostForVT - This indicates the "cost" of the "representative"
/// register class for each ValueType. The cost is used by the scheduler to
/// approximate register pressure.
uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
/// TransformToType - For any value types we are promoting or expanding, this
/// contains the value type that we are changing to. For Expanded types, this
/// contains one step of the expand (e.g. i64 -> i32), even if there are
/// multiple steps required (e.g. i64 -> i16). For types natively supported
/// by the system, this holds the same type (e.g. i32 -> i32).
MVT TransformToType[MVT::LAST_VALUETYPE];
/// OpActions - For each operation and each value type, keep a LegalizeAction
/// that indicates how instruction selection should deal with the operation.
/// Most operations are Legal (aka, supported natively by the target), but
/// operations that are not should be described. Note that operations on
/// non-legal value types are not described here.
uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
/// LoadExtActions - For each load extension type and each value type,
/// keep a LegalizeAction that indicates how instruction selection should deal
/// with a load of a specific value type and extension type.
uint8_t LoadExtActions[MVT::LAST_VALUETYPE][ISD::LAST_LOADEXT_TYPE];
/// TruncStoreActions - For each value type pair keep a LegalizeAction that
/// indicates whether a truncating store of a specific value type and
/// truncating type is legal.
uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
/// IndexedModeActions - For each indexed mode and each value type,
/// keep a pair of LegalizeAction that indicates how instruction
/// selection should deal with the load / store. The first dimension is the
/// value_type for the reference. The second dimension represents the various
/// modes for load store.
uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
/// CondCodeActions - For each condition code (ISD::CondCode) keep a
/// LegalizeAction that indicates how instruction selection should
/// deal with the condition code.
/// Because each CC action takes up 2 bits, we need to have the array size
/// be large enough to fit all of the value types. This can be done by
/// dividing the MVT::LAST_VALUETYPE by 32 and adding one.
uint64_t CondCodeActions[ISD::SETCC_INVALID][(MVT::LAST_VALUETYPE / 32) + 1];
ValueTypeActionImpl ValueTypeActions;
public:
LegalizeKind
getTypeConversion(LLVMContext &Context, EVT VT) const {
// If this is a simple type, use the ComputeRegisterProp mechanism.
if (VT.isSimple()) {
MVT SVT = VT.getSimpleVT();
assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
MVT NVT = TransformToType[SVT.SimpleTy];
LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
assert(
(LA == TypeLegal ||
ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)
&& "Promote may not follow Expand or Promote");
if (LA == TypeSplitVector)
return LegalizeKind(LA, EVT::getVectorVT(Context,
SVT.getVectorElementType(),
SVT.getVectorNumElements()/2));
if (LA == TypeScalarizeVector)
return LegalizeKind(LA, SVT.getVectorElementType());
return LegalizeKind(LA, NVT);
}
// Handle Extended Scalar Types.
if (!VT.isVector()) {
assert(VT.isInteger() && "Float types must be simple");
unsigned BitSize = VT.getSizeInBits();
// First promote to a power-of-two size, then expand if necessary.
if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
EVT NVT = VT.getRoundIntegerType(Context);
assert(NVT != VT && "Unable to round integer VT");
LegalizeKind NextStep = getTypeConversion(Context, NVT);
// Avoid multi-step promotion.
if (NextStep.first == TypePromoteInteger) return NextStep;
// Return rounded integer type.
return LegalizeKind(TypePromoteInteger, NVT);
}
return LegalizeKind(TypeExpandInteger,
EVT::getIntegerVT(Context, VT.getSizeInBits()/2));
}
// Handle vector types.
unsigned NumElts = VT.getVectorNumElements();
EVT EltVT = VT.getVectorElementType();
// Vectors with only one element are always scalarized.
if (NumElts == 1)
return LegalizeKind(TypeScalarizeVector, EltVT);
// Try to widen vector elements until a legal type is found.
if (EltVT.isInteger()) {
// Vectors with a number of elements that is not a power of two are always
// widened, for example <3 x float> -> <4 x float>.
if (!VT.isPow2VectorType()) {
NumElts = (unsigned)NextPowerOf2(NumElts);
EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
return LegalizeKind(TypeWidenVector, NVT);
}
// Examine the element type.
LegalizeKind LK = getTypeConversion(Context, EltVT);
// If type is to be expanded, split the vector.
// <4 x i140> -> <2 x i140>
if (LK.first == TypeExpandInteger)
return LegalizeKind(TypeSplitVector,
EVT::getVectorVT(Context, EltVT, NumElts / 2));
// Promote the integer element types until a legal vector type is found
// or until the element integer type is too big. If a legal type was not
// found, fallback to the usual mechanism of widening/splitting the
// vector.
while (1) {
// Increase the bitwidth of the element to the next pow-of-two
// (which is greater than 8 bits).
EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()
).getRoundIntegerType(Context);
// Stop trying when getting a non-simple element type.
// Note that vector elements may be greater than legal vector element
// types. Example: X86 XMM registers hold 64bit element on 32bit systems.
if (!EltVT.isSimple()) break;
// Build a new vector type and check if it is legal.
MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
// Found a legal promoted vector type.
if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
return LegalizeKind(TypePromoteInteger,
EVT::getVectorVT(Context, EltVT, NumElts));
}
}
// Try to widen the vector until a legal type is found.
// If there is no wider legal type, split the vector.
while (1) {
// Round up to the next power of 2.
NumElts = (unsigned)NextPowerOf2(NumElts);
// If there is no simple vector type with this many elements then there
// cannot be a larger legal vector type. Note that this assumes that
// there are no skipped intermediate vector types in the simple types.
if (!EltVT.isSimple()) break;
MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
if (LargerVector == MVT()) break;
// If this type is legal then widen the vector.
if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
return LegalizeKind(TypeWidenVector, LargerVector);
}
// Widen odd vectors to next power of two.
if (!VT.isPow2VectorType()) {
EVT NVT = VT.getPow2VectorType(Context);
return LegalizeKind(TypeWidenVector, NVT);
}
// Vectors with illegal element types are expanded.
EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
return LegalizeKind(TypeSplitVector, NVT);
}
private:
std::vector<std::pair<MVT, const TargetRegisterClass*> > AvailableRegClasses;
/// TargetDAGCombineArray - Targets can specify ISD nodes that they would
/// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
/// which sets a bit in this array.
unsigned char
TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
/// PromoteToType - For operations that must be promoted to a specific type,
/// this holds the destination type. This map should be sparse, so don't hold
/// it as an array.
///
/// Targets add entries to this map with AddPromotedToType(..), clients access
/// this with getTypeToPromoteTo(..).
std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
PromoteToType;
/// LibcallRoutineNames - Stores the name each libcall.
///
const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
/// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
/// of each of the comparison libcall against zero.
ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
/// LibcallCallingConvs - Stores the CallingConv that should be used for each
/// libcall.
CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
protected:
/// When lowering \@llvm.memset this field specifies the maximum number of
/// store operations that may be substituted for the call to memset. Targets
/// must set this value based on the cost threshold for that target. Targets
/// should assume that the memset will be done using as many of the largest
/// store operations first, followed by smaller ones, if necessary, per
/// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
/// with 16-bit alignment would result in four 2-byte stores and one 1-byte
/// store. This only applies to setting a constant array of a constant size.
/// @brief Specify maximum number of store instructions per memset call.
unsigned MaxStoresPerMemset;
/// Maximum number of stores operations that may be substituted for the call
/// to memset, used for functions with OptSize attribute.
unsigned MaxStoresPerMemsetOptSize;
/// When lowering \@llvm.memcpy this field specifies the maximum number of
/// store operations that may be substituted for a call to memcpy. Targets
/// must set this value based on the cost threshold for that target. Targets
/// should assume that the memcpy will be done using as many of the largest
/// store operations first, followed by smaller ones, if necessary, per
/// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
/// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
/// and one 1-byte store. This only applies to copying a constant array of
/// constant size.
/// @brief Specify maximum bytes of store instructions per memcpy call.
unsigned MaxStoresPerMemcpy;
/// Maximum number of store operations that may be substituted for a call
/// to memcpy, used for functions with OptSize attribute.
unsigned MaxStoresPerMemcpyOptSize;
/// When lowering \@llvm.memmove this field specifies the maximum number of
/// store instructions that may be substituted for a call to memmove. Targets
/// must set this value based on the cost threshold for that target. Targets
/// should assume that the memmove will be done using as many of the largest
/// store operations first, followed by smaller ones, if necessary, per
/// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
/// with 8-bit alignment would result in nine 1-byte stores. This only
/// applies to copying a constant array of constant size.
/// @brief Specify maximum bytes of store instructions per memmove call.
unsigned MaxStoresPerMemmove;
/// Maximum number of store instructions that may be substituted for a call
/// to memmove, used for functions with OpSize attribute.
unsigned MaxStoresPerMemmoveOptSize;
/// PredictableSelectIsExpensive - Tells the code generator that select is
/// more expensive than a branch if the branch is usually predicted right.
bool PredictableSelectIsExpensive;
protected:
/// isLegalRC - Return true if the value types that can be represented by the
/// specified register class are all legal.
bool isLegalRC(const TargetRegisterClass *RC) const;
};
//===----------------------------------------------------------------------===//
/// TargetLowering - This class defines information used to lower LLVM code to
/// legal SelectionDAG operators that the target instruction selector can accept
/// natively.
///
/// This class also defines callbacks that targets must implement to lower
/// target-specific constructs to SelectionDAG operators.
///
class TargetLowering : public TargetLoweringBase {
TargetLowering(const TargetLowering&) LLVM_DELETED_FUNCTION;
void operator=(const TargetLowering&) LLVM_DELETED_FUNCTION;
public:
/// NOTE: The constructor takes ownership of TLOF.
explicit TargetLowering(const TargetMachine &TM,
const TargetLoweringObjectFile *TLOF);
/// getPreIndexedAddressParts - returns true by value, base pointer and
/// offset pointer and addressing mode by reference if the node's address
/// can be legally represented as pre-indexed load / store address.
virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
SDValue &/*Offset*/,
ISD::MemIndexedMode &/*AM*/,
SelectionDAG &/*DAG*/) const {
return false;
}
/// getPostIndexedAddressParts - returns true by value, base pointer and
/// offset pointer and addressing mode by reference if this node can be
/// combined with a load / store to form a post-indexed load / store.
virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
SDValue &/*Base*/, SDValue &/*Offset*/,
ISD::MemIndexedMode &/*AM*/,
SelectionDAG &/*DAG*/) const {
return false;
}
/// getJumpTableEncoding - Return the entry encoding for a jump table in the
/// current function. The returned value is a member of the
/// MachineJumpTableInfo::JTEntryKind enum.
virtual unsigned getJumpTableEncoding() const;
virtual const MCExpr *
LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
MCContext &/*Ctx*/) const {
llvm_unreachable("Need to implement this hook if target has custom JTIs");
}
/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
/// jumptable.
virtual SDValue getPICJumpTableRelocBase(SDValue Table,
SelectionDAG &DAG) const;
/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
/// MCExpr.
virtual const MCExpr *
getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
unsigned JTI, MCContext &Ctx) const;
/// isOffsetFoldingLegal - Return true if folding a constant offset
/// with the given GlobalAddress is legal. It is frequently not legal in
/// PIC relocation models.
virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
SDValue &Chain) const;
void softenSetCCOperands(SelectionDAG &DAG, EVT VT,
SDValue &NewLHS, SDValue &NewRHS,
ISD::CondCode &CCCode, DebugLoc DL) const;
SDValue makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
const SDValue *Ops, unsigned NumOps,
bool isSigned, DebugLoc dl) const;
//===--------------------------------------------------------------------===//
// TargetLowering Optimization Methods
//
/// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
/// SDValues for returning information from TargetLowering to its clients
/// that want to combine
struct TargetLoweringOpt {
SelectionDAG &DAG;
bool LegalTys;
bool LegalOps;
SDValue Old;
SDValue New;
explicit TargetLoweringOpt(SelectionDAG &InDAG,
bool LT, bool LO) :
DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
bool LegalTypes() const { return LegalTys; }
bool LegalOperations() const { return LegalOps; }
bool CombineTo(SDValue O, SDValue N) {
Old = O;
New = N;
return true;
}
/// ShrinkDemandedConstant - Check to see if the specified operand of the
/// specified instruction is a constant integer. If so, check to see if
/// there are any bits set in the constant that are not demanded. If so,
/// shrink the constant and return true.
bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
/// casts are free. This uses isZExtFree and ZERO_EXTEND for the widening
/// cast, but it could be generalized for targets with other types of
/// implicit widening casts.
bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
DebugLoc dl);
};
/// SimplifyDemandedBits - Look at Op. At this point, we know that only the
/// DemandedMask bits of the result of Op are ever used downstream. If we can
/// use this information to simplify Op, create a new simplified DAG node and
/// return true, returning the original and new nodes in Old and New.
/// Otherwise, analyze the expression and return a mask of KnownOne and
/// KnownZero bits for the expression (used to simplify the caller).
/// The KnownZero/One bits may only be accurate for those bits in the
/// DemandedMask.
bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
APInt &KnownZero, APInt &KnownOne,
TargetLoweringOpt &TLO, unsigned Depth = 0) const;
/// computeMaskedBitsForTargetNode - Determine which of the bits specified in
/// Mask are known to be either zero or one and return them in the
/// KnownZero/KnownOne bitsets.
virtual void computeMaskedBitsForTargetNode(const SDValue Op,
APInt &KnownZero,
APInt &KnownOne,
const SelectionDAG &DAG,
unsigned Depth = 0) const;
/// ComputeNumSignBitsForTargetNode - This method can be implemented by
/// targets that want to expose additional information about sign bits to the
/// DAG Combiner.
virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
unsigned Depth = 0) const;
struct DAGCombinerInfo {
void *DC; // The DAG Combiner object.
CombineLevel Level;
bool CalledByLegalizer;
public:
SelectionDAG &DAG;
DAGCombinerInfo(SelectionDAG &dag, CombineLevel level, bool cl, void *dc)
: DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {}
bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; }
bool isBeforeLegalizeOps() const { return Level < AfterLegalizeVectorOps; }
bool isAfterLegalizeVectorOps() const {
return Level == AfterLegalizeDAG;
}
CombineLevel getDAGCombineLevel() { return Level; }
bool isCalledByLegalizer() const { return CalledByLegalizer; }
void AddToWorklist(SDNode *N);
void RemoveFromWorklist(SDNode *N);
SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
bool AddTo = true);
SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
};
/// SimplifySetCC - Try to simplify a setcc built with the specified operands
/// and cc. If it is unable to simplify it, return a null SDValue.
SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
ISD::CondCode Cond, bool foldBooleans,
DAGCombinerInfo &DCI, DebugLoc dl) const;
/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
/// node is a GlobalAddress + offset.
virtual bool
isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
/// PerformDAGCombine - This method will be invoked for all target nodes and
/// for any target-independent nodes that the target has registered with
/// invoke it for.
///
/// The semantics are as follows:
/// Return Value:
/// SDValue.Val == 0 - No change was made
/// SDValue.Val == N - N was replaced, is dead, and is already handled.
/// otherwise - N should be replaced by the returned Operand.
///
/// In addition, methods provided by DAGCombinerInfo may be used to perform
/// more complex transformations.
///
virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
/// isTypeDesirableForOp - Return true if the target has native support for
/// the specified value type and it is 'desirable' to use the type for the
/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
/// instruction encodings are longer and some i16 instructions are slow.
virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
// By default, assume all legal types are desirable.
return isTypeLegal(VT);
}
/// isDesirableToPromoteOp - Return true if it is profitable for dag combiner
/// to transform a floating point op of specified opcode to a equivalent op of
/// an integer type. e.g. f32 load -> i32 load can be profitable on ARM.
virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
EVT /*VT*/) const {
return false;
}
/// IsDesirableToPromoteOp - This method query the target whether it is
/// beneficial for dag combiner to promote the specified node. If true, it
/// should return the desired promotion type by reference.
virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
return false;
}
//===--------------------------------------------------------------------===//
// Lowering methods - These methods must be implemented by targets so that
// the SelectionDAGBuilder code knows how to lower these.
//
/// LowerFormalArguments - This hook must be implemented to lower the
/// incoming (formal) arguments, described by the Ins array, into the
/// specified DAG. The implementation should fill in the InVals array
/// with legal-type argument values, and return the resulting token
/// chain value.
///
virtual SDValue
LowerFormalArguments(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
bool /*isVarArg*/,
const SmallVectorImpl<ISD::InputArg> &/*Ins*/,
DebugLoc /*dl*/, SelectionDAG &/*DAG*/,
SmallVectorImpl<SDValue> &/*InVals*/) const {
llvm_unreachable("Not Implemented");
}
struct ArgListEntry {
SDValue Node;
Type* Ty;
bool isSExt : 1;
bool isZExt : 1;
bool isInReg : 1;
bool isSRet : 1;
bool isNest : 1;
bool isByVal : 1;
uint16_t Alignment;
ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
};
typedef std::vector<ArgListEntry> ArgListTy;
/// CallLoweringInfo - This structure contains all information that is
/// necessary for lowering calls. It is passed to TLI::LowerCallTo when the
/// SelectionDAG builder needs to lower a call, and targets will see this
/// struct in their LowerCall implementation.
struct CallLoweringInfo {
SDValue Chain;
Type *RetTy;
bool RetSExt : 1;
bool RetZExt : 1;
bool IsVarArg : 1;
bool IsInReg : 1;
bool DoesNotReturn : 1;
bool IsReturnValueUsed : 1;
// IsTailCall should be modified by implementations of
// TargetLowering::LowerCall that perform tail call conversions.
bool IsTailCall;
unsigned NumFixedArgs;
CallingConv::ID CallConv;
SDValue Callee;
ArgListTy &Args;
SelectionDAG &DAG;
DebugLoc DL;
ImmutableCallSite *CS;
SmallVector<ISD::OutputArg, 32> Outs;
SmallVector<SDValue, 32> OutVals;
SmallVector<ISD::InputArg, 32> Ins;
/// CallLoweringInfo - Constructs a call lowering context based on the
/// ImmutableCallSite \p cs.
CallLoweringInfo(SDValue chain, Type *retTy,
FunctionType *FTy, bool isTailCall, SDValue callee,
ArgListTy &args, SelectionDAG &dag, DebugLoc dl,
ImmutableCallSite &cs)
: Chain(chain), RetTy(retTy), RetSExt(cs.paramHasAttr(0, Attribute::SExt)),
RetZExt(cs.paramHasAttr(0, Attribute::ZExt)), IsVarArg(FTy->isVarArg()),
IsInReg(cs.paramHasAttr(0, Attribute::InReg)),
DoesNotReturn(cs.doesNotReturn()),
IsReturnValueUsed(!cs.getInstruction()->use_empty()),
IsTailCall(isTailCall), NumFixedArgs(FTy->getNumParams()),
CallConv(cs.getCallingConv()), Callee(callee), Args(args), DAG(dag),
DL(dl), CS(&cs) {}
/// CallLoweringInfo - Constructs a call lowering context based on the
/// provided call information.
CallLoweringInfo(SDValue chain, Type *retTy, bool retSExt, bool retZExt,
bool isVarArg, bool isInReg, unsigned numFixedArgs,
CallingConv::ID callConv, bool isTailCall,
bool doesNotReturn, bool isReturnValueUsed, SDValue callee,
ArgListTy &args, SelectionDAG &dag, DebugLoc dl)
: Chain(chain), RetTy(retTy), RetSExt(retSExt), RetZExt(retZExt),
IsVarArg(isVarArg), IsInReg(isInReg), DoesNotReturn(doesNotReturn),
IsReturnValueUsed(isReturnValueUsed), IsTailCall(isTailCall),
NumFixedArgs(numFixedArgs), CallConv(callConv), Callee(callee),
Args(args), DAG(dag), DL(dl), CS(NULL) {}
};
/// LowerCallTo - This function lowers an abstract call to a function into an
/// actual call. This returns a pair of operands. The first element is the
/// return value for the function (if RetTy is not VoidTy). The second
/// element is the outgoing token chain. It calls LowerCall to do the actual
/// lowering.
std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
/// LowerCall - This hook must be implemented to lower calls into the
/// the specified DAG. The outgoing arguments to the call are described
/// by the Outs array, and the values to be returned by the call are
/// described by the Ins array. The implementation should fill in the
/// InVals array with legal-type return values from the call, and return
/// the resulting token chain value.
virtual SDValue
LowerCall(CallLoweringInfo &/*CLI*/,
SmallVectorImpl<SDValue> &/*InVals*/) const {
llvm_unreachable("Not Implemented");
}
/// HandleByVal - Target-specific cleanup for formal ByVal parameters.
virtual void HandleByVal(CCState *, unsigned &, unsigned) const {}
/// CanLowerReturn - This hook should be implemented to check whether the
/// return values described by the Outs array can fit into the return
/// registers. If false is returned, an sret-demotion is performed.
///
virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
MachineFunction &/*MF*/, bool /*isVarArg*/,
const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
LLVMContext &/*Context*/) const
{
// Return true by default to get preexisting behavior.
return true;
}
/// LowerReturn - This hook must be implemented to lower outgoing
/// return values, described by the Outs array, into the specified
/// DAG. The implementation should return the resulting token chain
/// value.
///
virtual SDValue
LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
bool /*isVarArg*/,
const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
const SmallVectorImpl<SDValue> &/*OutVals*/,
DebugLoc /*dl*/, SelectionDAG &/*DAG*/) const {
llvm_unreachable("Not Implemented");
}
/// isUsedByReturnOnly - Return true if result of the specified node is used
/// by a return node only. It also compute and return the input chain for the
/// tail call.
/// This is used to determine whether it is possible
/// to codegen a libcall as tail call at legalization time.
virtual bool isUsedByReturnOnly(SDNode *, SDValue &Chain) const {
return false;
}
/// mayBeEmittedAsTailCall - Return true if the target may be able emit the
/// call instruction as a tail call. This is used by optimization passes to
/// determine if it's profitable to duplicate return instructions to enable
/// tailcall optimization.
virtual bool mayBeEmittedAsTailCall(CallInst *) const {
return false;
}
/// getTypeForExtArgOrReturn - Return the type that should be used to zero or
/// sign extend a zeroext/signext integer argument or return value.
/// FIXME: Most C calling convention requires the return type to be promoted,
/// but this is not true all the time, e.g. i1 on x86-64. It is also not
/// necessary for non-C calling conventions. The frontend should handle this
/// and include all of the necessary information.
virtual MVT getTypeForExtArgOrReturn(MVT VT,
ISD::NodeType /*ExtendKind*/) const {
MVT MinVT = getRegisterType(MVT::i32);
return VT.bitsLT(MinVT) ? MinVT : VT;
}
/// LowerOperationWrapper - This callback is invoked by the type legalizer
/// to legalize nodes with an illegal operand type but legal result types.
/// It replaces the LowerOperation callback in the type Legalizer.
/// The reason we can not do away with LowerOperation entirely is that
/// LegalizeDAG isn't yet ready to use this callback.
/// TODO: Consider merging with ReplaceNodeResults.
/// The target places new result values for the node in Results (their number
/// and types must exactly match those of the original return values of
/// the node), or leaves Results empty, which indicates that the node is not
/// to be custom lowered after all.
/// The default implementation calls LowerOperation.
virtual void LowerOperationWrapper(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const;
/// LowerOperation - This callback is invoked for operations that are
/// unsupported by the target, which are registered to use 'custom' lowering,
/// and whose defined values are all legal.
/// If the target has no operations that require custom lowering, it need not
/// implement this. The default implementation of this aborts.
virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
/// ReplaceNodeResults - This callback is invoked when a node result type is
/// illegal for the target, and the operation was registered to use 'custom'
/// lowering for that result type. The target places new result values for
/// the node in Results (their number and types must exactly match those of
/// the original return values of the node), or leaves Results empty, which
/// indicates that the node is not to be custom lowered after all.
///
/// If the target has no operations that require custom lowering, it need not
/// implement this. The default implementation aborts.
virtual void ReplaceNodeResults(SDNode * /*N*/,
SmallVectorImpl<SDValue> &/*Results*/,
SelectionDAG &/*DAG*/) const {
llvm_unreachable("ReplaceNodeResults not implemented for this target!");
}
/// getTargetNodeName() - This method returns the name of a target specific
/// DAG node.
virtual const char *getTargetNodeName(unsigned Opcode) const;
/// createFastISel - This method returns a target specific FastISel object,
/// or null if the target does not support "fast" ISel.
virtual FastISel *createFastISel(FunctionLoweringInfo &,
const TargetLibraryInfo *) const {
return 0;
}
//===--------------------------------------------------------------------===//
// Inline Asm Support hooks
//
/// ExpandInlineAsm - This hook allows the target to expand an inline asm
/// call to be explicit llvm code if it wants to. This is useful for
/// turning simple inline asms into LLVM intrinsics, which gives the
/// compiler more information about the behavior of the code.
virtual bool ExpandInlineAsm(CallInst *) const {
return false;
}
enum ConstraintType {
C_Register, // Constraint represents specific register(s).
C_RegisterClass, // Constraint represents any of register(s) in class.
C_Memory, // Memory constraint.
C_Other, // Something else.
C_Unknown // Unsupported constraint.
};
enum ConstraintWeight {
// Generic weights.
CW_Invalid = -1, // No match.
CW_Okay = 0, // Acceptable.
CW_Good = 1, // Good weight.
CW_Better = 2, // Better weight.
CW_Best = 3, // Best weight.
// Well-known weights.
CW_SpecificReg = CW_Okay, // Specific register operands.
CW_Register = CW_Good, // Register operands.
CW_Memory = CW_Better, // Memory operands.
CW_Constant = CW_Best, // Constant operand.
CW_Default = CW_Okay // Default or don't know type.
};
/// AsmOperandInfo - This contains information for each constraint that we are
/// lowering.
struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
/// ConstraintCode - This contains the actual string for the code, like "m".
/// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
/// most closely matches the operand.
std::string ConstraintCode;
/// ConstraintType - Information about the constraint code, e.g. Register,
/// RegisterClass, Memory, Other, Unknown.
TargetLowering::ConstraintType ConstraintType;
/// CallOperandval - If this is the result output operand or a
/// clobber, this is null, otherwise it is the incoming operand to the
/// CallInst. This gets modified as the asm is processed.
Value *CallOperandVal;
/// ConstraintVT - The ValueType for the operand value.
MVT ConstraintVT;
/// isMatchingInputConstraint - Return true of this is an input operand that
/// is a matching constraint like "4".
bool isMatchingInputConstraint() const;
/// getMatchedOperand - If this is an input matching constraint, this method
/// returns the output operand it matches.
unsigned getMatchedOperand() const;
/// Copy constructor for copying from an AsmOperandInfo.
AsmOperandInfo(const AsmOperandInfo &info)
: InlineAsm::ConstraintInfo(info),
ConstraintCode(info.ConstraintCode),
ConstraintType(info.ConstraintType),
CallOperandVal(info.CallOperandVal),
ConstraintVT(info.ConstraintVT) {
}
/// Copy constructor for copying from a ConstraintInfo.
AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
: InlineAsm::ConstraintInfo(info),
ConstraintType(TargetLowering::C_Unknown),
CallOperandVal(0), ConstraintVT(MVT::Other) {
}
};
typedef std::vector<AsmOperandInfo> AsmOperandInfoVector;
/// ParseConstraints - Split up the constraint string from the inline
/// assembly value into the specific constraints and their prefixes,
/// and also tie in the associated operand values.
/// If this returns an empty vector, and if the constraint string itself
/// isn't empty, there was an error parsing.
virtual AsmOperandInfoVector ParseConstraints(ImmutableCallSite CS) const;
/// Examine constraint type and operand type and determine a weight value.
/// The operand object must already have been set up with the operand type.
virtual ConstraintWeight getMultipleConstraintMatchWeight(
AsmOperandInfo &info, int maIndex) const;
/// Examine constraint string and operand type and determine a weight value.
/// The operand object must already have been set up with the operand type.
virtual ConstraintWeight getSingleConstraintMatchWeight(
AsmOperandInfo &info, const char *constraint) const;
/// ComputeConstraintToUse - Determines the constraint code and constraint
/// type to use for the specific AsmOperandInfo, setting
/// OpInfo.ConstraintCode and OpInfo.ConstraintType. If the actual operand
/// being passed in is available, it can be passed in as Op, otherwise an
/// empty SDValue can be passed.
virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
SDValue Op,
SelectionDAG *DAG = 0) const;
/// getConstraintType - Given a constraint, return the type of constraint it
/// is for this target.
virtual ConstraintType getConstraintType(const std::string &Constraint) const;
/// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
/// {edx}), return the register number and the register class for the
/// register.
///
/// Given a register class constraint, like 'r', if this corresponds directly
/// to an LLVM register class, return a register of 0 and the register class
/// pointer.
///
/// This should only be used for C_Register constraints. On error,
/// this returns a register number of 0 and a null register class pointer..
virtual std::pair<unsigned, const TargetRegisterClass*>
getRegForInlineAsmConstraint(const std::string &Constraint,
EVT VT) const;
/// LowerXConstraint - try to replace an X constraint, which matches anything,
/// with another that has more specific requirements based on the type of the
/// corresponding operand. This returns null if there is no replacement to
/// make.
virtual const char *LowerXConstraint(EVT ConstraintVT) const;
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
/// vector. If it is invalid, don't add anything to Ops.
virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
std::vector<SDValue> &Ops,
SelectionDAG &DAG) const;
//===--------------------------------------------------------------------===//
// Div utility functions
//
SDValue BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl,
SelectionDAG &DAG) const;
SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
std::vector<SDNode*> *Created) const;
SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
std::vector<SDNode*> *Created) const;
//===--------------------------------------------------------------------===//
// Instruction Emitting Hooks
//
// EmitInstrWithCustomInserter - This method should be implemented by targets
// that mark instructions with the 'usesCustomInserter' flag. These
// instructions are special in various ways, which require special support to
// insert. The specified MachineInstr is created but not inserted into any
// basic blocks, and this method is called to expand it into a sequence of
// instructions, potentially also creating new basic blocks and control flow.
virtual MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
/// AdjustInstrPostInstrSelection - This method should be implemented by
/// targets that mark instructions with the 'hasPostISelHook' flag. These
/// instructions must be adjusted after instruction selection by target hooks.
/// e.g. To fill in optional defs for ARM 's' setting instructions.
virtual void
AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const;
};
/// GetReturnInfo - Given an LLVM IR type and return type attributes,
/// compute the return value EVTs and flags, and optionally also
/// the offsets, if the return value is being lowered to memory.
void GetReturnInfo(Type* ReturnType, AttributeSet attr,
SmallVectorImpl<ISD::OutputArg> &Outs,
const TargetLowering &TLI);
} // end llvm namespace
#endif