llvm-6502/lib/Target/ARM/ARMFastISel.cpp
Chad Rosier f56c60b571 Add FIXME comment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144743 91177308-0d34-0410-b5e6-96231b3b80d8
2011-11-16 00:32:20 +00:00

2488 lines
84 KiB
C++

//===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ARM-specific support for the FastISel class. Some
// of the target-specific code is generated by tablegen in the file
// ARMGenFastISel.inc, which is #included here.
//
//===----------------------------------------------------------------------===//
#include "ARM.h"
#include "ARMBaseInstrInfo.h"
#include "ARMCallingConv.h"
#include "ARMRegisterInfo.h"
#include "ARMTargetMachine.h"
#include "ARMSubtarget.h"
#include "ARMConstantPoolValue.h"
#include "MCTargetDesc/ARMAddressingModes.h"
#include "llvm/CallingConv.h"
#include "llvm/DerivedTypes.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Module.h"
#include "llvm/Operator.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/FastISel.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
using namespace llvm;
static cl::opt<bool>
DisableARMFastISel("disable-arm-fast-isel",
cl::desc("Turn off experimental ARM fast-isel support"),
cl::init(false), cl::Hidden);
extern cl::opt<bool> EnableARMLongCalls;
namespace {
// All possible address modes, plus some.
typedef struct Address {
enum {
RegBase,
FrameIndexBase
} BaseType;
union {
unsigned Reg;
int FI;
} Base;
int Offset;
// Innocuous defaults for our address.
Address()
: BaseType(RegBase), Offset(0) {
Base.Reg = 0;
}
} Address;
class ARMFastISel : public FastISel {
/// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
/// make the right decision when generating code for different targets.
const ARMSubtarget *Subtarget;
const TargetMachine &TM;
const TargetInstrInfo &TII;
const TargetLowering &TLI;
ARMFunctionInfo *AFI;
// Convenience variables to avoid some queries.
bool isThumb2;
LLVMContext *Context;
public:
explicit ARMFastISel(FunctionLoweringInfo &funcInfo)
: FastISel(funcInfo),
TM(funcInfo.MF->getTarget()),
TII(*TM.getInstrInfo()),
TLI(*TM.getTargetLowering()) {
Subtarget = &TM.getSubtarget<ARMSubtarget>();
AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
isThumb2 = AFI->isThumbFunction();
Context = &funcInfo.Fn->getContext();
}
// Code from FastISel.cpp.
virtual unsigned FastEmitInst_(unsigned MachineInstOpcode,
const TargetRegisterClass *RC);
virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill);
virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill);
virtual unsigned FastEmitInst_rrr(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill,
unsigned Op2, bool Op2IsKill);
virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
uint64_t Imm);
virtual unsigned FastEmitInst_rf(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
const ConstantFP *FPImm);
virtual unsigned FastEmitInst_rri(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill,
uint64_t Imm);
virtual unsigned FastEmitInst_i(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
uint64_t Imm);
virtual unsigned FastEmitInst_ii(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
uint64_t Imm1, uint64_t Imm2);
virtual unsigned FastEmitInst_extractsubreg(MVT RetVT,
unsigned Op0, bool Op0IsKill,
uint32_t Idx);
// Backend specific FastISel code.
virtual bool TargetSelectInstruction(const Instruction *I);
virtual unsigned TargetMaterializeConstant(const Constant *C);
virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI);
virtual bool TryToFoldLoad(MachineInstr *MI, unsigned OpNo,
const LoadInst *LI);
#include "ARMGenFastISel.inc"
// Instruction selection routines.
private:
bool SelectLoad(const Instruction *I);
bool SelectStore(const Instruction *I);
bool SelectBranch(const Instruction *I);
bool SelectCmp(const Instruction *I);
bool SelectFPExt(const Instruction *I);
bool SelectFPTrunc(const Instruction *I);
bool SelectBinaryOp(const Instruction *I, unsigned ISDOpcode);
bool SelectSIToFP(const Instruction *I);
bool SelectFPToSI(const Instruction *I);
bool SelectSDiv(const Instruction *I);
bool SelectSRem(const Instruction *I);
bool SelectCall(const Instruction *I, const char *IntrMemName);
bool SelectIntrinsicCall(const IntrinsicInst &I);
bool SelectSelect(const Instruction *I);
bool SelectRet(const Instruction *I);
bool SelectTrunc(const Instruction *I);
bool SelectIntExt(const Instruction *I);
// Utility routines.
private:
bool isTypeLegal(Type *Ty, MVT &VT);
bool isLoadTypeLegal(Type *Ty, MVT &VT);
bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
bool isZExt);
bool ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr, bool isZExt,
bool allocReg);
bool ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr);
bool ARMComputeAddress(const Value *Obj, Address &Addr);
void ARMSimplifyAddress(Address &Addr, EVT VT, bool useAM3);
bool ARMIsMemCpySmall(uint64_t Len);
bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len);
unsigned ARMEmitIntExt(EVT SrcVT, unsigned SrcReg, EVT DestVT, bool isZExt);
unsigned ARMMaterializeFP(const ConstantFP *CFP, EVT VT);
unsigned ARMMaterializeInt(const Constant *C, EVT VT);
unsigned ARMMaterializeGV(const GlobalValue *GV, EVT VT);
unsigned ARMMoveToFPReg(EVT VT, unsigned SrcReg);
unsigned ARMMoveToIntReg(EVT VT, unsigned SrcReg);
unsigned ARMSelectCallOp(const GlobalValue *GV);
// Call handling routines.
private:
bool FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
unsigned &ResultReg);
CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool Return);
bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
SmallVectorImpl<unsigned> &ArgRegs,
SmallVectorImpl<MVT> &ArgVTs,
SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
SmallVectorImpl<unsigned> &RegArgs,
CallingConv::ID CC,
unsigned &NumBytes);
bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
const Instruction *I, CallingConv::ID CC,
unsigned &NumBytes);
bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
// OptionalDef handling routines.
private:
bool isARMNEONPred(const MachineInstr *MI);
bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
void AddLoadStoreOperands(EVT VT, Address &Addr,
const MachineInstrBuilder &MIB,
unsigned Flags, bool useAM3);
};
} // end anonymous namespace
#include "ARMGenCallingConv.inc"
// DefinesOptionalPredicate - This is different from DefinesPredicate in that
// we don't care about implicit defs here, just places we'll need to add a
// default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
const MCInstrDesc &MCID = MI->getDesc();
if (!MCID.hasOptionalDef())
return false;
// Look to see if our OptionalDef is defining CPSR or CCR.
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || !MO.isDef()) continue;
if (MO.getReg() == ARM::CPSR)
*CPSR = true;
}
return true;
}
bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
const MCInstrDesc &MCID = MI->getDesc();
// If we're a thumb2 or not NEON function we were handled via isPredicable.
if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
AFI->isThumb2Function())
return false;
for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i)
if (MCID.OpInfo[i].isPredicate())
return true;
return false;
}
// If the machine is predicable go ahead and add the predicate operands, if
// it needs default CC operands add those.
// TODO: If we want to support thumb1 then we'll need to deal with optional
// CPSR defs that need to be added before the remaining operands. See s_cc_out
// for descriptions why.
const MachineInstrBuilder &
ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
MachineInstr *MI = &*MIB;
// Do we use a predicate? or...
// Are we NEON in ARM mode and have a predicate operand? If so, I know
// we're not predicable but add it anyways.
if (TII.isPredicable(MI) || isARMNEONPred(MI))
AddDefaultPred(MIB);
// Do we optionally set a predicate? Preds is size > 0 iff the predicate
// defines CPSR. All other OptionalDefines in ARM are the CCR register.
bool CPSR = false;
if (DefinesOptionalPredicate(MI, &CPSR)) {
if (CPSR)
AddDefaultT1CC(MIB);
else
AddDefaultCC(MIB);
}
return MIB;
}
unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode,
const TargetRegisterClass* RC) {
unsigned ResultReg = createResultReg(RC);
const MCInstrDesc &II = TII.get(MachineInstOpcode);
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg));
return ResultReg;
}
unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill) {
unsigned ResultReg = createResultReg(RC);
const MCInstrDesc &II = TII.get(MachineInstOpcode);
if (II.getNumDefs() >= 1)
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
.addReg(Op0, Op0IsKill * RegState::Kill));
else {
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
.addReg(Op0, Op0IsKill * RegState::Kill));
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(TargetOpcode::COPY), ResultReg)
.addReg(II.ImplicitDefs[0]));
}
return ResultReg;
}
unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill) {
unsigned ResultReg = createResultReg(RC);
const MCInstrDesc &II = TII.get(MachineInstOpcode);
if (II.getNumDefs() >= 1)
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
.addReg(Op0, Op0IsKill * RegState::Kill)
.addReg(Op1, Op1IsKill * RegState::Kill));
else {
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
.addReg(Op0, Op0IsKill * RegState::Kill)
.addReg(Op1, Op1IsKill * RegState::Kill));
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(TargetOpcode::COPY), ResultReg)
.addReg(II.ImplicitDefs[0]));
}
return ResultReg;
}
unsigned ARMFastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill,
unsigned Op2, bool Op2IsKill) {
unsigned ResultReg = createResultReg(RC);
const MCInstrDesc &II = TII.get(MachineInstOpcode);
if (II.getNumDefs() >= 1)
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
.addReg(Op0, Op0IsKill * RegState::Kill)
.addReg(Op1, Op1IsKill * RegState::Kill)
.addReg(Op2, Op2IsKill * RegState::Kill));
else {
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
.addReg(Op0, Op0IsKill * RegState::Kill)
.addReg(Op1, Op1IsKill * RegState::Kill)
.addReg(Op2, Op2IsKill * RegState::Kill));
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(TargetOpcode::COPY), ResultReg)
.addReg(II.ImplicitDefs[0]));
}
return ResultReg;
}
unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
uint64_t Imm) {
unsigned ResultReg = createResultReg(RC);
const MCInstrDesc &II = TII.get(MachineInstOpcode);
if (II.getNumDefs() >= 1)
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
.addReg(Op0, Op0IsKill * RegState::Kill)
.addImm(Imm));
else {
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
.addReg(Op0, Op0IsKill * RegState::Kill)
.addImm(Imm));
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(TargetOpcode::COPY), ResultReg)
.addReg(II.ImplicitDefs[0]));
}
return ResultReg;
}
unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
const ConstantFP *FPImm) {
unsigned ResultReg = createResultReg(RC);
const MCInstrDesc &II = TII.get(MachineInstOpcode);
if (II.getNumDefs() >= 1)
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
.addReg(Op0, Op0IsKill * RegState::Kill)
.addFPImm(FPImm));
else {
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
.addReg(Op0, Op0IsKill * RegState::Kill)
.addFPImm(FPImm));
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(TargetOpcode::COPY), ResultReg)
.addReg(II.ImplicitDefs[0]));
}
return ResultReg;
}
unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill,
unsigned Op1, bool Op1IsKill,
uint64_t Imm) {
unsigned ResultReg = createResultReg(RC);
const MCInstrDesc &II = TII.get(MachineInstOpcode);
if (II.getNumDefs() >= 1)
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
.addReg(Op0, Op0IsKill * RegState::Kill)
.addReg(Op1, Op1IsKill * RegState::Kill)
.addImm(Imm));
else {
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
.addReg(Op0, Op0IsKill * RegState::Kill)
.addReg(Op1, Op1IsKill * RegState::Kill)
.addImm(Imm));
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(TargetOpcode::COPY), ResultReg)
.addReg(II.ImplicitDefs[0]));
}
return ResultReg;
}
unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
uint64_t Imm) {
unsigned ResultReg = createResultReg(RC);
const MCInstrDesc &II = TII.get(MachineInstOpcode);
if (II.getNumDefs() >= 1)
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
.addImm(Imm));
else {
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
.addImm(Imm));
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(TargetOpcode::COPY), ResultReg)
.addReg(II.ImplicitDefs[0]));
}
return ResultReg;
}
unsigned ARMFastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
uint64_t Imm1, uint64_t Imm2) {
unsigned ResultReg = createResultReg(RC);
const MCInstrDesc &II = TII.get(MachineInstOpcode);
if (II.getNumDefs() >= 1)
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
.addImm(Imm1).addImm(Imm2));
else {
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
.addImm(Imm1).addImm(Imm2));
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(TargetOpcode::COPY),
ResultReg)
.addReg(II.ImplicitDefs[0]));
}
return ResultReg;
}
unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT,
unsigned Op0, bool Op0IsKill,
uint32_t Idx) {
unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
"Cannot yet extract from physregs");
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
DL, TII.get(TargetOpcode::COPY), ResultReg)
.addReg(Op0, getKillRegState(Op0IsKill), Idx));
return ResultReg;
}
// TODO: Don't worry about 64-bit now, but when this is fixed remove the
// checks from the various callers.
unsigned ARMFastISel::ARMMoveToFPReg(EVT VT, unsigned SrcReg) {
if (VT == MVT::f64) return 0;
unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(ARM::VMOVRS), MoveReg)
.addReg(SrcReg));
return MoveReg;
}
unsigned ARMFastISel::ARMMoveToIntReg(EVT VT, unsigned SrcReg) {
if (VT == MVT::i64) return 0;
unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(ARM::VMOVSR), MoveReg)
.addReg(SrcReg));
return MoveReg;
}
// For double width floating point we need to materialize two constants
// (the high and the low) into integer registers then use a move to get
// the combined constant into an FP reg.
unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, EVT VT) {
const APFloat Val = CFP->getValueAPF();
bool is64bit = VT == MVT::f64;
// This checks to see if we can use VFP3 instructions to materialize
// a constant, otherwise we have to go through the constant pool.
if (TLI.isFPImmLegal(Val, VT)) {
int Imm;
unsigned Opc;
if (is64bit) {
Imm = ARM_AM::getFP64Imm(Val);
Opc = ARM::FCONSTD;
} else {
Imm = ARM_AM::getFP32Imm(Val);
Opc = ARM::FCONSTS;
}
unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
DestReg)
.addImm(Imm));
return DestReg;
}
// Require VFP2 for loading fp constants.
if (!Subtarget->hasVFP2()) return false;
// MachineConstantPool wants an explicit alignment.
unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
if (Align == 0) {
// TODO: Figure out if this is correct.
Align = TD.getTypeAllocSize(CFP->getType());
}
unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
// The extra reg is for addrmode5.
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
DestReg)
.addConstantPoolIndex(Idx)
.addReg(0));
return DestReg;
}
unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, EVT VT) {
if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
return false;
// If we can do this in a single instruction without a constant pool entry
// do so now.
const ConstantInt *CI = cast<ConstantInt>(C);
if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) {
unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16;
unsigned ImmReg = createResultReg(TLI.getRegClassFor(MVT::i32));
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(Opc), ImmReg)
.addImm(CI->getZExtValue()));
return ImmReg;
}
// Use MVN to emit negative constants.
if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) {
unsigned Imm = (unsigned)~(CI->getSExtValue());
bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
(ARM_AM::getSOImmVal(Imm) != -1);
if (UseImm) {
unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi;
unsigned ImmReg = createResultReg(TLI.getRegClassFor(MVT::i32));
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(Opc), ImmReg)
.addImm(Imm));
return ImmReg;
}
}
// Load from constant pool. For now 32-bit only.
if (VT != MVT::i32)
return false;
unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
// MachineConstantPool wants an explicit alignment.
unsigned Align = TD.getPrefTypeAlignment(C->getType());
if (Align == 0) {
// TODO: Figure out if this is correct.
Align = TD.getTypeAllocSize(C->getType());
}
unsigned Idx = MCP.getConstantPoolIndex(C, Align);
if (isThumb2)
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(ARM::t2LDRpci), DestReg)
.addConstantPoolIndex(Idx));
else
// The extra immediate is for addrmode2.
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(ARM::LDRcp), DestReg)
.addConstantPoolIndex(Idx)
.addImm(0));
return DestReg;
}
unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, EVT VT) {
// For now 32-bit only.
if (VT != MVT::i32) return 0;
Reloc::Model RelocM = TM.getRelocationModel();
// TODO: Need more magic for ARM PIC.
if (!isThumb2 && (RelocM == Reloc::PIC_)) return 0;
// MachineConstantPool wants an explicit alignment.
unsigned Align = TD.getPrefTypeAlignment(GV->getType());
if (Align == 0) {
// TODO: Figure out if this is correct.
Align = TD.getTypeAllocSize(GV->getType());
}
// Grab index.
unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb() ? 4 : 8);
unsigned Id = AFI->createPICLabelUId();
ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
ARMCP::CPValue,
PCAdj);
unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
// Load value.
MachineInstrBuilder MIB;
unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
if (isThumb2) {
unsigned Opc = (RelocM != Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic;
MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
.addConstantPoolIndex(Idx);
if (RelocM == Reloc::PIC_)
MIB.addImm(Id);
} else {
// The extra immediate is for addrmode2.
MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp),
DestReg)
.addConstantPoolIndex(Idx)
.addImm(0);
}
AddOptionalDefs(MIB);
if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) {
unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
if (isThumb2)
MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(ARM::t2LDRi12), NewDestReg)
.addReg(DestReg)
.addImm(0);
else
MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRi12),
NewDestReg)
.addReg(DestReg)
.addImm(0);
DestReg = NewDestReg;
AddOptionalDefs(MIB);
}
return DestReg;
}
unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) {
EVT VT = TLI.getValueType(C->getType(), true);
// Only handle simple types.
if (!VT.isSimple()) return 0;
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
return ARMMaterializeFP(CFP, VT);
else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
return ARMMaterializeGV(GV, VT);
else if (isa<ConstantInt>(C))
return ARMMaterializeInt(C, VT);
return 0;
}
unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
// Don't handle dynamic allocas.
if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
MVT VT;
if (!isLoadTypeLegal(AI->getType(), VT)) return false;
DenseMap<const AllocaInst*, int>::iterator SI =
FuncInfo.StaticAllocaMap.find(AI);
// This will get lowered later into the correct offsets and registers
// via rewriteXFrameIndex.
if (SI != FuncInfo.StaticAllocaMap.end()) {
TargetRegisterClass* RC = TLI.getRegClassFor(VT);
unsigned ResultReg = createResultReg(RC);
unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL,
TII.get(Opc), ResultReg)
.addFrameIndex(SI->second)
.addImm(0));
return ResultReg;
}
return 0;
}
bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
EVT evt = TLI.getValueType(Ty, true);
// Only handle simple types.
if (evt == MVT::Other || !evt.isSimple()) return false;
VT = evt.getSimpleVT();
// Handle all legal types, i.e. a register that will directly hold this
// value.
return TLI.isTypeLegal(VT);
}
bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
if (isTypeLegal(Ty, VT)) return true;
// If this is a type than can be sign or zero-extended to a basic operation
// go ahead and accept it now.
if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
return true;
return false;
}
// Computes the address to get to an object.
bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
// Some boilerplate from the X86 FastISel.
const User *U = NULL;
unsigned Opcode = Instruction::UserOp1;
if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
// Don't walk into other basic blocks unless the object is an alloca from
// another block, otherwise it may not have a virtual register assigned.
if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
Opcode = I->getOpcode();
U = I;
}
} else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
Opcode = C->getOpcode();
U = C;
}
if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
if (Ty->getAddressSpace() > 255)
// Fast instruction selection doesn't support the special
// address spaces.
return false;
switch (Opcode) {
default:
break;
case Instruction::BitCast: {
// Look through bitcasts.
return ARMComputeAddress(U->getOperand(0), Addr);
}
case Instruction::IntToPtr: {
// Look past no-op inttoptrs.
if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
return ARMComputeAddress(U->getOperand(0), Addr);
break;
}
case Instruction::PtrToInt: {
// Look past no-op ptrtoints.
if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
return ARMComputeAddress(U->getOperand(0), Addr);
break;
}
case Instruction::GetElementPtr: {
Address SavedAddr = Addr;
int TmpOffset = Addr.Offset;
// Iterate through the GEP folding the constants into offsets where
// we can.
gep_type_iterator GTI = gep_type_begin(U);
for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
i != e; ++i, ++GTI) {
const Value *Op = *i;
if (StructType *STy = dyn_cast<StructType>(*GTI)) {
const StructLayout *SL = TD.getStructLayout(STy);
unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
TmpOffset += SL->getElementOffset(Idx);
} else {
uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
for (;;) {
if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
// Constant-offset addressing.
TmpOffset += CI->getSExtValue() * S;
break;
}
if (isa<AddOperator>(Op) &&
(!isa<Instruction>(Op) ||
FuncInfo.MBBMap[cast<Instruction>(Op)->getParent()]
== FuncInfo.MBB) &&
isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
// An add (in the same block) with a constant operand. Fold the
// constant.
ConstantInt *CI =
cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
TmpOffset += CI->getSExtValue() * S;
// Iterate on the other operand.
Op = cast<AddOperator>(Op)->getOperand(0);
continue;
}
// Unsupported
goto unsupported_gep;
}
}
}
// Try to grab the base operand now.
Addr.Offset = TmpOffset;
if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
// We failed, restore everything and try the other options.
Addr = SavedAddr;
unsupported_gep:
break;
}
case Instruction::Alloca: {
const AllocaInst *AI = cast<AllocaInst>(Obj);
DenseMap<const AllocaInst*, int>::iterator SI =
FuncInfo.StaticAllocaMap.find(AI);
if (SI != FuncInfo.StaticAllocaMap.end()) {
Addr.BaseType = Address::FrameIndexBase;
Addr.Base.FI = SI->second;
return true;
}
break;
}
}
// Materialize the global variable's address into a reg which can
// then be used later to load the variable.
if (const GlobalValue *GV = dyn_cast<GlobalValue>(Obj)) {
unsigned Tmp = ARMMaterializeGV(GV, TLI.getValueType(Obj->getType()));
if (Tmp == 0) return false;
Addr.Base.Reg = Tmp;
return true;
}
// Try to get this in a register if nothing else has worked.
if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
return Addr.Base.Reg != 0;
}
void ARMFastISel::ARMSimplifyAddress(Address &Addr, EVT VT, bool useAM3) {
assert(VT.isSimple() && "Non-simple types are invalid here!");
bool needsLowering = false;
switch (VT.getSimpleVT().SimpleTy) {
default:
assert(false && "Unhandled load/store type!");
break;
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32:
if (!useAM3) {
// Integer loads/stores handle 12-bit offsets.
needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
// Handle negative offsets.
if (needsLowering && isThumb2)
needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 &&
Addr.Offset > -256);
} else {
// ARM halfword load/stores and signed byte loads use +/-imm8 offsets.
needsLowering = (Addr.Offset > 255 || Addr.Offset < -255);
}
break;
case MVT::f32:
case MVT::f64:
// Floating point operands handle 8-bit offsets.
needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
break;
}
// If this is a stack pointer and the offset needs to be simplified then
// put the alloca address into a register, set the base type back to
// register and continue. This should almost never happen.
if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
TargetRegisterClass *RC = isThumb2 ? ARM::tGPRRegisterClass :
ARM::GPRRegisterClass;
unsigned ResultReg = createResultReg(RC);
unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL,
TII.get(Opc), ResultReg)
.addFrameIndex(Addr.Base.FI)
.addImm(0));
Addr.Base.Reg = ResultReg;
Addr.BaseType = Address::RegBase;
}
// Since the offset is too large for the load/store instruction
// get the reg+offset into a register.
if (needsLowering) {
Addr.Base.Reg = FastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
/*Op0IsKill*/false, Addr.Offset, MVT::i32);
Addr.Offset = 0;
}
}
void ARMFastISel::AddLoadStoreOperands(EVT VT, Address &Addr,
const MachineInstrBuilder &MIB,
unsigned Flags, bool useAM3) {
// addrmode5 output depends on the selection dag addressing dividing the
// offset by 4 that it then later multiplies. Do this here as well.
if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
VT.getSimpleVT().SimpleTy == MVT::f64)
Addr.Offset /= 4;
// Frame base works a bit differently. Handle it separately.
if (Addr.BaseType == Address::FrameIndexBase) {
int FI = Addr.Base.FI;
int Offset = Addr.Offset;
MachineMemOperand *MMO =
FuncInfo.MF->getMachineMemOperand(
MachinePointerInfo::getFixedStack(FI, Offset),
Flags,
MFI.getObjectSize(FI),
MFI.getObjectAlignment(FI));
// Now add the rest of the operands.
MIB.addFrameIndex(FI);
// ARM halfword load/stores and signed byte loads need an additional operand.
if (useAM3) {
signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
MIB.addReg(0);
MIB.addImm(Imm);
} else {
MIB.addImm(Addr.Offset);
}
MIB.addMemOperand(MMO);
} else {
// Now add the rest of the operands.
MIB.addReg(Addr.Base.Reg);
// ARM halfword load/stores and signed byte loads need an additional operand.
if (useAM3) {
signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
MIB.addReg(0);
MIB.addImm(Imm);
} else {
MIB.addImm(Addr.Offset);
}
}
AddOptionalDefs(MIB);
}
bool ARMFastISel::ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr,
bool isZExt = true, bool allocReg = true) {
assert(VT.isSimple() && "Non-simple types are invalid here!");
unsigned Opc;
bool useAM3 = false;
TargetRegisterClass *RC;
switch (VT.getSimpleVT().SimpleTy) {
// This is mostly going to be Neon/vector support.
default: return false;
case MVT::i1:
case MVT::i8:
if (isThumb2) {
if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8;
else
Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12;
} else {
if (isZExt) {
Opc = ARM::LDRBi12;
} else {
Opc = ARM::LDRSB;
useAM3 = true;
}
}
RC = ARM::GPRRegisterClass;
break;
case MVT::i16:
if (isThumb2) {
if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8;
else
Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12;
} else {
Opc = isZExt ? ARM::LDRH : ARM::LDRSH;
useAM3 = true;
}
RC = ARM::GPRRegisterClass;
break;
case MVT::i32:
if (isThumb2) {
if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
Opc = ARM::t2LDRi8;
else
Opc = ARM::t2LDRi12;
} else {
Opc = ARM::LDRi12;
}
RC = ARM::GPRRegisterClass;
break;
case MVT::f32:
Opc = ARM::VLDRS;
RC = TLI.getRegClassFor(VT);
break;
case MVT::f64:
Opc = ARM::VLDRD;
RC = TLI.getRegClassFor(VT);
break;
}
// Simplify this down to something we can handle.
ARMSimplifyAddress(Addr, VT, useAM3);
// Create the base instruction, then add the operands.
if (allocReg)
ResultReg = createResultReg(RC);
assert (ResultReg > 255 && "Expected an allocated virtual register.");
MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(Opc), ResultReg);
AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3);
return true;
}
bool ARMFastISel::SelectLoad(const Instruction *I) {
// Atomic loads need special handling.
if (cast<LoadInst>(I)->isAtomic())
return false;
// Verify we have a legal type before going any further.
MVT VT;
if (!isLoadTypeLegal(I->getType(), VT))
return false;
// See if we can handle this address.
Address Addr;
if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
unsigned ResultReg;
if (!ARMEmitLoad(VT, ResultReg, Addr)) return false;
UpdateValueMap(I, ResultReg);
return true;
}
bool ARMFastISel::ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr) {
unsigned StrOpc;
bool useAM3 = false;
switch (VT.getSimpleVT().SimpleTy) {
// This is mostly going to be Neon/vector support.
default: return false;
case MVT::i1: {
unsigned Res = createResultReg(isThumb2 ? ARM::tGPRRegisterClass :
ARM::GPRRegisterClass);
unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(Opc), Res)
.addReg(SrcReg).addImm(1));
SrcReg = Res;
} // Fallthrough here.
case MVT::i8:
if (isThumb2) {
if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
StrOpc = ARM::t2STRBi8;
else
StrOpc = ARM::t2STRBi12;
} else {
StrOpc = ARM::STRBi12;
}
break;
case MVT::i16:
if (isThumb2) {
if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
StrOpc = ARM::t2STRHi8;
else
StrOpc = ARM::t2STRHi12;
} else {
StrOpc = ARM::STRH;
useAM3 = true;
}
break;
case MVT::i32:
if (isThumb2) {
if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
StrOpc = ARM::t2STRi8;
else
StrOpc = ARM::t2STRi12;
} else {
StrOpc = ARM::STRi12;
}
break;
case MVT::f32:
if (!Subtarget->hasVFP2()) return false;
StrOpc = ARM::VSTRS;
break;
case MVT::f64:
if (!Subtarget->hasVFP2()) return false;
StrOpc = ARM::VSTRD;
break;
}
// Simplify this down to something we can handle.
ARMSimplifyAddress(Addr, VT, useAM3);
// Create the base instruction, then add the operands.
MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(StrOpc))
.addReg(SrcReg, getKillRegState(true));
AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3);
return true;
}
bool ARMFastISel::SelectStore(const Instruction *I) {
Value *Op0 = I->getOperand(0);
unsigned SrcReg = 0;
// Atomic stores need special handling.
if (cast<StoreInst>(I)->isAtomic())
return false;
// Verify we have a legal type before going any further.
MVT VT;
if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
return false;
// Get the value to be stored into a register.
SrcReg = getRegForValue(Op0);
if (SrcReg == 0) return false;
// See if we can handle this address.
Address Addr;
if (!ARMComputeAddress(I->getOperand(1), Addr))
return false;
if (!ARMEmitStore(VT, SrcReg, Addr)) return false;
return true;
}
static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
switch (Pred) {
// Needs two compares...
case CmpInst::FCMP_ONE:
case CmpInst::FCMP_UEQ:
default:
// AL is our "false" for now. The other two need more compares.
return ARMCC::AL;
case CmpInst::ICMP_EQ:
case CmpInst::FCMP_OEQ:
return ARMCC::EQ;
case CmpInst::ICMP_SGT:
case CmpInst::FCMP_OGT:
return ARMCC::GT;
case CmpInst::ICMP_SGE:
case CmpInst::FCMP_OGE:
return ARMCC::GE;
case CmpInst::ICMP_UGT:
case CmpInst::FCMP_UGT:
return ARMCC::HI;
case CmpInst::FCMP_OLT:
return ARMCC::MI;
case CmpInst::ICMP_ULE:
case CmpInst::FCMP_OLE:
return ARMCC::LS;
case CmpInst::FCMP_ORD:
return ARMCC::VC;
case CmpInst::FCMP_UNO:
return ARMCC::VS;
case CmpInst::FCMP_UGE:
return ARMCC::PL;
case CmpInst::ICMP_SLT:
case CmpInst::FCMP_ULT:
return ARMCC::LT;
case CmpInst::ICMP_SLE:
case CmpInst::FCMP_ULE:
return ARMCC::LE;
case CmpInst::FCMP_UNE:
case CmpInst::ICMP_NE:
return ARMCC::NE;
case CmpInst::ICMP_UGE:
return ARMCC::HS;
case CmpInst::ICMP_ULT:
return ARMCC::LO;
}
}
bool ARMFastISel::SelectBranch(const Instruction *I) {
const BranchInst *BI = cast<BranchInst>(I);
MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
// Simple branch support.
// If we can, avoid recomputing the compare - redoing it could lead to wonky
// behavior.
if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
// Get the compare predicate.
// Try to take advantage of fallthrough opportunities.
CmpInst::Predicate Predicate = CI->getPredicate();
if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
std::swap(TBB, FBB);
Predicate = CmpInst::getInversePredicate(Predicate);
}
ARMCC::CondCodes ARMPred = getComparePred(Predicate);
// We may not handle every CC for now.
if (ARMPred == ARMCC::AL) return false;
// Emit the compare.
if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
return false;
unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
.addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
FastEmitBranch(FBB, DL);
FuncInfo.MBB->addSuccessor(TBB);
return true;
}
} else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
MVT SourceVT;
if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
(isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
unsigned OpReg = getRegForValue(TI->getOperand(0));
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(TstOpc))
.addReg(OpReg).addImm(1));
unsigned CCMode = ARMCC::NE;
if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
std::swap(TBB, FBB);
CCMode = ARMCC::EQ;
}
unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
.addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
FastEmitBranch(FBB, DL);
FuncInfo.MBB->addSuccessor(TBB);
return true;
}
} else if (const ConstantInt *CI =
dyn_cast<ConstantInt>(BI->getCondition())) {
uint64_t Imm = CI->getZExtValue();
MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
FastEmitBranch(Target, DL);
return true;
}
unsigned CmpReg = getRegForValue(BI->getCondition());
if (CmpReg == 0) return false;
// We've been divorced from our compare! Our block was split, and
// now our compare lives in a predecessor block. We musn't
// re-compare here, as the children of the compare aren't guaranteed
// live across the block boundary (we *could* check for this).
// Regardless, the compare has been done in the predecessor block,
// and it left a value for us in a virtual register. Ergo, we test
// the one-bit value left in the virtual register.
unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TstOpc))
.addReg(CmpReg).addImm(1));
unsigned CCMode = ARMCC::NE;
if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
std::swap(TBB, FBB);
CCMode = ARMCC::EQ;
}
unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
.addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
FastEmitBranch(FBB, DL);
FuncInfo.MBB->addSuccessor(TBB);
return true;
}
bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
bool isZExt) {
Type *Ty = Src1Value->getType();
EVT SrcVT = TLI.getValueType(Ty, true);
if (!SrcVT.isSimple()) return false;
bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy());
if (isFloat && !Subtarget->hasVFP2())
return false;
// Check to see if the 2nd operand is a constant that we can encode directly
// in the compare.
int Imm = 0;
bool UseImm = false;
bool isNegativeImm = false;
// FIXME: At -O0 we don't have anything that canonicalizes operand order.
// Thus, Src1Value may be a ConstantInt, but we're missing it.
if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 ||
SrcVT == MVT::i1) {
const APInt &CIVal = ConstInt->getValue();
Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue();
if (Imm < 0) {
isNegativeImm = true;
Imm = -Imm;
}
UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
(ARM_AM::getSOImmVal(Imm) != -1);
}
} else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
if (ConstFP->isZero() && !ConstFP->isNegative())
UseImm = true;
}
unsigned CmpOpc;
bool isICmp = true;
bool needsExt = false;
switch (SrcVT.getSimpleVT().SimpleTy) {
default: return false;
// TODO: Verify compares.
case MVT::f32:
isICmp = false;
CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES;
break;
case MVT::f64:
isICmp = false;
CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED;
break;
case MVT::i1:
case MVT::i8:
case MVT::i16:
needsExt = true;
// Intentional fall-through.
case MVT::i32:
if (isThumb2) {
if (!UseImm)
CmpOpc = ARM::t2CMPrr;
else
CmpOpc = isNegativeImm ? ARM::t2CMNzri : ARM::t2CMPri;
} else {
if (!UseImm)
CmpOpc = ARM::CMPrr;
else
CmpOpc = isNegativeImm ? ARM::CMNzri : ARM::CMPri;
}
break;
}
unsigned SrcReg1 = getRegForValue(Src1Value);
if (SrcReg1 == 0) return false;
unsigned SrcReg2;
if (!UseImm) {
SrcReg2 = getRegForValue(Src2Value);
if (SrcReg2 == 0) return false;
}
// We have i1, i8, or i16, we need to either zero extend or sign extend.
if (needsExt) {
unsigned ResultReg;
ResultReg = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
if (ResultReg == 0) return false;
SrcReg1 = ResultReg;
if (!UseImm) {
ResultReg = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
if (ResultReg == 0) return false;
SrcReg2 = ResultReg;
}
}
if (!UseImm) {
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(CmpOpc))
.addReg(SrcReg1).addReg(SrcReg2));
} else {
MachineInstrBuilder MIB;
MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
.addReg(SrcReg1);
// Only add immediate for icmp as the immediate for fcmp is an implicit 0.0.
if (isICmp)
MIB.addImm(Imm);
AddOptionalDefs(MIB);
}
// For floating point we need to move the result to a comparison register
// that we can then use for branches.
if (Ty->isFloatTy() || Ty->isDoubleTy())
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(ARM::FMSTAT)));
return true;
}
bool ARMFastISel::SelectCmp(const Instruction *I) {
const CmpInst *CI = cast<CmpInst>(I);
Type *Ty = CI->getOperand(0)->getType();
// Get the compare predicate.
ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
// We may not handle every CC for now.
if (ARMPred == ARMCC::AL) return false;
// Emit the compare.
if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
return false;
// Now set a register based on the comparison. Explicitly set the predicates
// here.
unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
TargetRegisterClass *RC = isThumb2 ? ARM::rGPRRegisterClass
: ARM::GPRRegisterClass;
unsigned DestReg = createResultReg(RC);
Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
unsigned ZeroReg = TargetMaterializeConstant(Zero);
bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy());
unsigned CondReg = isFloat ? ARM::FPSCR : ARM::CPSR;
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), DestReg)
.addReg(ZeroReg).addImm(1)
.addImm(ARMPred).addReg(CondReg);
UpdateValueMap(I, DestReg);
return true;
}
bool ARMFastISel::SelectFPExt(const Instruction *I) {
// Make sure we have VFP and that we're extending float to double.
if (!Subtarget->hasVFP2()) return false;
Value *V = I->getOperand(0);
if (!I->getType()->isDoubleTy() ||
!V->getType()->isFloatTy()) return false;
unsigned Op = getRegForValue(V);
if (Op == 0) return false;
unsigned Result = createResultReg(ARM::DPRRegisterClass);
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(ARM::VCVTDS), Result)
.addReg(Op));
UpdateValueMap(I, Result);
return true;
}
bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
// Make sure we have VFP and that we're truncating double to float.
if (!Subtarget->hasVFP2()) return false;
Value *V = I->getOperand(0);
if (!(I->getType()->isFloatTy() &&
V->getType()->isDoubleTy())) return false;
unsigned Op = getRegForValue(V);
if (Op == 0) return false;
unsigned Result = createResultReg(ARM::SPRRegisterClass);
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(ARM::VCVTSD), Result)
.addReg(Op));
UpdateValueMap(I, Result);
return true;
}
bool ARMFastISel::SelectSIToFP(const Instruction *I) {
// Make sure we have VFP.
if (!Subtarget->hasVFP2()) return false;
MVT DstVT;
Type *Ty = I->getType();
if (!isTypeLegal(Ty, DstVT))
return false;
Value *Src = I->getOperand(0);
EVT SrcVT = TLI.getValueType(Src->getType(), true);
if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
return false;
unsigned SrcReg = getRegForValue(Src);
if (SrcReg == 0) return false;
// Handle sign-extension.
if (SrcVT == MVT::i16 || SrcVT == MVT::i8) {
EVT DestVT = MVT::i32;
unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, /*isZExt*/ false);
if (ResultReg == 0) return false;
SrcReg = ResultReg;
}
// The conversion routine works on fp-reg to fp-reg and the operand above
// was an integer, move it to the fp registers if possible.
unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg);
if (FP == 0) return false;
unsigned Opc;
if (Ty->isFloatTy()) Opc = ARM::VSITOS;
else if (Ty->isDoubleTy()) Opc = ARM::VSITOD;
else return false;
unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
ResultReg)
.addReg(FP));
UpdateValueMap(I, ResultReg);
return true;
}
bool ARMFastISel::SelectFPToSI(const Instruction *I) {
// Make sure we have VFP.
if (!Subtarget->hasVFP2()) return false;
MVT DstVT;
Type *RetTy = I->getType();
if (!isTypeLegal(RetTy, DstVT))
return false;
unsigned Op = getRegForValue(I->getOperand(0));
if (Op == 0) return false;
unsigned Opc;
Type *OpTy = I->getOperand(0)->getType();
if (OpTy->isFloatTy()) Opc = ARM::VTOSIZS;
else if (OpTy->isDoubleTy()) Opc = ARM::VTOSIZD;
else return false;
// f64->s32 or f32->s32 both need an intermediate f32 reg.
unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
ResultReg)
.addReg(Op));
// This result needs to be in an integer register, but the conversion only
// takes place in fp-regs.
unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
if (IntReg == 0) return false;
UpdateValueMap(I, IntReg);
return true;
}
bool ARMFastISel::SelectSelect(const Instruction *I) {
MVT VT;
if (!isTypeLegal(I->getType(), VT))
return false;
// Things need to be register sized for register moves.
if (VT != MVT::i32) return false;
const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
unsigned CondReg = getRegForValue(I->getOperand(0));
if (CondReg == 0) return false;
unsigned Op1Reg = getRegForValue(I->getOperand(1));
if (Op1Reg == 0) return false;
// Check to see if we can use an immediate in the conditional move.
int Imm = 0;
bool UseImm = false;
bool isNegativeImm = false;
if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) {
assert (VT == MVT::i32 && "Expecting an i32.");
Imm = (int)ConstInt->getValue().getZExtValue();
if (Imm < 0) {
isNegativeImm = true;
Imm = ~Imm;
}
UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
(ARM_AM::getSOImmVal(Imm) != -1);
}
unsigned Op2Reg;
if (!UseImm) {
Op2Reg = getRegForValue(I->getOperand(2));
if (Op2Reg == 0) return false;
}
unsigned CmpOpc = isThumb2 ? ARM::t2CMPri : ARM::CMPri;
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
.addReg(CondReg).addImm(0));
unsigned MovCCOpc;
if (!UseImm) {
MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr;
} else {
if (!isNegativeImm) {
MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
} else {
MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi;
}
}
unsigned ResultReg = createResultReg(RC);
if (!UseImm)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
.addReg(Op2Reg).addReg(Op1Reg).addImm(ARMCC::NE).addReg(ARM::CPSR);
else
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
.addReg(Op1Reg).addImm(Imm).addImm(ARMCC::EQ).addReg(ARM::CPSR);
UpdateValueMap(I, ResultReg);
return true;
}
bool ARMFastISel::SelectSDiv(const Instruction *I) {
MVT VT;
Type *Ty = I->getType();
if (!isTypeLegal(Ty, VT))
return false;
// If we have integer div support we should have selected this automagically.
// In case we have a real miss go ahead and return false and we'll pick
// it up later.
if (Subtarget->hasDivide()) return false;
// Otherwise emit a libcall.
RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
if (VT == MVT::i8)
LC = RTLIB::SDIV_I8;
else if (VT == MVT::i16)
LC = RTLIB::SDIV_I16;
else if (VT == MVT::i32)
LC = RTLIB::SDIV_I32;
else if (VT == MVT::i64)
LC = RTLIB::SDIV_I64;
else if (VT == MVT::i128)
LC = RTLIB::SDIV_I128;
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
return ARMEmitLibcall(I, LC);
}
bool ARMFastISel::SelectSRem(const Instruction *I) {
MVT VT;
Type *Ty = I->getType();
if (!isTypeLegal(Ty, VT))
return false;
RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
if (VT == MVT::i8)
LC = RTLIB::SREM_I8;
else if (VT == MVT::i16)
LC = RTLIB::SREM_I16;
else if (VT == MVT::i32)
LC = RTLIB::SREM_I32;
else if (VT == MVT::i64)
LC = RTLIB::SREM_I64;
else if (VT == MVT::i128)
LC = RTLIB::SREM_I128;
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
return ARMEmitLibcall(I, LC);
}
bool ARMFastISel::SelectBinaryOp(const Instruction *I, unsigned ISDOpcode) {
EVT VT = TLI.getValueType(I->getType(), true);
// We can get here in the case when we want to use NEON for our fp
// operations, but can't figure out how to. Just use the vfp instructions
// if we have them.
// FIXME: It'd be nice to use NEON instructions.
Type *Ty = I->getType();
bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
if (isFloat && !Subtarget->hasVFP2())
return false;
unsigned Op1 = getRegForValue(I->getOperand(0));
if (Op1 == 0) return false;
unsigned Op2 = getRegForValue(I->getOperand(1));
if (Op2 == 0) return false;
unsigned Opc;
bool is64bit = VT == MVT::f64 || VT == MVT::i64;
switch (ISDOpcode) {
default: return false;
case ISD::FADD:
Opc = is64bit ? ARM::VADDD : ARM::VADDS;
break;
case ISD::FSUB:
Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
break;
case ISD::FMUL:
Opc = is64bit ? ARM::VMULD : ARM::VMULS;
break;
}
unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(Opc), ResultReg)
.addReg(Op1).addReg(Op2));
UpdateValueMap(I, ResultReg);
return true;
}
// Call Handling Code
bool ARMFastISel::FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src,
EVT SrcVT, unsigned &ResultReg) {
unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
Src, /*TODO: Kill=*/false);
if (RR != 0) {
ResultReg = RR;
return true;
} else
return false;
}
// This is largely taken directly from CCAssignFnForNode - we don't support
// varargs in FastISel so that part has been removed.
// TODO: We may not support all of this.
CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, bool Return) {
switch (CC) {
default:
llvm_unreachable("Unsupported calling convention");
case CallingConv::Fast:
// Ignore fastcc. Silence compiler warnings.
(void)RetFastCC_ARM_APCS;
(void)FastCC_ARM_APCS;
// Fallthrough
case CallingConv::C:
// Use target triple & subtarget features to do actual dispatch.
if (Subtarget->isAAPCS_ABI()) {
if (Subtarget->hasVFP2() &&
FloatABIType == FloatABI::Hard)
return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
else
return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
} else
return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
case CallingConv::ARM_AAPCS_VFP:
return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
case CallingConv::ARM_AAPCS:
return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
case CallingConv::ARM_APCS:
return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
}
}
bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
SmallVectorImpl<unsigned> &ArgRegs,
SmallVectorImpl<MVT> &ArgVTs,
SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
SmallVectorImpl<unsigned> &RegArgs,
CallingConv::ID CC,
unsigned &NumBytes) {
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CC, false, *FuncInfo.MF, TM, ArgLocs, *Context);
CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC, false));
// Get a count of how many bytes are to be pushed on the stack.
NumBytes = CCInfo.getNextStackOffset();
// Issue CALLSEQ_START
unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(AdjStackDown))
.addImm(NumBytes));
// Process the args.
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
unsigned Arg = ArgRegs[VA.getValNo()];
MVT ArgVT = ArgVTs[VA.getValNo()];
// We don't handle NEON/vector parameters yet.
if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
return false;
// Handle arg promotion, etc.
switch (VA.getLocInfo()) {
case CCValAssign::Full: break;
case CCValAssign::SExt: {
EVT DestVT = VA.getLocVT();
unsigned ResultReg = ARMEmitIntExt(ArgVT, Arg, DestVT,
/*isZExt*/false);
assert (ResultReg != 0 && "Failed to emit a sext");
Arg = ResultReg;
break;
}
case CCValAssign::AExt:
// Intentional fall-through. Handle AExt and ZExt.
case CCValAssign::ZExt: {
EVT DestVT = VA.getLocVT();
unsigned ResultReg = ARMEmitIntExt(ArgVT, Arg, DestVT,
/*isZExt*/true);
assert (ResultReg != 0 && "Failed to emit a sext");
Arg = ResultReg;
break;
}
case CCValAssign::BCvt: {
unsigned BC = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
/*TODO: Kill=*/false);
assert(BC != 0 && "Failed to emit a bitcast!");
Arg = BC;
ArgVT = VA.getLocVT();
break;
}
default: llvm_unreachable("Unknown arg promotion!");
}
// Now copy/store arg to correct locations.
if (VA.isRegLoc() && !VA.needsCustom()) {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
VA.getLocReg())
.addReg(Arg);
RegArgs.push_back(VA.getLocReg());
} else if (VA.needsCustom()) {
// TODO: We need custom lowering for vector (v2f64) args.
if (VA.getLocVT() != MVT::f64) return false;
CCValAssign &NextVA = ArgLocs[++i];
// TODO: Only handle register args for now.
if(!(VA.isRegLoc() && NextVA.isRegLoc())) return false;
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(ARM::VMOVRRD), VA.getLocReg())
.addReg(NextVA.getLocReg(), RegState::Define)
.addReg(Arg));
RegArgs.push_back(VA.getLocReg());
RegArgs.push_back(NextVA.getLocReg());
} else {
assert(VA.isMemLoc());
// Need to store on the stack.
Address Addr;
Addr.BaseType = Address::RegBase;
Addr.Base.Reg = ARM::SP;
Addr.Offset = VA.getLocMemOffset();
if (!ARMEmitStore(ArgVT, Arg, Addr)) return false;
}
}
return true;
}
bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
const Instruction *I, CallingConv::ID CC,
unsigned &NumBytes) {
// Issue CALLSEQ_END
unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(AdjStackUp))
.addImm(NumBytes).addImm(0));
// Now the return value.
if (RetVT != MVT::isVoid) {
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context);
CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true));
// Copy all of the result registers out of their specified physreg.
if (RVLocs.size() == 2 && RetVT == MVT::f64) {
// For this move we copy into two registers and then move into the
// double fp reg we want.
EVT DestVT = RVLocs[0].getValVT();
TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
unsigned ResultReg = createResultReg(DstRC);
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(ARM::VMOVDRR), ResultReg)
.addReg(RVLocs[0].getLocReg())
.addReg(RVLocs[1].getLocReg()));
UsedRegs.push_back(RVLocs[0].getLocReg());
UsedRegs.push_back(RVLocs[1].getLocReg());
// Finally update the result.
UpdateValueMap(I, ResultReg);
} else {
assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
EVT CopyVT = RVLocs[0].getValVT();
// Special handling for extended integers.
if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
CopyVT = MVT::i32;
TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
unsigned ResultReg = createResultReg(DstRC);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
ResultReg).addReg(RVLocs[0].getLocReg());
UsedRegs.push_back(RVLocs[0].getLocReg());
// Finally update the result.
UpdateValueMap(I, ResultReg);
}
}
return true;
}
bool ARMFastISel::SelectRet(const Instruction *I) {
const ReturnInst *Ret = cast<ReturnInst>(I);
const Function &F = *I->getParent()->getParent();
if (!FuncInfo.CanLowerReturn)
return false;
if (F.isVarArg())
return false;
CallingConv::ID CC = F.getCallingConv();
if (Ret->getNumOperands() > 0) {
SmallVector<ISD::OutputArg, 4> Outs;
GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
Outs, TLI);
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ValLocs;
CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,I->getContext());
CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */));
const Value *RV = Ret->getOperand(0);
unsigned Reg = getRegForValue(RV);
if (Reg == 0)
return false;
// Only handle a single return value for now.
if (ValLocs.size() != 1)
return false;
CCValAssign &VA = ValLocs[0];
// Don't bother handling odd stuff for now.
if (VA.getLocInfo() != CCValAssign::Full)
return false;
// Only handle register returns for now.
if (!VA.isRegLoc())
return false;
unsigned SrcReg = Reg + VA.getValNo();
EVT RVVT = TLI.getValueType(RV->getType());
EVT DestVT = VA.getValVT();
// Special handling for extended integers.
if (RVVT != DestVT) {
if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
return false;
if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
return false;
assert(DestVT == MVT::i32 && "ARM should always ext to i32");
bool isZExt = Outs[0].Flags.isZExt();
unsigned ResultReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, isZExt);
if (ResultReg == 0) return false;
SrcReg = ResultReg;
}
// Make the copy.
unsigned DstReg = VA.getLocReg();
const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
// Avoid a cross-class copy. This is very unlikely.
if (!SrcRC->contains(DstReg))
return false;
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
DstReg).addReg(SrcReg);
// Mark the register as live out of the function.
MRI.addLiveOut(VA.getLocReg());
}
unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET;
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(RetOpc)));
return true;
}
unsigned ARMFastISel::ARMSelectCallOp(const GlobalValue *GV) {
// Darwin needs the r9 versions of the opcodes.
bool isDarwin = Subtarget->isTargetDarwin();
if (isThumb2) {
return isDarwin ? ARM::tBLr9 : ARM::tBL;
} else {
return isDarwin ? ARM::BLr9 : ARM::BL;
}
}
// A quick function that will emit a call for a named libcall in F with the
// vector of passed arguments for the Instruction in I. We can assume that we
// can emit a call for any libcall we can produce. This is an abridged version
// of the full call infrastructure since we won't need to worry about things
// like computed function pointers or strange arguments at call sites.
// TODO: Try to unify this and the normal call bits for ARM, then try to unify
// with X86.
bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
// Handle *simple* calls for now.
Type *RetTy = I->getType();
MVT RetVT;
if (RetTy->isVoidTy())
RetVT = MVT::isVoid;
else if (!isTypeLegal(RetTy, RetVT))
return false;
// TODO: For now if we have long calls specified we don't handle the call.
if (EnableARMLongCalls) return false;
// Set up the argument vectors.
SmallVector<Value*, 8> Args;
SmallVector<unsigned, 8> ArgRegs;
SmallVector<MVT, 8> ArgVTs;
SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
Args.reserve(I->getNumOperands());
ArgRegs.reserve(I->getNumOperands());
ArgVTs.reserve(I->getNumOperands());
ArgFlags.reserve(I->getNumOperands());
for (unsigned i = 0; i < I->getNumOperands(); ++i) {
Value *Op = I->getOperand(i);
unsigned Arg = getRegForValue(Op);
if (Arg == 0) return false;
Type *ArgTy = Op->getType();
MVT ArgVT;
if (!isTypeLegal(ArgTy, ArgVT)) return false;
ISD::ArgFlagsTy Flags;
unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
Flags.setOrigAlign(OriginalAlignment);
Args.push_back(Op);
ArgRegs.push_back(Arg);
ArgVTs.push_back(ArgVT);
ArgFlags.push_back(Flags);
}
// Handle the arguments now that we've gotten them.
SmallVector<unsigned, 4> RegArgs;
unsigned NumBytes;
if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
return false;
// Issue the call, BLr9 for darwin, BL otherwise.
// TODO: Turn this into the table of arm call ops.
MachineInstrBuilder MIB;
unsigned CallOpc = ARMSelectCallOp(NULL);
if(isThumb2)
// Explicitly adding the predicate here.
MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(CallOpc)))
.addExternalSymbol(TLI.getLibcallName(Call));
else
// Explicitly adding the predicate here.
MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(CallOpc))
.addExternalSymbol(TLI.getLibcallName(Call)));
// Add implicit physical register uses to the call.
for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
MIB.addReg(RegArgs[i]);
// Finish off the call including any return values.
SmallVector<unsigned, 4> UsedRegs;
if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
// Set all unused physreg defs as dead.
static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
return true;
}
bool ARMFastISel::SelectCall(const Instruction *I,
const char *IntrMemName = 0) {
const CallInst *CI = cast<CallInst>(I);
const Value *Callee = CI->getCalledValue();
// Can't handle inline asm.
if (isa<InlineAsm>(Callee)) return false;
// Only handle global variable Callees.
const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
if (!GV)
return false;
// Check the calling convention.
ImmutableCallSite CS(CI);
CallingConv::ID CC = CS.getCallingConv();
// TODO: Avoid some calling conventions?
// Let SDISel handle vararg functions.
PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
FunctionType *FTy = cast<FunctionType>(PT->getElementType());
if (FTy->isVarArg())
return false;
// Handle *simple* calls for now.
Type *RetTy = I->getType();
MVT RetVT;
if (RetTy->isVoidTy())
RetVT = MVT::isVoid;
else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
RetVT != MVT::i8 && RetVT != MVT::i1)
return false;
// TODO: For now if we have long calls specified we don't handle the call.
if (EnableARMLongCalls) return false;
// Set up the argument vectors.
SmallVector<Value*, 8> Args;
SmallVector<unsigned, 8> ArgRegs;
SmallVector<MVT, 8> ArgVTs;
SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
Args.reserve(CS.arg_size());
ArgRegs.reserve(CS.arg_size());
ArgVTs.reserve(CS.arg_size());
ArgFlags.reserve(CS.arg_size());
for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
i != e; ++i) {
// If we're lowering a memory intrinsic instead of a regular call, skip the
// last two arguments, which shouldn't be passed to the underlying function.
if (IntrMemName && e-i <= 2)
break;
unsigned Arg = getRegForValue(*i);
if (Arg == 0)
return false;
ISD::ArgFlagsTy Flags;
unsigned AttrInd = i - CS.arg_begin() + 1;
if (CS.paramHasAttr(AttrInd, Attribute::SExt))
Flags.setSExt();
if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
Flags.setZExt();
// FIXME: Only handle *easy* calls for now.
if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
CS.paramHasAttr(AttrInd, Attribute::Nest) ||
CS.paramHasAttr(AttrInd, Attribute::ByVal))
return false;
Type *ArgTy = (*i)->getType();
MVT ArgVT;
if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 &&
ArgVT != MVT::i1)
return false;
unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
Flags.setOrigAlign(OriginalAlignment);
Args.push_back(*i);
ArgRegs.push_back(Arg);
ArgVTs.push_back(ArgVT);
ArgFlags.push_back(Flags);
}
// Handle the arguments now that we've gotten them.
SmallVector<unsigned, 4> RegArgs;
unsigned NumBytes;
if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
return false;
// Issue the call, BLr9 for darwin, BL otherwise.
// TODO: Turn this into the table of arm call ops.
MachineInstrBuilder MIB;
unsigned CallOpc = ARMSelectCallOp(GV);
// Explicitly adding the predicate here.
if(isThumb2) {
// Explicitly adding the predicate here.
MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(CallOpc)));
if (!IntrMemName)
MIB.addGlobalAddress(GV, 0, 0);
else
MIB.addExternalSymbol(IntrMemName, 0);
} else {
if (!IntrMemName)
// Explicitly adding the predicate here.
MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(CallOpc))
.addGlobalAddress(GV, 0, 0));
else
MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(CallOpc))
.addExternalSymbol(IntrMemName, 0));
}
// Add implicit physical register uses to the call.
for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
MIB.addReg(RegArgs[i]);
// Finish off the call including any return values.
SmallVector<unsigned, 4> UsedRegs;
if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
// Set all unused physreg defs as dead.
static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
return true;
}
bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) {
return Len <= 16;
}
bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len) {
// Make sure we don't bloat code by inlining very large memcpy's.
if (!ARMIsMemCpySmall(Len))
return false;
// We don't care about alignment here since we just emit integer accesses.
while (Len) {
MVT VT;
if (Len >= 4)
VT = MVT::i32;
else if (Len >= 2)
VT = MVT::i16;
else {
assert(Len == 1);
VT = MVT::i8;
}
bool RV;
unsigned ResultReg;
RV = ARMEmitLoad(VT, ResultReg, Src);
assert (RV = true && "Should be able to handle this load.");
RV = ARMEmitStore(VT, ResultReg, Dest);
assert (RV = true && "Should be able to handle this store.");
unsigned Size = VT.getSizeInBits()/8;
Len -= Size;
Dest.Offset += Size;
Src.Offset += Size;
}
return true;
}
bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
// FIXME: Handle more intrinsics.
switch (I.getIntrinsicID()) {
default: return false;
case Intrinsic::memcpy:
case Intrinsic::memmove: {
const MemTransferInst &MTI = cast<MemTransferInst>(I);
// Don't handle volatile.
if (MTI.isVolatile())
return false;
// Disable inlining for memmove before calls to ComputeAddress. Otherwise,
// we would emit dead code because we don't currently handle memmoves.
bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
// Small memcpy's are common enough that we want to do them without a call
// if possible.
uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
if (ARMIsMemCpySmall(Len)) {
Address Dest, Src;
if (!ARMComputeAddress(MTI.getRawDest(), Dest) ||
!ARMComputeAddress(MTI.getRawSource(), Src))
return false;
if (ARMTryEmitSmallMemCpy(Dest, Src, Len))
return true;
}
}
if (!MTI.getLength()->getType()->isIntegerTy(32))
return false;
if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
return false;
const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
return SelectCall(&I, IntrMemName);
}
case Intrinsic::memset: {
const MemSetInst &MSI = cast<MemSetInst>(I);
// Don't handle volatile.
if (MSI.isVolatile())
return false;
if (!MSI.getLength()->getType()->isIntegerTy(32))
return false;
if (MSI.getDestAddressSpace() > 255)
return false;
return SelectCall(&I, "memset");
}
}
return false;
}
bool ARMFastISel::SelectTrunc(const Instruction *I) {
// The high bits for a type smaller than the register size are assumed to be
// undefined.
Value *Op = I->getOperand(0);
EVT SrcVT, DestVT;
SrcVT = TLI.getValueType(Op->getType(), true);
DestVT = TLI.getValueType(I->getType(), true);
if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
return false;
if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
return false;
unsigned SrcReg = getRegForValue(Op);
if (!SrcReg) return false;
// Because the high bits are undefined, a truncate doesn't generate
// any code.
UpdateValueMap(I, SrcReg);
return true;
}
unsigned ARMFastISel::ARMEmitIntExt(EVT SrcVT, unsigned SrcReg, EVT DestVT,
bool isZExt) {
if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
return 0;
unsigned Opc;
bool isBoolZext = false;
if (!SrcVT.isSimple()) return 0;
switch (SrcVT.getSimpleVT().SimpleTy) {
default: return 0;
case MVT::i16:
if (!Subtarget->hasV6Ops()) return 0;
if (isZExt)
Opc = isThumb2 ? ARM::t2UXTH : ARM::UXTH;
else
Opc = isThumb2 ? ARM::t2SXTH : ARM::SXTH;
break;
case MVT::i8:
if (!Subtarget->hasV6Ops()) return 0;
if (isZExt)
Opc = isThumb2 ? ARM::t2UXTB : ARM::UXTB;
else
Opc = isThumb2 ? ARM::t2SXTB : ARM::SXTB;
break;
case MVT::i1:
if (isZExt) {
Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
isBoolZext = true;
break;
}
return 0;
}
unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::i32));
MachineInstrBuilder MIB;
MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
.addReg(SrcReg);
if (isBoolZext)
MIB.addImm(1);
else
MIB.addImm(0);
AddOptionalDefs(MIB);
return ResultReg;
}
bool ARMFastISel::SelectIntExt(const Instruction *I) {
// On ARM, in general, integer casts don't involve legal types; this code
// handles promotable integers.
Type *DestTy = I->getType();
Value *Src = I->getOperand(0);
Type *SrcTy = Src->getType();
EVT SrcVT, DestVT;
SrcVT = TLI.getValueType(SrcTy, true);
DestVT = TLI.getValueType(DestTy, true);
bool isZExt = isa<ZExtInst>(I);
unsigned SrcReg = getRegForValue(Src);
if (!SrcReg) return false;
unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
if (ResultReg == 0) return false;
UpdateValueMap(I, ResultReg);
return true;
}
// TODO: SoftFP support.
bool ARMFastISel::TargetSelectInstruction(const Instruction *I) {
switch (I->getOpcode()) {
case Instruction::Load:
return SelectLoad(I);
case Instruction::Store:
return SelectStore(I);
case Instruction::Br:
return SelectBranch(I);
case Instruction::ICmp:
case Instruction::FCmp:
return SelectCmp(I);
case Instruction::FPExt:
return SelectFPExt(I);
case Instruction::FPTrunc:
return SelectFPTrunc(I);
case Instruction::SIToFP:
return SelectSIToFP(I);
case Instruction::FPToSI:
return SelectFPToSI(I);
case Instruction::FAdd:
return SelectBinaryOp(I, ISD::FADD);
case Instruction::FSub:
return SelectBinaryOp(I, ISD::FSUB);
case Instruction::FMul:
return SelectBinaryOp(I, ISD::FMUL);
case Instruction::SDiv:
return SelectSDiv(I);
case Instruction::SRem:
return SelectSRem(I);
case Instruction::Call:
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
return SelectIntrinsicCall(*II);
return SelectCall(I);
case Instruction::Select:
return SelectSelect(I);
case Instruction::Ret:
return SelectRet(I);
case Instruction::Trunc:
return SelectTrunc(I);
case Instruction::ZExt:
case Instruction::SExt:
return SelectIntExt(I);
default: break;
}
return false;
}
/// TryToFoldLoad - The specified machine instr operand is a vreg, and that
/// vreg is being provided by the specified load instruction. If possible,
/// try to fold the load as an operand to the instruction, returning true if
/// successful.
bool ARMFastISel::TryToFoldLoad(MachineInstr *MI, unsigned OpNo,
const LoadInst *LI) {
// Verify we have a legal type before going any further.
MVT VT;
if (!isLoadTypeLegal(LI->getType(), VT))
return false;
// Combine load followed by zero- or sign-extend.
// ldrb r1, [r0] ldrb r1, [r0]
// uxtb r2, r1 =>
// mov r3, r2 mov r3, r1
bool isZExt = true;
switch(MI->getOpcode()) {
default: return false;
case ARM::SXTH:
case ARM::t2SXTH:
isZExt = false;
case ARM::UXTH:
case ARM::t2UXTH:
if (VT != MVT::i16)
return false;
break;
case ARM::SXTB:
case ARM::t2SXTB:
isZExt = false;
case ARM::UXTB:
case ARM::t2UXTB:
if (VT != MVT::i8)
return false;
break;
}
// See if we can handle this address.
Address Addr;
if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false;
unsigned ResultReg = MI->getOperand(0).getReg();
if (!ARMEmitLoad(VT, ResultReg, Addr, isZExt, false))
return false;
MI->eraseFromParent();
return true;
}
namespace llvm {
llvm::FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo) {
// Completely untested on non-darwin.
const TargetMachine &TM = funcInfo.MF->getTarget();
// Darwin and thumb1 only for now.
const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>();
if (Subtarget->isTargetDarwin() && !Subtarget->isThumb1Only() &&
!DisableARMFastISel)
return new ARMFastISel(funcInfo);
return 0;
}
}