llvm-6502/lib/VMCore/AsmWriter.cpp
Dale Johannesen 1b25cb2416 Fix internal representation of fp80 to be the
same as a normal i80 {low64, high16} rather
than its own {high64, low16}.  A depressing number
of places know about this; I think I got them all.
Bitcode readers and writers convert back to the old
form to avoid breaking compatibility.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@67562 91177308-0d34-0410-b5e6-96231b3b80d8
2009-03-23 21:16:53 +00:00

1850 lines
60 KiB
C++

//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This library implements the functionality defined in llvm/Assembly/Writer.h
//
// Note that these routines must be extremely tolerant of various errors in the
// LLVM code, because it can be used for debugging transformations.
//
//===----------------------------------------------------------------------===//
#include "llvm/Assembly/Writer.h"
#include "llvm/Assembly/PrintModulePass.h"
#include "llvm/Assembly/AsmAnnotationWriter.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/InlineAsm.h"
#include "llvm/Instruction.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/ValueSymbolTable.h"
#include "llvm/TypeSymbolTable.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cctype>
using namespace llvm;
// Make virtual table appear in this compilation unit.
AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
//===----------------------------------------------------------------------===//
// Helper Functions
//===----------------------------------------------------------------------===//
static const Module *getModuleFromVal(const Value *V) {
if (const Argument *MA = dyn_cast<Argument>(V))
return MA->getParent() ? MA->getParent()->getParent() : 0;
if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
return BB->getParent() ? BB->getParent()->getParent() : 0;
if (const Instruction *I = dyn_cast<Instruction>(V)) {
const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
return M ? M->getParent() : 0;
}
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
return GV->getParent();
return 0;
}
// PrintEscapedString - Print each character of the specified string, escaping
// it if it is not printable or if it is an escape char.
static void PrintEscapedString(const char *Str, unsigned Length,
raw_ostream &Out) {
for (unsigned i = 0; i != Length; ++i) {
unsigned char C = Str[i];
if (isprint(C) && C != '\\' && C != '"')
Out << C;
else
Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
}
}
// PrintEscapedString - Print each character of the specified string, escaping
// it if it is not printable or if it is an escape char.
static void PrintEscapedString(const std::string &Str, raw_ostream &Out) {
PrintEscapedString(Str.c_str(), Str.size(), Out);
}
enum PrefixType {
GlobalPrefix,
LabelPrefix,
LocalPrefix,
NoPrefix
};
/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
/// prefixed with % (if the string only contains simple characters) or is
/// surrounded with ""'s (if it has special chars in it). Print it out.
static void PrintLLVMName(raw_ostream &OS, const char *NameStr,
unsigned NameLen, PrefixType Prefix) {
assert(NameStr && "Cannot get empty name!");
switch (Prefix) {
default: assert(0 && "Bad prefix!");
case NoPrefix: break;
case GlobalPrefix: OS << '@'; break;
case LabelPrefix: break;
case LocalPrefix: OS << '%'; break;
}
// Scan the name to see if it needs quotes first.
bool NeedsQuotes = isdigit(NameStr[0]);
if (!NeedsQuotes) {
for (unsigned i = 0; i != NameLen; ++i) {
char C = NameStr[i];
if (!isalnum(C) && C != '-' && C != '.' && C != '_') {
NeedsQuotes = true;
break;
}
}
}
// If we didn't need any quotes, just write out the name in one blast.
if (!NeedsQuotes) {
OS.write(NameStr, NameLen);
return;
}
// Okay, we need quotes. Output the quotes and escape any scary characters as
// needed.
OS << '"';
PrintEscapedString(NameStr, NameLen, OS);
OS << '"';
}
/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
/// prefixed with % (if the string only contains simple characters) or is
/// surrounded with ""'s (if it has special chars in it). Print it out.
static void PrintLLVMName(raw_ostream &OS, const Value *V) {
PrintLLVMName(OS, V->getNameStart(), V->getNameLen(),
isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
}
//===----------------------------------------------------------------------===//
// TypePrinting Class: Type printing machinery
//===----------------------------------------------------------------------===//
static DenseMap<const Type *, std::string> &getTypeNamesMap(void *M) {
return *static_cast<DenseMap<const Type *, std::string>*>(M);
}
void TypePrinting::clear() {
getTypeNamesMap(TypeNames).clear();
}
bool TypePrinting::hasTypeName(const Type *Ty) const {
return getTypeNamesMap(TypeNames).count(Ty);
}
void TypePrinting::addTypeName(const Type *Ty, const std::string &N) {
getTypeNamesMap(TypeNames).insert(std::make_pair(Ty, N));
}
TypePrinting::TypePrinting() {
TypeNames = new DenseMap<const Type *, std::string>();
}
TypePrinting::~TypePrinting() {
delete &getTypeNamesMap(TypeNames);
}
/// CalcTypeName - Write the specified type to the specified raw_ostream, making
/// use of type names or up references to shorten the type name where possible.
void TypePrinting::CalcTypeName(const Type *Ty,
SmallVectorImpl<const Type *> &TypeStack,
raw_ostream &OS, bool IgnoreTopLevelName) {
// Check to see if the type is named.
if (!IgnoreTopLevelName) {
DenseMap<const Type *, std::string> &TM = getTypeNamesMap(TypeNames);
DenseMap<const Type *, std::string>::iterator I = TM.find(Ty);
if (I != TM.end()) {
OS << I->second;
return;
}
}
// Check to see if the Type is already on the stack...
unsigned Slot = 0, CurSize = TypeStack.size();
while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
// This is another base case for the recursion. In this case, we know
// that we have looped back to a type that we have previously visited.
// Generate the appropriate upreference to handle this.
if (Slot < CurSize) {
OS << '\\' << unsigned(CurSize-Slot); // Here's the upreference
return;
}
TypeStack.push_back(Ty); // Recursive case: Add us to the stack..
switch (Ty->getTypeID()) {
case Type::VoidTyID: OS << "void"; break;
case Type::FloatTyID: OS << "float"; break;
case Type::DoubleTyID: OS << "double"; break;
case Type::X86_FP80TyID: OS << "x86_fp80"; break;
case Type::FP128TyID: OS << "fp128"; break;
case Type::PPC_FP128TyID: OS << "ppc_fp128"; break;
case Type::LabelTyID: OS << "label"; break;
case Type::IntegerTyID:
OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
break;
case Type::FunctionTyID: {
const FunctionType *FTy = cast<FunctionType>(Ty);
CalcTypeName(FTy->getReturnType(), TypeStack, OS);
OS << " (";
for (FunctionType::param_iterator I = FTy->param_begin(),
E = FTy->param_end(); I != E; ++I) {
if (I != FTy->param_begin())
OS << ", ";
CalcTypeName(*I, TypeStack, OS);
}
if (FTy->isVarArg()) {
if (FTy->getNumParams()) OS << ", ";
OS << "...";
}
OS << ')';
break;
}
case Type::StructTyID: {
const StructType *STy = cast<StructType>(Ty);
if (STy->isPacked())
OS << '<';
OS << "{ ";
for (StructType::element_iterator I = STy->element_begin(),
E = STy->element_end(); I != E; ++I) {
CalcTypeName(*I, TypeStack, OS);
if (next(I) != STy->element_end())
OS << ',';
OS << ' ';
}
OS << '}';
if (STy->isPacked())
OS << '>';
break;
}
case Type::PointerTyID: {
const PointerType *PTy = cast<PointerType>(Ty);
CalcTypeName(PTy->getElementType(), TypeStack, OS);
if (unsigned AddressSpace = PTy->getAddressSpace())
OS << " addrspace(" << AddressSpace << ')';
OS << '*';
break;
}
case Type::ArrayTyID: {
const ArrayType *ATy = cast<ArrayType>(Ty);
OS << '[' << ATy->getNumElements() << " x ";
CalcTypeName(ATy->getElementType(), TypeStack, OS);
OS << ']';
break;
}
case Type::VectorTyID: {
const VectorType *PTy = cast<VectorType>(Ty);
OS << "<" << PTy->getNumElements() << " x ";
CalcTypeName(PTy->getElementType(), TypeStack, OS);
OS << '>';
break;
}
case Type::OpaqueTyID:
OS << "opaque";
break;
default:
OS << "<unrecognized-type>";
break;
}
TypeStack.pop_back(); // Remove self from stack.
}
/// printTypeInt - The internal guts of printing out a type that has a
/// potentially named portion.
///
void TypePrinting::print(const Type *Ty, raw_ostream &OS,
bool IgnoreTopLevelName) {
// Check to see if the type is named.
DenseMap<const Type*, std::string> &TM = getTypeNamesMap(TypeNames);
if (!IgnoreTopLevelName) {
DenseMap<const Type*, std::string>::iterator I = TM.find(Ty);
if (I != TM.end()) {
OS << I->second;
return;
}
}
// Otherwise we have a type that has not been named but is a derived type.
// Carefully recurse the type hierarchy to print out any contained symbolic
// names.
SmallVector<const Type *, 16> TypeStack;
std::string TypeName;
raw_string_ostream TypeOS(TypeName);
CalcTypeName(Ty, TypeStack, TypeOS, IgnoreTopLevelName);
OS << TypeOS.str();
// Cache type name for later use.
if (!IgnoreTopLevelName)
TM.insert(std::make_pair(Ty, TypeOS.str()));
}
namespace {
class TypeFinder {
// To avoid walking constant expressions multiple times and other IR
// objects, we keep several helper maps.
DenseSet<const Value*> VisitedConstants;
DenseSet<const Type*> VisitedTypes;
TypePrinting &TP;
std::vector<const Type*> &NumberedTypes;
public:
TypeFinder(TypePrinting &tp, std::vector<const Type*> &numberedTypes)
: TP(tp), NumberedTypes(numberedTypes) {}
void Run(const Module &M) {
// Get types from the type symbol table. This gets opaque types referened
// only through derived named types.
const TypeSymbolTable &ST = M.getTypeSymbolTable();
for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
TI != E; ++TI)
IncorporateType(TI->second);
// Get types from global variables.
for (Module::const_global_iterator I = M.global_begin(),
E = M.global_end(); I != E; ++I) {
IncorporateType(I->getType());
if (I->hasInitializer())
IncorporateValue(I->getInitializer());
}
// Get types from aliases.
for (Module::const_alias_iterator I = M.alias_begin(),
E = M.alias_end(); I != E; ++I) {
IncorporateType(I->getType());
IncorporateValue(I->getAliasee());
}
// Get types from functions.
for (Module::const_iterator FI = M.begin(), E = M.end(); FI != E; ++FI) {
IncorporateType(FI->getType());
for (Function::const_iterator BB = FI->begin(), E = FI->end();
BB != E;++BB)
for (BasicBlock::const_iterator II = BB->begin(),
E = BB->end(); II != E; ++II) {
const Instruction &I = *II;
// Incorporate the type of the instruction and all its operands.
IncorporateType(I.getType());
for (User::const_op_iterator OI = I.op_begin(), OE = I.op_end();
OI != OE; ++OI)
IncorporateValue(*OI);
}
}
}
private:
void IncorporateType(const Type *Ty) {
// Check to see if we're already visited this type.
if (!VisitedTypes.insert(Ty).second)
return;
// If this is a structure or opaque type, add a name for the type.
if ((isa<StructType>(Ty) || isa<OpaqueType>(Ty))
&& !TP.hasTypeName(Ty)) {
TP.addTypeName(Ty, "%"+utostr(unsigned(NumberedTypes.size())));
NumberedTypes.push_back(Ty);
}
// Recursively walk all contained types.
for (Type::subtype_iterator I = Ty->subtype_begin(),
E = Ty->subtype_end(); I != E; ++I)
IncorporateType(*I);
}
/// IncorporateValue - This method is used to walk operand lists finding
/// types hiding in constant expressions and other operands that won't be
/// walked in other ways. GlobalValues, basic blocks, instructions, and
/// inst operands are all explicitly enumerated.
void IncorporateValue(const Value *V) {
if (V == 0 || !isa<Constant>(V) || isa<GlobalValue>(V)) return;
// Already visited?
if (!VisitedConstants.insert(V).second)
return;
// Check this type.
IncorporateType(V->getType());
// Look in operands for types.
const Constant *C = cast<Constant>(V);
for (Constant::const_op_iterator I = C->op_begin(),
E = C->op_end(); I != E;++I)
IncorporateValue(*I);
}
};
} // end anonymous namespace
/// AddModuleTypesToPrinter - Add all of the symbolic type names for types in
/// the specified module to the TypePrinter and all numbered types to it and the
/// NumberedTypes table.
static void AddModuleTypesToPrinter(TypePrinting &TP,
std::vector<const Type*> &NumberedTypes,
const Module *M) {
if (M == 0) return;
// If the module has a symbol table, take all global types and stuff their
// names into the TypeNames map.
const TypeSymbolTable &ST = M->getTypeSymbolTable();
for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
TI != E; ++TI) {
const Type *Ty = cast<Type>(TI->second);
// As a heuristic, don't insert pointer to primitive types, because
// they are used too often to have a single useful name.
if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
const Type *PETy = PTy->getElementType();
if ((PETy->isPrimitiveType() || PETy->isInteger()) &&
!isa<OpaqueType>(PETy))
continue;
}
// Likewise don't insert primitives either.
if (Ty->isInteger() || Ty->isPrimitiveType())
continue;
// Get the name as a string and insert it into TypeNames.
std::string NameStr;
raw_string_ostream NameOS(NameStr);
PrintLLVMName(NameOS, TI->first.c_str(), TI->first.length(), LocalPrefix);
TP.addTypeName(Ty, NameOS.str());
}
// Walk the entire module to find references to unnamed structure and opaque
// types. This is required for correctness by opaque types (because multiple
// uses of an unnamed opaque type needs to be referred to by the same ID) and
// it shrinks complex recursive structure types substantially in some cases.
TypeFinder(TP, NumberedTypes).Run(*M);
}
/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
/// type, iff there is an entry in the modules symbol table for the specified
/// type or one of it's component types.
///
void llvm::WriteTypeSymbolic(raw_ostream &OS, const Type *Ty, const Module *M) {
TypePrinting Printer;
std::vector<const Type*> NumberedTypes;
AddModuleTypesToPrinter(Printer, NumberedTypes, M);
Printer.print(Ty, OS);
}
//===----------------------------------------------------------------------===//
// SlotTracker Class: Enumerate slot numbers for unnamed values
//===----------------------------------------------------------------------===//
namespace {
/// This class provides computation of slot numbers for LLVM Assembly writing.
///
class SlotTracker {
public:
/// ValueMap - A mapping of Values to slot numbers
typedef DenseMap<const Value*, unsigned> ValueMap;
private:
/// TheModule - The module for which we are holding slot numbers
const Module* TheModule;
/// TheFunction - The function for which we are holding slot numbers
const Function* TheFunction;
bool FunctionProcessed;
/// mMap - The TypePlanes map for the module level data
ValueMap mMap;
unsigned mNext;
/// fMap - The TypePlanes map for the function level data
ValueMap fMap;
unsigned fNext;
public:
/// Construct from a module
explicit SlotTracker(const Module *M);
/// Construct from a function, starting out in incorp state.
explicit SlotTracker(const Function *F);
/// Return the slot number of the specified value in it's type
/// plane. If something is not in the SlotTracker, return -1.
int getLocalSlot(const Value *V);
int getGlobalSlot(const GlobalValue *V);
/// If you'd like to deal with a function instead of just a module, use
/// this method to get its data into the SlotTracker.
void incorporateFunction(const Function *F) {
TheFunction = F;
FunctionProcessed = false;
}
/// After calling incorporateFunction, use this method to remove the
/// most recently incorporated function from the SlotTracker. This
/// will reset the state of the machine back to just the module contents.
void purgeFunction();
// Implementation Details
private:
/// This function does the actual initialization.
inline void initialize();
/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
void CreateModuleSlot(const GlobalValue *V);
/// CreateFunctionSlot - Insert the specified Value* into the slot table.
void CreateFunctionSlot(const Value *V);
/// Add all of the module level global variables (and their initializers)
/// and function declarations, but not the contents of those functions.
void processModule();
/// Add all of the functions arguments, basic blocks, and instructions
void processFunction();
SlotTracker(const SlotTracker &); // DO NOT IMPLEMENT
void operator=(const SlotTracker &); // DO NOT IMPLEMENT
};
} // end anonymous namespace
static SlotTracker *createSlotTracker(const Value *V) {
if (const Argument *FA = dyn_cast<Argument>(V))
return new SlotTracker(FA->getParent());
if (const Instruction *I = dyn_cast<Instruction>(V))
return new SlotTracker(I->getParent()->getParent());
if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
return new SlotTracker(BB->getParent());
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
return new SlotTracker(GV->getParent());
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
return new SlotTracker(GA->getParent());
if (const Function *Func = dyn_cast<Function>(V))
return new SlotTracker(Func);
return 0;
}
#if 0
#define ST_DEBUG(X) cerr << X
#else
#define ST_DEBUG(X)
#endif
// Module level constructor. Causes the contents of the Module (sans functions)
// to be added to the slot table.
SlotTracker::SlotTracker(const Module *M)
: TheModule(M), TheFunction(0), FunctionProcessed(false), mNext(0), fNext(0) {
}
// Function level constructor. Causes the contents of the Module and the one
// function provided to be added to the slot table.
SlotTracker::SlotTracker(const Function *F)
: TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false),
mNext(0), fNext(0) {
}
inline void SlotTracker::initialize() {
if (TheModule) {
processModule();
TheModule = 0; ///< Prevent re-processing next time we're called.
}
if (TheFunction && !FunctionProcessed)
processFunction();
}
// Iterate through all the global variables, functions, and global
// variable initializers and create slots for them.
void SlotTracker::processModule() {
ST_DEBUG("begin processModule!\n");
// Add all of the unnamed global variables to the value table.
for (Module::const_global_iterator I = TheModule->global_begin(),
E = TheModule->global_end(); I != E; ++I)
if (!I->hasName())
CreateModuleSlot(I);
// Add all the unnamed functions to the table.
for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
I != E; ++I)
if (!I->hasName())
CreateModuleSlot(I);
ST_DEBUG("end processModule!\n");
}
// Process the arguments, basic blocks, and instructions of a function.
void SlotTracker::processFunction() {
ST_DEBUG("begin processFunction!\n");
fNext = 0;
// Add all the function arguments with no names.
for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
AE = TheFunction->arg_end(); AI != AE; ++AI)
if (!AI->hasName())
CreateFunctionSlot(AI);
ST_DEBUG("Inserting Instructions:\n");
// Add all of the basic blocks and instructions with no names.
for (Function::const_iterator BB = TheFunction->begin(),
E = TheFunction->end(); BB != E; ++BB) {
if (!BB->hasName())
CreateFunctionSlot(BB);
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
if (I->getType() != Type::VoidTy && !I->hasName())
CreateFunctionSlot(I);
}
FunctionProcessed = true;
ST_DEBUG("end processFunction!\n");
}
/// Clean up after incorporating a function. This is the only way to get out of
/// the function incorporation state that affects get*Slot/Create*Slot. Function
/// incorporation state is indicated by TheFunction != 0.
void SlotTracker::purgeFunction() {
ST_DEBUG("begin purgeFunction!\n");
fMap.clear(); // Simply discard the function level map
TheFunction = 0;
FunctionProcessed = false;
ST_DEBUG("end purgeFunction!\n");
}
/// getGlobalSlot - Get the slot number of a global value.
int SlotTracker::getGlobalSlot(const GlobalValue *V) {
// Check for uninitialized state and do lazy initialization.
initialize();
// Find the type plane in the module map
ValueMap::iterator MI = mMap.find(V);
return MI == mMap.end() ? -1 : (int)MI->second;
}
/// getLocalSlot - Get the slot number for a value that is local to a function.
int SlotTracker::getLocalSlot(const Value *V) {
assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
// Check for uninitialized state and do lazy initialization.
initialize();
ValueMap::iterator FI = fMap.find(V);
return FI == fMap.end() ? -1 : (int)FI->second;
}
/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
assert(V && "Can't insert a null Value into SlotTracker!");
assert(V->getType() != Type::VoidTy && "Doesn't need a slot!");
assert(!V->hasName() && "Doesn't need a slot!");
unsigned DestSlot = mNext++;
mMap[V] = DestSlot;
ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
DestSlot << " [");
// G = Global, F = Function, A = Alias, o = other
ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
(isa<Function>(V) ? 'F' :
(isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
}
/// CreateSlot - Create a new slot for the specified value if it has no name.
void SlotTracker::CreateFunctionSlot(const Value *V) {
assert(V->getType() != Type::VoidTy && !V->hasName() &&
"Doesn't need a slot!");
unsigned DestSlot = fNext++;
fMap[V] = DestSlot;
// G = Global, F = Function, o = other
ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
DestSlot << " [o]\n");
}
//===----------------------------------------------------------------------===//
// AsmWriter Implementation
//===----------------------------------------------------------------------===//
static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
TypePrinting &TypePrinter,
SlotTracker *Machine);
static const char *getPredicateText(unsigned predicate) {
const char * pred = "unknown";
switch (predicate) {
case FCmpInst::FCMP_FALSE: pred = "false"; break;
case FCmpInst::FCMP_OEQ: pred = "oeq"; break;
case FCmpInst::FCMP_OGT: pred = "ogt"; break;
case FCmpInst::FCMP_OGE: pred = "oge"; break;
case FCmpInst::FCMP_OLT: pred = "olt"; break;
case FCmpInst::FCMP_OLE: pred = "ole"; break;
case FCmpInst::FCMP_ONE: pred = "one"; break;
case FCmpInst::FCMP_ORD: pred = "ord"; break;
case FCmpInst::FCMP_UNO: pred = "uno"; break;
case FCmpInst::FCMP_UEQ: pred = "ueq"; break;
case FCmpInst::FCMP_UGT: pred = "ugt"; break;
case FCmpInst::FCMP_UGE: pred = "uge"; break;
case FCmpInst::FCMP_ULT: pred = "ult"; break;
case FCmpInst::FCMP_ULE: pred = "ule"; break;
case FCmpInst::FCMP_UNE: pred = "une"; break;
case FCmpInst::FCMP_TRUE: pred = "true"; break;
case ICmpInst::ICMP_EQ: pred = "eq"; break;
case ICmpInst::ICMP_NE: pred = "ne"; break;
case ICmpInst::ICMP_SGT: pred = "sgt"; break;
case ICmpInst::ICMP_SGE: pred = "sge"; break;
case ICmpInst::ICMP_SLT: pred = "slt"; break;
case ICmpInst::ICMP_SLE: pred = "sle"; break;
case ICmpInst::ICMP_UGT: pred = "ugt"; break;
case ICmpInst::ICMP_UGE: pred = "uge"; break;
case ICmpInst::ICMP_ULT: pred = "ult"; break;
case ICmpInst::ICMP_ULE: pred = "ule"; break;
}
return pred;
}
static void WriteConstantInt(raw_ostream &Out, const Constant *CV,
TypePrinting &TypePrinter, SlotTracker *Machine) {
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
if (CI->getType() == Type::Int1Ty) {
Out << (CI->getZExtValue() ? "true" : "false");
return;
}
Out << CI->getValue();
return;
}
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble ||
&CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle) {
// We would like to output the FP constant value in exponential notation,
// but we cannot do this if doing so will lose precision. Check here to
// make sure that we only output it in exponential format if we can parse
// the value back and get the same value.
//
bool ignored;
bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
CFP->getValueAPF().convertToFloat();
std::string StrVal = ftostr(CFP->getValueAPF());
// Check to make sure that the stringized number is not some string like
// "Inf" or NaN, that atof will accept, but the lexer will not. Check
// that the string matches the "[-+]?[0-9]" regex.
//
if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
((StrVal[0] == '-' || StrVal[0] == '+') &&
(StrVal[1] >= '0' && StrVal[1] <= '9'))) {
// Reparse stringized version!
if (atof(StrVal.c_str()) == Val) {
Out << StrVal;
return;
}
}
// Otherwise we could not reparse it to exactly the same value, so we must
// output the string in hexadecimal format! Note that loading and storing
// floating point types changes the bits of NaNs on some hosts, notably
// x86, so we must not use these types.
assert(sizeof(double) == sizeof(uint64_t) &&
"assuming that double is 64 bits!");
char Buffer[40];
APFloat apf = CFP->getValueAPF();
// Floats are represented in ASCII IR as double, convert.
if (!isDouble)
apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
&ignored);
Out << "0x" <<
utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
Buffer+40);
return;
}
// Some form of long double. These appear as a magic letter identifying
// the type, then a fixed number of hex digits.
Out << "0x";
if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
Out << 'K';
// api needed to prevent premature destruction
APInt api = CFP->getValueAPF().bitcastToAPInt();
const uint64_t* p = api.getRawData();
uint64_t word = p[1];
int shiftcount=12;
int width = api.getBitWidth();
for (int j=0; j<width; j+=4, shiftcount-=4) {
unsigned int nibble = (word>>shiftcount) & 15;
if (nibble < 10)
Out << (unsigned char)(nibble + '0');
else
Out << (unsigned char)(nibble - 10 + 'A');
if (shiftcount == 0 && j+4 < width) {
word = *p;
shiftcount = 64;
if (width-j-4 < 64)
shiftcount = width-j-4;
}
}
return;
} else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad)
Out << 'L';
else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
Out << 'M';
else
assert(0 && "Unsupported floating point type");
// api needed to prevent premature destruction
APInt api = CFP->getValueAPF().bitcastToAPInt();
const uint64_t* p = api.getRawData();
uint64_t word = *p;
int shiftcount=60;
int width = api.getBitWidth();
for (int j=0; j<width; j+=4, shiftcount-=4) {
unsigned int nibble = (word>>shiftcount) & 15;
if (nibble < 10)
Out << (unsigned char)(nibble + '0');
else
Out << (unsigned char)(nibble - 10 + 'A');
if (shiftcount == 0 && j+4 < width) {
word = *(++p);
shiftcount = 64;
if (width-j-4 < 64)
shiftcount = width-j-4;
}
}
return;
}
if (isa<ConstantAggregateZero>(CV)) {
Out << "zeroinitializer";
return;
}
if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
// As a special case, print the array as a string if it is an array of
// i8 with ConstantInt values.
//
const Type *ETy = CA->getType()->getElementType();
if (CA->isString()) {
Out << "c\"";
PrintEscapedString(CA->getAsString(), Out);
Out << '"';
} else { // Cannot output in string format...
Out << '[';
if (CA->getNumOperands()) {
TypePrinter.print(ETy, Out);
Out << ' ';
WriteAsOperandInternal(Out, CA->getOperand(0),
TypePrinter, Machine);
for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
Out << ", ";
TypePrinter.print(ETy, Out);
Out << ' ';
WriteAsOperandInternal(Out, CA->getOperand(i), TypePrinter, Machine);
}
}
Out << ']';
}
return;
}
if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
if (CS->getType()->isPacked())
Out << '<';
Out << '{';
unsigned N = CS->getNumOperands();
if (N) {
Out << ' ';
TypePrinter.print(CS->getOperand(0)->getType(), Out);
Out << ' ';
WriteAsOperandInternal(Out, CS->getOperand(0), TypePrinter, Machine);
for (unsigned i = 1; i < N; i++) {
Out << ", ";
TypePrinter.print(CS->getOperand(i)->getType(), Out);
Out << ' ';
WriteAsOperandInternal(Out, CS->getOperand(i), TypePrinter, Machine);
}
Out << ' ';
}
Out << '}';
if (CS->getType()->isPacked())
Out << '>';
return;
}
if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
const Type *ETy = CP->getType()->getElementType();
assert(CP->getNumOperands() > 0 &&
"Number of operands for a PackedConst must be > 0");
Out << '<';
TypePrinter.print(ETy, Out);
Out << ' ';
WriteAsOperandInternal(Out, CP->getOperand(0), TypePrinter, Machine);
for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
Out << ", ";
TypePrinter.print(ETy, Out);
Out << ' ';
WriteAsOperandInternal(Out, CP->getOperand(i), TypePrinter, Machine);
}
Out << '>';
return;
}
if (isa<ConstantPointerNull>(CV)) {
Out << "null";
return;
}
if (isa<UndefValue>(CV)) {
Out << "undef";
return;
}
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
Out << CE->getOpcodeName();
if (CE->isCompare())
Out << ' ' << getPredicateText(CE->getPredicate());
Out << " (";
for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
TypePrinter.print((*OI)->getType(), Out);
Out << ' ';
WriteAsOperandInternal(Out, *OI, TypePrinter, Machine);
if (OI+1 != CE->op_end())
Out << ", ";
}
if (CE->hasIndices()) {
const SmallVector<unsigned, 4> &Indices = CE->getIndices();
for (unsigned i = 0, e = Indices.size(); i != e; ++i)
Out << ", " << Indices[i];
}
if (CE->isCast()) {
Out << " to ";
TypePrinter.print(CE->getType(), Out);
}
Out << ')';
return;
}
Out << "<placeholder or erroneous Constant>";
}
/// WriteAsOperand - Write the name of the specified value out to the specified
/// ostream. This can be useful when you just want to print int %reg126, not
/// the whole instruction that generated it.
///
static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
TypePrinting &TypePrinter,
SlotTracker *Machine) {
if (V->hasName()) {
PrintLLVMName(Out, V);
return;
}
const Constant *CV = dyn_cast<Constant>(V);
if (CV && !isa<GlobalValue>(CV)) {
WriteConstantInt(Out, CV, TypePrinter, Machine);
return;
}
if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
Out << "asm ";
if (IA->hasSideEffects())
Out << "sideeffect ";
Out << '"';
PrintEscapedString(IA->getAsmString(), Out);
Out << "\", \"";
PrintEscapedString(IA->getConstraintString(), Out);
Out << '"';
return;
}
char Prefix = '%';
int Slot;
if (Machine) {
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
Slot = Machine->getGlobalSlot(GV);
Prefix = '@';
} else {
Slot = Machine->getLocalSlot(V);
}
} else {
Machine = createSlotTracker(V);
if (Machine) {
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
Slot = Machine->getGlobalSlot(GV);
Prefix = '@';
} else {
Slot = Machine->getLocalSlot(V);
}
} else {
Slot = -1;
}
delete Machine;
}
if (Slot != -1)
Out << Prefix << Slot;
else
Out << "<badref>";
}
/// WriteAsOperand - Write the name of the specified value out to the specified
/// ostream. This can be useful when you just want to print int %reg126, not
/// the whole instruction that generated it.
///
void llvm::WriteAsOperand(std::ostream &Out, const Value *V, bool PrintType,
const Module *Context) {
raw_os_ostream OS(Out);
WriteAsOperand(OS, V, PrintType, Context);
}
void llvm::WriteAsOperand(raw_ostream &Out, const Value *V, bool PrintType,
const Module *Context) {
if (Context == 0) Context = getModuleFromVal(V);
TypePrinting TypePrinter;
std::vector<const Type*> NumberedTypes;
AddModuleTypesToPrinter(TypePrinter, NumberedTypes, Context);
if (PrintType) {
TypePrinter.print(V->getType(), Out);
Out << ' ';
}
WriteAsOperandInternal(Out, V, TypePrinter, 0);
}
namespace {
class AssemblyWriter {
raw_ostream &Out;
SlotTracker &Machine;
const Module *TheModule;
TypePrinting TypePrinter;
AssemblyAnnotationWriter *AnnotationWriter;
std::vector<const Type*> NumberedTypes;
public:
inline AssemblyWriter(raw_ostream &o, SlotTracker &Mac, const Module *M,
AssemblyAnnotationWriter *AAW)
: Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
AddModuleTypesToPrinter(TypePrinter, NumberedTypes, M);
}
void write(const Module *M) { printModule(M); }
void write(const GlobalValue *G) {
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(G))
printGlobal(GV);
else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(G))
printAlias(GA);
else if (const Function *F = dyn_cast<Function>(G))
printFunction(F);
else
assert(0 && "Unknown global");
}
void write(const BasicBlock *BB) { printBasicBlock(BB); }
void write(const Instruction *I) { printInstruction(*I); }
void writeOperand(const Value *Op, bool PrintType);
void writeParamOperand(const Value *Operand, Attributes Attrs);
const Module* getModule() { return TheModule; }
private:
void printModule(const Module *M);
void printTypeSymbolTable(const TypeSymbolTable &ST);
void printGlobal(const GlobalVariable *GV);
void printAlias(const GlobalAlias *GV);
void printFunction(const Function *F);
void printArgument(const Argument *FA, Attributes Attrs);
void printBasicBlock(const BasicBlock *BB);
void printInstruction(const Instruction &I);
// printInfoComment - Print a little comment after the instruction indicating
// which slot it occupies.
void printInfoComment(const Value &V);
};
} // end of anonymous namespace
void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
if (Operand == 0) {
Out << "<null operand!>";
} else {
if (PrintType) {
TypePrinter.print(Operand->getType(), Out);
Out << ' ';
}
WriteAsOperandInternal(Out, Operand, TypePrinter, &Machine);
}
}
void AssemblyWriter::writeParamOperand(const Value *Operand,
Attributes Attrs) {
if (Operand == 0) {
Out << "<null operand!>";
} else {
// Print the type
TypePrinter.print(Operand->getType(), Out);
// Print parameter attributes list
if (Attrs != Attribute::None)
Out << ' ' << Attribute::getAsString(Attrs);
Out << ' ';
// Print the operand
WriteAsOperandInternal(Out, Operand, TypePrinter, &Machine);
}
}
void AssemblyWriter::printModule(const Module *M) {
if (!M->getModuleIdentifier().empty() &&
// Don't print the ID if it will start a new line (which would
// require a comment char before it).
M->getModuleIdentifier().find('\n') == std::string::npos)
Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
if (!M->getDataLayout().empty())
Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
if (!M->getTargetTriple().empty())
Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
if (!M->getModuleInlineAsm().empty()) {
// Split the string into lines, to make it easier to read the .ll file.
std::string Asm = M->getModuleInlineAsm();
size_t CurPos = 0;
size_t NewLine = Asm.find_first_of('\n', CurPos);
while (NewLine != std::string::npos) {
// We found a newline, print the portion of the asm string from the
// last newline up to this newline.
Out << "module asm \"";
PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
Out);
Out << "\"\n";
CurPos = NewLine+1;
NewLine = Asm.find_first_of('\n', CurPos);
}
Out << "module asm \"";
PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
Out << "\"\n";
}
// Loop over the dependent libraries and emit them.
Module::lib_iterator LI = M->lib_begin();
Module::lib_iterator LE = M->lib_end();
if (LI != LE) {
Out << "deplibs = [ ";
while (LI != LE) {
Out << '"' << *LI << '"';
++LI;
if (LI != LE)
Out << ", ";
}
Out << " ]\n";
}
// Loop over the symbol table, emitting all id'd types.
printTypeSymbolTable(M->getTypeSymbolTable());
for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
I != E; ++I)
printGlobal(I);
// Output all aliases.
if (!M->alias_empty()) Out << "\n";
for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
I != E; ++I)
printAlias(I);
// Output all of the functions.
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
printFunction(I);
}
static void PrintLinkage(GlobalValue::LinkageTypes LT, raw_ostream &Out) {
switch (LT) {
case GlobalValue::PrivateLinkage: Out << "private "; break;
case GlobalValue::InternalLinkage: Out << "internal "; break;
case GlobalValue::LinkOnceAnyLinkage: Out << "linkonce "; break;
case GlobalValue::LinkOnceODRLinkage: Out << "linkonce_odr "; break;
case GlobalValue::WeakAnyLinkage: Out << "weak "; break;
case GlobalValue::WeakODRLinkage: Out << "weak_odr "; break;
case GlobalValue::CommonLinkage: Out << "common "; break;
case GlobalValue::AppendingLinkage: Out << "appending "; break;
case GlobalValue::DLLImportLinkage: Out << "dllimport "; break;
case GlobalValue::DLLExportLinkage: Out << "dllexport "; break;
case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
case GlobalValue::ExternalLinkage: break;
case GlobalValue::GhostLinkage:
Out << "GhostLinkage not allowed in AsmWriter!\n";
abort();
}
}
static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
raw_ostream &Out) {
switch (Vis) {
default: assert(0 && "Invalid visibility style!");
case GlobalValue::DefaultVisibility: break;
case GlobalValue::HiddenVisibility: Out << "hidden "; break;
case GlobalValue::ProtectedVisibility: Out << "protected "; break;
}
}
void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
if (GV->hasName()) {
PrintLLVMName(Out, GV);
Out << " = ";
}
if (!GV->hasInitializer() && GV->hasExternalLinkage())
Out << "external ";
PrintLinkage(GV->getLinkage(), Out);
PrintVisibility(GV->getVisibility(), Out);
if (GV->isThreadLocal()) Out << "thread_local ";
if (unsigned AddressSpace = GV->getType()->getAddressSpace())
Out << "addrspace(" << AddressSpace << ") ";
Out << (GV->isConstant() ? "constant " : "global ");
TypePrinter.print(GV->getType()->getElementType(), Out);
if (GV->hasInitializer()) {
Out << ' ';
writeOperand(GV->getInitializer(), false);
}
if (GV->hasSection())
Out << ", section \"" << GV->getSection() << '"';
if (GV->getAlignment())
Out << ", align " << GV->getAlignment();
printInfoComment(*GV);
Out << '\n';
}
void AssemblyWriter::printAlias(const GlobalAlias *GA) {
// Don't crash when dumping partially built GA
if (!GA->hasName())
Out << "<<nameless>> = ";
else {
PrintLLVMName(Out, GA);
Out << " = ";
}
PrintVisibility(GA->getVisibility(), Out);
Out << "alias ";
PrintLinkage(GA->getLinkage(), Out);
const Constant *Aliasee = GA->getAliasee();
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Aliasee)) {
TypePrinter.print(GV->getType(), Out);
Out << ' ';
PrintLLVMName(Out, GV);
} else if (const Function *F = dyn_cast<Function>(Aliasee)) {
TypePrinter.print(F->getFunctionType(), Out);
Out << "* ";
WriteAsOperandInternal(Out, F, TypePrinter, &Machine);
} else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Aliasee)) {
TypePrinter.print(GA->getType(), Out);
Out << ' ';
PrintLLVMName(Out, GA);
} else {
const ConstantExpr *CE = 0;
if ((CE = dyn_cast<ConstantExpr>(Aliasee)) &&
(CE->getOpcode() == Instruction::BitCast)) {
writeOperand(CE, false);
} else
assert(0 && "Unsupported aliasee");
}
printInfoComment(*GA);
Out << '\n';
}
void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable &ST) {
// Emit all numbered types.
for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
Out << "\ttype ";
// Make sure we print out at least one level of the type structure, so
// that we do not get %2 = type %2
TypePrinter.printAtLeastOneLevel(NumberedTypes[i], Out);
Out << "\t\t; type %" << i << '\n';
}
// Print the named types.
for (TypeSymbolTable::const_iterator TI = ST.begin(), TE = ST.end();
TI != TE; ++TI) {
Out << '\t';
PrintLLVMName(Out, &TI->first[0], TI->first.size(), LocalPrefix);
Out << " = type ";
// Make sure we print out at least one level of the type structure, so
// that we do not get %FILE = type %FILE
TypePrinter.printAtLeastOneLevel(TI->second, Out);
Out << '\n';
}
}
/// printFunction - Print all aspects of a function.
///
void AssemblyWriter::printFunction(const Function *F) {
// Print out the return type and name.
Out << '\n';
if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
if (F->isDeclaration())
Out << "declare ";
else
Out << "define ";
PrintLinkage(F->getLinkage(), Out);
PrintVisibility(F->getVisibility(), Out);
// Print the calling convention.
switch (F->getCallingConv()) {
case CallingConv::C: break; // default
case CallingConv::Fast: Out << "fastcc "; break;
case CallingConv::Cold: Out << "coldcc "; break;
case CallingConv::X86_StdCall: Out << "x86_stdcallcc "; break;
case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
default: Out << "cc" << F->getCallingConv() << " "; break;
}
const FunctionType *FT = F->getFunctionType();
const AttrListPtr &Attrs = F->getAttributes();
Attributes RetAttrs = Attrs.getRetAttributes();
if (RetAttrs != Attribute::None)
Out << Attribute::getAsString(Attrs.getRetAttributes()) << ' ';
TypePrinter.print(F->getReturnType(), Out);
Out << ' ';
WriteAsOperandInternal(Out, F, TypePrinter, &Machine);
Out << '(';
Machine.incorporateFunction(F);
// Loop over the arguments, printing them...
unsigned Idx = 1;
if (!F->isDeclaration()) {
// If this isn't a declaration, print the argument names as well.
for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
I != E; ++I) {
// Insert commas as we go... the first arg doesn't get a comma
if (I != F->arg_begin()) Out << ", ";
printArgument(I, Attrs.getParamAttributes(Idx));
Idx++;
}
} else {
// Otherwise, print the types from the function type.
for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
// Insert commas as we go... the first arg doesn't get a comma
if (i) Out << ", ";
// Output type...
TypePrinter.print(FT->getParamType(i), Out);
Attributes ArgAttrs = Attrs.getParamAttributes(i+1);
if (ArgAttrs != Attribute::None)
Out << ' ' << Attribute::getAsString(ArgAttrs);
}
}
// Finish printing arguments...
if (FT->isVarArg()) {
if (FT->getNumParams()) Out << ", ";
Out << "..."; // Output varargs portion of signature!
}
Out << ')';
Attributes FnAttrs = Attrs.getFnAttributes();
if (FnAttrs != Attribute::None)
Out << ' ' << Attribute::getAsString(Attrs.getFnAttributes());
if (F->hasSection())
Out << " section \"" << F->getSection() << '"';
if (F->getAlignment())
Out << " align " << F->getAlignment();
if (F->hasGC())
Out << " gc \"" << F->getGC() << '"';
if (F->isDeclaration()) {
Out << "\n";
} else {
Out << " {";
// Output all of its basic blocks... for the function
for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
printBasicBlock(I);
Out << "}\n";
}
Machine.purgeFunction();
}
/// printArgument - This member is called for every argument that is passed into
/// the function. Simply print it out
///
void AssemblyWriter::printArgument(const Argument *Arg,
Attributes Attrs) {
// Output type...
TypePrinter.print(Arg->getType(), Out);
// Output parameter attributes list
if (Attrs != Attribute::None)
Out << ' ' << Attribute::getAsString(Attrs);
// Output name, if available...
if (Arg->hasName()) {
Out << ' ';
PrintLLVMName(Out, Arg);
}
}
/// printBasicBlock - This member is called for each basic block in a method.
///
void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
if (BB->hasName()) { // Print out the label if it exists...
Out << "\n";
PrintLLVMName(Out, BB->getNameStart(), BB->getNameLen(), LabelPrefix);
Out << ':';
} else if (!BB->use_empty()) { // Don't print block # of no uses...
Out << "\n; <label>:";
int Slot = Machine.getLocalSlot(BB);
if (Slot != -1)
Out << Slot;
else
Out << "<badref>";
}
if (BB->getParent() == 0)
Out << "\t\t; Error: Block without parent!";
else if (BB != &BB->getParent()->getEntryBlock()) { // Not the entry block?
// Output predecessors for the block...
Out << "\t\t;";
pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
if (PI == PE) {
Out << " No predecessors!";
} else {
Out << " preds = ";
writeOperand(*PI, false);
for (++PI; PI != PE; ++PI) {
Out << ", ";
writeOperand(*PI, false);
}
}
}
Out << "\n";
if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
// Output all of the instructions in the basic block...
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
printInstruction(*I);
if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
}
/// printInfoComment - Print a little comment after the instruction indicating
/// which slot it occupies.
///
void AssemblyWriter::printInfoComment(const Value &V) {
if (V.getType() != Type::VoidTy) {
Out << "\t\t; <";
TypePrinter.print(V.getType(), Out);
Out << '>';
if (!V.hasName() && !isa<Instruction>(V)) {
int SlotNum;
if (const GlobalValue *GV = dyn_cast<GlobalValue>(&V))
SlotNum = Machine.getGlobalSlot(GV);
else
SlotNum = Machine.getLocalSlot(&V);
if (SlotNum == -1)
Out << ":<badref>";
else
Out << ':' << SlotNum; // Print out the def slot taken.
}
Out << " [#uses=" << V.getNumUses() << ']'; // Output # uses
}
}
// This member is called for each Instruction in a function..
void AssemblyWriter::printInstruction(const Instruction &I) {
if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
Out << '\t';
// Print out name if it exists...
if (I.hasName()) {
PrintLLVMName(Out, &I);
Out << " = ";
} else if (I.getType() != Type::VoidTy) {
// Print out the def slot taken.
int SlotNum = Machine.getLocalSlot(&I);
if (SlotNum == -1)
Out << "<badref> = ";
else
Out << '%' << SlotNum << " = ";
}
// If this is a volatile load or store, print out the volatile marker.
if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
(isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
Out << "volatile ";
} else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
// If this is a call, check if it's a tail call.
Out << "tail ";
}
// Print out the opcode...
Out << I.getOpcodeName();
// Print out the compare instruction predicates
if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
Out << ' ' << getPredicateText(CI->getPredicate());
// Print out the type of the operands...
const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
// Special case conditional branches to swizzle the condition out to the front
if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
BranchInst &BI(cast<BranchInst>(I));
Out << ' ';
writeOperand(BI.getCondition(), true);
Out << ", ";
writeOperand(BI.getSuccessor(0), true);
Out << ", ";
writeOperand(BI.getSuccessor(1), true);
} else if (isa<SwitchInst>(I)) {
// Special case switch statement to get formatting nice and correct...
Out << ' ';
writeOperand(Operand , true);
Out << ", ";
writeOperand(I.getOperand(1), true);
Out << " [";
for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
Out << "\n\t\t";
writeOperand(I.getOperand(op ), true);
Out << ", ";
writeOperand(I.getOperand(op+1), true);
}
Out << "\n\t]";
} else if (isa<PHINode>(I)) {
Out << ' ';
TypePrinter.print(I.getType(), Out);
Out << ' ';
for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
if (op) Out << ", ";
Out << "[ ";
writeOperand(I.getOperand(op ), false); Out << ", ";
writeOperand(I.getOperand(op+1), false); Out << " ]";
}
} else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
Out << ' ';
writeOperand(I.getOperand(0), true);
for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
Out << ", " << *i;
} else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
Out << ' ';
writeOperand(I.getOperand(0), true); Out << ", ";
writeOperand(I.getOperand(1), true);
for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
Out << ", " << *i;
} else if (isa<ReturnInst>(I) && !Operand) {
Out << " void";
} else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
// Print the calling convention being used.
switch (CI->getCallingConv()) {
case CallingConv::C: break; // default
case CallingConv::Fast: Out << " fastcc"; break;
case CallingConv::Cold: Out << " coldcc"; break;
case CallingConv::X86_StdCall: Out << " x86_stdcallcc"; break;
case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
default: Out << " cc" << CI->getCallingConv(); break;
}
const PointerType *PTy = cast<PointerType>(Operand->getType());
const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
const Type *RetTy = FTy->getReturnType();
const AttrListPtr &PAL = CI->getAttributes();
if (PAL.getRetAttributes() != Attribute::None)
Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
// If possible, print out the short form of the call instruction. We can
// only do this if the first argument is a pointer to a nonvararg function,
// and if the return type is not a pointer to a function.
//
Out << ' ';
if (!FTy->isVarArg() &&
(!isa<PointerType>(RetTy) ||
!isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
TypePrinter.print(RetTy, Out);
Out << ' ';
writeOperand(Operand, false);
} else {
writeOperand(Operand, true);
}
Out << '(';
for (unsigned op = 1, Eop = I.getNumOperands(); op < Eop; ++op) {
if (op > 1)
Out << ", ";
writeParamOperand(I.getOperand(op), PAL.getParamAttributes(op));
}
Out << ')';
if (PAL.getFnAttributes() != Attribute::None)
Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
} else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
const PointerType *PTy = cast<PointerType>(Operand->getType());
const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
const Type *RetTy = FTy->getReturnType();
const AttrListPtr &PAL = II->getAttributes();
// Print the calling convention being used.
switch (II->getCallingConv()) {
case CallingConv::C: break; // default
case CallingConv::Fast: Out << " fastcc"; break;
case CallingConv::Cold: Out << " coldcc"; break;
case CallingConv::X86_StdCall: Out << " x86_stdcallcc"; break;
case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
default: Out << " cc" << II->getCallingConv(); break;
}
if (PAL.getRetAttributes() != Attribute::None)
Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
// If possible, print out the short form of the invoke instruction. We can
// only do this if the first argument is a pointer to a nonvararg function,
// and if the return type is not a pointer to a function.
//
Out << ' ';
if (!FTy->isVarArg() &&
(!isa<PointerType>(RetTy) ||
!isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
TypePrinter.print(RetTy, Out);
Out << ' ';
writeOperand(Operand, false);
} else {
writeOperand(Operand, true);
}
Out << '(';
for (unsigned op = 3, Eop = I.getNumOperands(); op < Eop; ++op) {
if (op > 3)
Out << ", ";
writeParamOperand(I.getOperand(op), PAL.getParamAttributes(op-2));
}
Out << ')';
if (PAL.getFnAttributes() != Attribute::None)
Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
Out << "\n\t\t\tto ";
writeOperand(II->getNormalDest(), true);
Out << " unwind ";
writeOperand(II->getUnwindDest(), true);
} else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
Out << ' ';
TypePrinter.print(AI->getType()->getElementType(), Out);
if (AI->isArrayAllocation()) {
Out << ", ";
writeOperand(AI->getArraySize(), true);
}
if (AI->getAlignment()) {
Out << ", align " << AI->getAlignment();
}
} else if (isa<CastInst>(I)) {
if (Operand) {
Out << ' ';
writeOperand(Operand, true); // Work with broken code
}
Out << " to ";
TypePrinter.print(I.getType(), Out);
} else if (isa<VAArgInst>(I)) {
if (Operand) {
Out << ' ';
writeOperand(Operand, true); // Work with broken code
}
Out << ", ";
TypePrinter.print(I.getType(), Out);
} else if (Operand) { // Print the normal way.
// PrintAllTypes - Instructions who have operands of all the same type
// omit the type from all but the first operand. If the instruction has
// different type operands (for example br), then they are all printed.
bool PrintAllTypes = false;
const Type *TheType = Operand->getType();
// Select, Store and ShuffleVector always print all types.
if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
|| isa<ReturnInst>(I)) {
PrintAllTypes = true;
} else {
for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
Operand = I.getOperand(i);
// note that Operand shouldn't be null, but the test helps make dump()
// more tolerant of malformed IR
if (Operand && Operand->getType() != TheType) {
PrintAllTypes = true; // We have differing types! Print them all!
break;
}
}
}
if (!PrintAllTypes) {
Out << ' ';
TypePrinter.print(TheType, Out);
}
Out << ' ';
for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
if (i) Out << ", ";
writeOperand(I.getOperand(i), PrintAllTypes);
}
}
// Print post operand alignment for load/store
if (isa<LoadInst>(I) && cast<LoadInst>(I).getAlignment()) {
Out << ", align " << cast<LoadInst>(I).getAlignment();
} else if (isa<StoreInst>(I) && cast<StoreInst>(I).getAlignment()) {
Out << ", align " << cast<StoreInst>(I).getAlignment();
}
printInfoComment(I);
Out << '\n';
}
//===----------------------------------------------------------------------===//
// External Interface declarations
//===----------------------------------------------------------------------===//
void Module::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
raw_os_ostream OS(o);
print(OS, AAW);
}
void Module::print(raw_ostream &OS, AssemblyAnnotationWriter *AAW) const {
SlotTracker SlotTable(this);
AssemblyWriter W(OS, SlotTable, this, AAW);
W.write(this);
}
void Type::print(std::ostream &o) const {
raw_os_ostream OS(o);
print(OS);
}
void Type::print(raw_ostream &OS) const {
if (this == 0) {
OS << "<null Type>";
return;
}
TypePrinting().print(this, OS);
}
void Value::print(raw_ostream &OS, AssemblyAnnotationWriter *AAW) const {
if (this == 0) {
OS << "printing a <null> value\n";
return;
}
if (const Instruction *I = dyn_cast<Instruction>(this)) {
const Function *F = I->getParent() ? I->getParent()->getParent() : 0;
SlotTracker SlotTable(F);
AssemblyWriter W(OS, SlotTable, F ? F->getParent() : 0, AAW);
W.write(I);
} else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
SlotTracker SlotTable(BB->getParent());
AssemblyWriter W(OS, SlotTable,
BB->getParent() ? BB->getParent()->getParent() : 0, AAW);
W.write(BB);
} else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
SlotTracker SlotTable(GV->getParent());
AssemblyWriter W(OS, SlotTable, GV->getParent(), 0);
W.write(GV);
} else if (const Constant *C = dyn_cast<Constant>(this)) {
TypePrinting TypePrinter;
TypePrinter.print(C->getType(), OS);
OS << ' ';
WriteConstantInt(OS, C, TypePrinter, 0);
} else if (const Argument *A = dyn_cast<Argument>(this)) {
WriteAsOperand(OS, this, true,
A->getParent() ? A->getParent()->getParent() : 0);
} else if (isa<InlineAsm>(this)) {
WriteAsOperand(OS, this, true, 0);
} else {
assert(0 && "Unknown value to print out!");
}
}
void Value::print(std::ostream &O, AssemblyAnnotationWriter *AAW) const {
raw_os_ostream OS(O);
print(OS, AAW);
}
// Value::dump - allow easy printing of Values from the debugger.
void Value::dump() const { print(errs()); errs() << '\n'; }
// Type::dump - allow easy printing of Types from the debugger.
// This one uses type names from the given context module
void Type::dump(const Module *Context) const {
WriteTypeSymbolic(errs(), this, Context);
errs() << '\n';
}
// Type::dump - allow easy printing of Types from the debugger.
void Type::dump() const { dump(0); }
// Module::dump() - Allow printing of Modules from the debugger.
void Module::dump() const { print(errs(), 0); }