llvm-6502/lib/Transforms/Scalar/JumpThreading.cpp
2009-11-15 19:58:31 +00:00

1390 lines
54 KiB
C++

//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Jump Threading pass.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "jump-threading"
#include "llvm/Transforms/Scalar.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/LLVMContext.h"
#include "llvm/Pass.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LazyValueInfo.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
#include "llvm/Target/TargetData.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
STATISTIC(NumThreads, "Number of jumps threaded");
STATISTIC(NumFolds, "Number of terminators folded");
STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi");
static cl::opt<unsigned>
Threshold("jump-threading-threshold",
cl::desc("Max block size to duplicate for jump threading"),
cl::init(6), cl::Hidden);
// Turn on use of LazyValueInfo.
static cl::opt<bool>
EnableLVI("enable-jump-threading-lvi", cl::ReallyHidden);
namespace {
/// This pass performs 'jump threading', which looks at blocks that have
/// multiple predecessors and multiple successors. If one or more of the
/// predecessors of the block can be proven to always jump to one of the
/// successors, we forward the edge from the predecessor to the successor by
/// duplicating the contents of this block.
///
/// An example of when this can occur is code like this:
///
/// if () { ...
/// X = 4;
/// }
/// if (X < 3) {
///
/// In this case, the unconditional branch at the end of the first if can be
/// revectored to the false side of the second if.
///
class JumpThreading : public FunctionPass {
TargetData *TD;
LazyValueInfo *LVI;
#ifdef NDEBUG
SmallPtrSet<BasicBlock*, 16> LoopHeaders;
#else
SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
#endif
public:
static char ID; // Pass identification
JumpThreading() : FunctionPass(&ID) {}
bool runOnFunction(Function &F);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
if (EnableLVI)
AU.addRequired<LazyValueInfo>();
}
void FindLoopHeaders(Function &F);
bool ProcessBlock(BasicBlock *BB);
bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
BasicBlock *SuccBB);
bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
BasicBlock *PredBB);
typedef SmallVectorImpl<std::pair<ConstantInt*,
BasicBlock*> > PredValueInfo;
bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
PredValueInfo &Result);
bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB);
bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
bool ProcessJumpOnPHI(PHINode *PN);
bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
};
}
char JumpThreading::ID = 0;
static RegisterPass<JumpThreading>
X("jump-threading", "Jump Threading");
// Public interface to the Jump Threading pass
FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
/// runOnFunction - Top level algorithm.
///
bool JumpThreading::runOnFunction(Function &F) {
DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n");
TD = getAnalysisIfAvailable<TargetData>();
LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0;
FindLoopHeaders(F);
bool AnotherIteration = true, EverChanged = false;
while (AnotherIteration) {
AnotherIteration = false;
bool Changed = false;
for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
BasicBlock *BB = I;
// Thread all of the branches we can over this block.
while (ProcessBlock(BB))
Changed = true;
++I;
// If the block is trivially dead, zap it. This eliminates the successor
// edges which simplifies the CFG.
if (pred_begin(BB) == pred_end(BB) &&
BB != &BB->getParent()->getEntryBlock()) {
DEBUG(errs() << " JT: Deleting dead block '" << BB->getName()
<< "' with terminator: " << *BB->getTerminator() << '\n');
LoopHeaders.erase(BB);
DeleteDeadBlock(BB);
Changed = true;
} else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
// Can't thread an unconditional jump, but if the block is "almost
// empty", we can replace uses of it with uses of the successor and make
// this dead.
if (BI->isUnconditional() &&
BB != &BB->getParent()->getEntryBlock()) {
BasicBlock::iterator BBI = BB->getFirstNonPHI();
// Ignore dbg intrinsics.
while (isa<DbgInfoIntrinsic>(BBI))
++BBI;
// If the terminator is the only non-phi instruction, try to nuke it.
if (BBI->isTerminator()) {
// Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
// block, we have to make sure it isn't in the LoopHeaders set. We
// reinsert afterward in the rare case when the block isn't deleted.
bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
if (TryToSimplifyUncondBranchFromEmptyBlock(BB))
Changed = true;
else if (ErasedFromLoopHeaders)
LoopHeaders.insert(BB);
}
}
}
}
AnotherIteration = Changed;
EverChanged |= Changed;
}
LoopHeaders.clear();
return EverChanged;
}
/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
/// thread across it.
static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
/// Ignore PHI nodes, these will be flattened when duplication happens.
BasicBlock::const_iterator I = BB->getFirstNonPHI();
// FIXME: THREADING will delete values that are just used to compute the
// branch, so they shouldn't count against the duplication cost.
// Sum up the cost of each instruction until we get to the terminator. Don't
// include the terminator because the copy won't include it.
unsigned Size = 0;
for (; !isa<TerminatorInst>(I); ++I) {
// Debugger intrinsics don't incur code size.
if (isa<DbgInfoIntrinsic>(I)) continue;
// If this is a pointer->pointer bitcast, it is free.
if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
continue;
// All other instructions count for at least one unit.
++Size;
// Calls are more expensive. If they are non-intrinsic calls, we model them
// as having cost of 4. If they are a non-vector intrinsic, we model them
// as having cost of 2 total, and if they are a vector intrinsic, we model
// them as having cost 1.
if (const CallInst *CI = dyn_cast<CallInst>(I)) {
if (!isa<IntrinsicInst>(CI))
Size += 3;
else if (!isa<VectorType>(CI->getType()))
Size += 1;
}
}
// Threading through a switch statement is particularly profitable. If this
// block ends in a switch, decrease its cost to make it more likely to happen.
if (isa<SwitchInst>(I))
Size = Size > 6 ? Size-6 : 0;
return Size;
}
/// FindLoopHeaders - We do not want jump threading to turn proper loop
/// structures into irreducible loops. Doing this breaks up the loop nesting
/// hierarchy and pessimizes later transformations. To prevent this from
/// happening, we first have to find the loop headers. Here we approximate this
/// by finding targets of backedges in the CFG.
///
/// Note that there definitely are cases when we want to allow threading of
/// edges across a loop header. For example, threading a jump from outside the
/// loop (the preheader) to an exit block of the loop is definitely profitable.
/// It is also almost always profitable to thread backedges from within the loop
/// to exit blocks, and is often profitable to thread backedges to other blocks
/// within the loop (forming a nested loop). This simple analysis is not rich
/// enough to track all of these properties and keep it up-to-date as the CFG
/// mutates, so we don't allow any of these transformations.
///
void JumpThreading::FindLoopHeaders(Function &F) {
SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
FindFunctionBackedges(F, Edges);
for (unsigned i = 0, e = Edges.size(); i != e; ++i)
LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
}
/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
/// if we can infer that the value is a known ConstantInt in any of our
/// predecessors. If so, return the known list of value and pred BB in the
/// result vector. If a value is known to be undef, it is returned as null.
///
/// This returns true if there were any known values.
///
bool JumpThreading::
ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
// If V is a constantint, then it is known in all predecessors.
if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
ConstantInt *CI = dyn_cast<ConstantInt>(V);
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
Result.push_back(std::make_pair(CI, *PI));
return true;
}
// If V is a non-instruction value, or an instruction in a different block,
// then it can't be derived from a PHI.
Instruction *I = dyn_cast<Instruction>(V);
if (I == 0 || I->getParent() != BB) {
// Okay, if this is a live-in value, see if it has a known value at the end
// of any of our predecessors.
//
// FIXME: This should be an edge property, not a block end property.
/// TODO: Per PR2563, we could infer value range information about a
/// predecessor based on its terminator.
//
if (LVI) {
// FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
// "I" is a non-local compare-with-a-constant instruction. This would be
// able to handle value inequalities better, for example if the compare is
// "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
// Perhaps getConstantOnEdge should be smart enough to do this?
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
// If the value is known by LazyValueInfo to be a constant in a
// predecessor, use that information to try to thread this block.
Constant *PredCst = LVI->getConstantOnEdge(V, *PI, BB);
if (PredCst == 0 ||
(!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst)))
continue;
Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), *PI));
}
return !Result.empty();
}
return false;
}
/// If I is a PHI node, then we know the incoming values for any constants.
if (PHINode *PN = dyn_cast<PHINode>(I)) {
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
Value *InVal = PN->getIncomingValue(i);
if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
}
}
return !Result.empty();
}
SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
// Handle some boolean conditions.
if (I->getType()->getPrimitiveSizeInBits() == 1) {
// X | true -> true
// X & false -> false
if (I->getOpcode() == Instruction::Or ||
I->getOpcode() == Instruction::And) {
ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
if (LHSVals.empty() && RHSVals.empty())
return false;
ConstantInt *InterestingVal;
if (I->getOpcode() == Instruction::Or)
InterestingVal = ConstantInt::getTrue(I->getContext());
else
InterestingVal = ConstantInt::getFalse(I->getContext());
// Scan for the sentinel.
for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0)
Result.push_back(LHSVals[i]);
for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0)
Result.push_back(RHSVals[i]);
return !Result.empty();
}
// Handle the NOT form of XOR.
if (I->getOpcode() == Instruction::Xor &&
isa<ConstantInt>(I->getOperand(1)) &&
cast<ConstantInt>(I->getOperand(1))->isOne()) {
ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result);
if (Result.empty())
return false;
// Invert the known values.
for (unsigned i = 0, e = Result.size(); i != e; ++i)
if (Result[i].first)
Result[i].first =
cast<ConstantInt>(ConstantExpr::getNot(Result[i].first));
return true;
}
}
// Handle compare with phi operand, where the PHI is defined in this block.
if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
if (PN && PN->getParent() == BB) {
// We can do this simplification if any comparisons fold to true or false.
// See if any do.
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
BasicBlock *PredBB = PN->getIncomingBlock(i);
Value *LHS = PN->getIncomingValue(i);
Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
if (Res == 0) {
if (!LVI || !isa<Constant>(RHS))
continue;
LazyValueInfo::Tristate
ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
cast<Constant>(RHS), PredBB, BB);
if (ResT == LazyValueInfo::Unknown)
continue;
Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
}
if (isa<UndefValue>(Res))
Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
Result.push_back(std::make_pair(CI, PredBB));
}
return !Result.empty();
}
// If comparing a live-in value against a constant, see if we know the
// live-in value on any predecessors.
if (LVI && isa<Constant>(Cmp->getOperand(1)) &&
Cmp->getType()->isInteger() && // Not vector compare.
(!isa<Instruction>(Cmp->getOperand(0)) ||
cast<Instruction>(Cmp->getOperand(0))->getParent() != BB)) {
Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
// If the value is known by LazyValueInfo to be a constant in a
// predecessor, use that information to try to thread this block.
LazyValueInfo::Tristate
Res = LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
RHSCst, *PI, BB);
if (Res == LazyValueInfo::Unknown)
continue;
Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
Result.push_back(std::make_pair(cast<ConstantInt>(ResC), *PI));
}
return !Result.empty();
}
}
return false;
}
/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
/// in an undefined jump, decide which block is best to revector to.
///
/// Since we can pick an arbitrary destination, we pick the successor with the
/// fewest predecessors. This should reduce the in-degree of the others.
///
static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
TerminatorInst *BBTerm = BB->getTerminator();
unsigned MinSucc = 0;
BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
// Compute the successor with the minimum number of predecessors.
unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
TestBB = BBTerm->getSuccessor(i);
unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
if (NumPreds < MinNumPreds)
MinSucc = i;
}
return MinSucc;
}
/// ProcessBlock - If there are any predecessors whose control can be threaded
/// through to a successor, transform them now.
bool JumpThreading::ProcessBlock(BasicBlock *BB) {
// If this block has a single predecessor, and if that pred has a single
// successor, merge the blocks. This encourages recursive jump threading
// because now the condition in this block can be threaded through
// predecessors of our predecessor block.
if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
SinglePred != BB) {
// If SinglePred was a loop header, BB becomes one.
if (LoopHeaders.erase(SinglePred))
LoopHeaders.insert(BB);
// Remember if SinglePred was the entry block of the function. If so, we
// will need to move BB back to the entry position.
bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
MergeBasicBlockIntoOnlyPred(BB);
if (isEntry && BB != &BB->getParent()->getEntryBlock())
BB->moveBefore(&BB->getParent()->getEntryBlock());
return true;
}
}
// Look to see if the terminator is a branch of switch, if not we can't thread
// it.
Value *Condition;
if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
// Can't thread an unconditional jump.
if (BI->isUnconditional()) return false;
Condition = BI->getCondition();
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
Condition = SI->getCondition();
else
return false; // Must be an invoke.
// If the terminator of this block is branching on a constant, simplify the
// terminator to an unconditional branch. This can occur due to threading in
// other blocks.
if (isa<ConstantInt>(Condition)) {
DEBUG(errs() << " In block '" << BB->getName()
<< "' folding terminator: " << *BB->getTerminator() << '\n');
++NumFolds;
ConstantFoldTerminator(BB);
return true;
}
// If the terminator is branching on an undef, we can pick any of the
// successors to branch to. Let GetBestDestForJumpOnUndef decide.
if (isa<UndefValue>(Condition)) {
unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
// Fold the branch/switch.
TerminatorInst *BBTerm = BB->getTerminator();
for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
if (i == BestSucc) continue;
RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD);
}
DEBUG(errs() << " In block '" << BB->getName()
<< "' folding undef terminator: " << *BBTerm << '\n');
BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
BBTerm->eraseFromParent();
return true;
}
Instruction *CondInst = dyn_cast<Instruction>(Condition);
// If the condition is an instruction defined in another block, see if a
// predecessor has the same condition:
// br COND, BBX, BBY
// BBX:
// br COND, BBZ, BBW
if (!LVI &&
!Condition->hasOneUse() && // Multiple uses.
(CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
pred_iterator PI = pred_begin(BB), E = pred_end(BB);
if (isa<BranchInst>(BB->getTerminator())) {
for (; PI != E; ++PI)
if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
if (PBI->isConditional() && PBI->getCondition() == Condition &&
ProcessBranchOnDuplicateCond(*PI, BB))
return true;
} else {
assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
for (; PI != E; ++PI)
if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
if (PSI->getCondition() == Condition &&
ProcessSwitchOnDuplicateCond(*PI, BB))
return true;
}
}
// All the rest of our checks depend on the condition being an instruction.
if (CondInst == 0) {
// FIXME: Unify this with code below.
if (LVI && ProcessThreadableEdges(Condition, BB))
return true;
return false;
}
// See if this is a phi node in the current block.
if (PHINode *PN = dyn_cast<PHINode>(CondInst))
if (PN->getParent() == BB)
return ProcessJumpOnPHI(PN);
if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
if (!LVI &&
(!isa<PHINode>(CondCmp->getOperand(0)) ||
cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB)) {
// If we have a comparison, loop over the predecessors to see if there is
// a condition with a lexically identical value.
pred_iterator PI = pred_begin(BB), E = pred_end(BB);
for (; PI != E; ++PI)
if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
if (PBI->isConditional() && *PI != BB) {
if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
if (CI->getOperand(0) == CondCmp->getOperand(0) &&
CI->getOperand(1) == CondCmp->getOperand(1) &&
CI->getPredicate() == CondCmp->getPredicate()) {
// TODO: Could handle things like (x != 4) --> (x == 17)
if (ProcessBranchOnDuplicateCond(*PI, BB))
return true;
}
}
}
}
}
// Check for some cases that are worth simplifying. Right now we want to look
// for loads that are used by a switch or by the condition for the branch. If
// we see one, check to see if it's partially redundant. If so, insert a PHI
// which can then be used to thread the values.
//
// This is particularly important because reg2mem inserts loads and stores all
// over the place, and this blocks jump threading if we don't zap them.
Value *SimplifyValue = CondInst;
if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
if (isa<Constant>(CondCmp->getOperand(1)))
SimplifyValue = CondCmp->getOperand(0);
// TODO: There are other places where load PRE would be profitable, such as
// more complex comparisons.
if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
if (SimplifyPartiallyRedundantLoad(LI))
return true;
// Handle a variety of cases where we are branching on something derived from
// a PHI node in the current block. If we can prove that any predecessors
// compute a predictable value based on a PHI node, thread those predecessors.
//
if (ProcessThreadableEdges(CondInst, BB))
return true;
// TODO: If we have: "br (X > 0)" and we have a predecessor where we know
// "(X == 4)" thread through this block.
return false;
}
/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
/// block that jump on exactly the same condition. This means that we almost
/// always know the direction of the edge in the DESTBB:
/// PREDBB:
/// br COND, DESTBB, BBY
/// DESTBB:
/// br COND, BBZ, BBW
///
/// If DESTBB has multiple predecessors, we can't just constant fold the branch
/// in DESTBB, we have to thread over it.
bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
BasicBlock *BB) {
BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
// If both successors of PredBB go to DESTBB, we don't know anything. We can
// fold the branch to an unconditional one, which allows other recursive
// simplifications.
bool BranchDir;
if (PredBI->getSuccessor(1) != BB)
BranchDir = true;
else if (PredBI->getSuccessor(0) != BB)
BranchDir = false;
else {
DEBUG(errs() << " In block '" << PredBB->getName()
<< "' folding terminator: " << *PredBB->getTerminator() << '\n');
++NumFolds;
ConstantFoldTerminator(PredBB);
return true;
}
BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
// If the dest block has one predecessor, just fix the branch condition to a
// constant and fold it.
if (BB->getSinglePredecessor()) {
DEBUG(errs() << " In block '" << BB->getName()
<< "' folding condition to '" << BranchDir << "': "
<< *BB->getTerminator() << '\n');
++NumFolds;
Value *OldCond = DestBI->getCondition();
DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
BranchDir));
ConstantFoldTerminator(BB);
RecursivelyDeleteTriviallyDeadInstructions(OldCond);
return true;
}
// Next, figure out which successor we are threading to.
BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
SmallVector<BasicBlock*, 2> Preds;
Preds.push_back(PredBB);
// Ok, try to thread it!
return ThreadEdge(BB, Preds, SuccBB);
}
/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
/// block that switch on exactly the same condition. This means that we almost
/// always know the direction of the edge in the DESTBB:
/// PREDBB:
/// switch COND [... DESTBB, BBY ... ]
/// DESTBB:
/// switch COND [... BBZ, BBW ]
///
/// Optimizing switches like this is very important, because simplifycfg builds
/// switches out of repeated 'if' conditions.
bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
BasicBlock *DestBB) {
// Can't thread edge to self.
if (PredBB == DestBB)
return false;
SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
// There are a variety of optimizations that we can potentially do on these
// blocks: we order them from most to least preferable.
// If DESTBB *just* contains the switch, then we can forward edges from PREDBB
// directly to their destination. This does not introduce *any* code size
// growth. Skip debug info first.
BasicBlock::iterator BBI = DestBB->begin();
while (isa<DbgInfoIntrinsic>(BBI))
BBI++;
// FIXME: Thread if it just contains a PHI.
if (isa<SwitchInst>(BBI)) {
bool MadeChange = false;
// Ignore the default edge for now.
for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
ConstantInt *DestVal = DestSI->getCaseValue(i);
BasicBlock *DestSucc = DestSI->getSuccessor(i);
// Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if
// PredSI has an explicit case for it. If so, forward. If it is covered
// by the default case, we can't update PredSI.
unsigned PredCase = PredSI->findCaseValue(DestVal);
if (PredCase == 0) continue;
// If PredSI doesn't go to DestBB on this value, then it won't reach the
// case on this condition.
if (PredSI->getSuccessor(PredCase) != DestBB &&
DestSI->getSuccessor(i) != DestBB)
continue;
// Otherwise, we're safe to make the change. Make sure that the edge from
// DestSI to DestSucc is not critical and has no PHI nodes.
DEBUG(errs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI);
DEBUG(errs() << "THROUGH: " << *DestSI);
// If the destination has PHI nodes, just split the edge for updating
// simplicity.
if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
SplitCriticalEdge(DestSI, i, this);
DestSucc = DestSI->getSuccessor(i);
}
FoldSingleEntryPHINodes(DestSucc);
PredSI->setSuccessor(PredCase, DestSucc);
MadeChange = true;
}
if (MadeChange)
return true;
}
return false;
}
/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
/// load instruction, eliminate it by replacing it with a PHI node. This is an
/// important optimization that encourages jump threading, and needs to be run
/// interlaced with other jump threading tasks.
bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
// Don't hack volatile loads.
if (LI->isVolatile()) return false;
// If the load is defined in a block with exactly one predecessor, it can't be
// partially redundant.
BasicBlock *LoadBB = LI->getParent();
if (LoadBB->getSinglePredecessor())
return false;
Value *LoadedPtr = LI->getOperand(0);
// If the loaded operand is defined in the LoadBB, it can't be available.
// TODO: Could do simple PHI translation, that would be fun :)
if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
if (PtrOp->getParent() == LoadBB)
return false;
// Scan a few instructions up from the load, to see if it is obviously live at
// the entry to its block.
BasicBlock::iterator BBIt = LI;
if (Value *AvailableVal =
FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
// If the value if the load is locally available within the block, just use
// it. This frequently occurs for reg2mem'd allocas.
//cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
// If the returned value is the load itself, replace with an undef. This can
// only happen in dead loops.
if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
LI->replaceAllUsesWith(AvailableVal);
LI->eraseFromParent();
return true;
}
// Otherwise, if we scanned the whole block and got to the top of the block,
// we know the block is locally transparent to the load. If not, something
// might clobber its value.
if (BBIt != LoadBB->begin())
return false;
SmallPtrSet<BasicBlock*, 8> PredsScanned;
typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
AvailablePredsTy AvailablePreds;
BasicBlock *OneUnavailablePred = 0;
// If we got here, the loaded value is transparent through to the start of the
// block. Check to see if it is available in any of the predecessor blocks.
for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
PI != PE; ++PI) {
BasicBlock *PredBB = *PI;
// If we already scanned this predecessor, skip it.
if (!PredsScanned.insert(PredBB))
continue;
// Scan the predecessor to see if the value is available in the pred.
BBIt = PredBB->end();
Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
if (!PredAvailable) {
OneUnavailablePred = PredBB;
continue;
}
// If so, this load is partially redundant. Remember this info so that we
// can create a PHI node.
AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
}
// If the loaded value isn't available in any predecessor, it isn't partially
// redundant.
if (AvailablePreds.empty()) return false;
// Okay, the loaded value is available in at least one (and maybe all!)
// predecessors. If the value is unavailable in more than one unique
// predecessor, we want to insert a merge block for those common predecessors.
// This ensures that we only have to insert one reload, thus not increasing
// code size.
BasicBlock *UnavailablePred = 0;
// If there is exactly one predecessor where the value is unavailable, the
// already computed 'OneUnavailablePred' block is it. If it ends in an
// unconditional branch, we know that it isn't a critical edge.
if (PredsScanned.size() == AvailablePreds.size()+1 &&
OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
UnavailablePred = OneUnavailablePred;
} else if (PredsScanned.size() != AvailablePreds.size()) {
// Otherwise, we had multiple unavailable predecessors or we had a critical
// edge from the one.
SmallVector<BasicBlock*, 8> PredsToSplit;
SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
AvailablePredSet.insert(AvailablePreds[i].first);
// Add all the unavailable predecessors to the PredsToSplit list.
for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
PI != PE; ++PI)
if (!AvailablePredSet.count(*PI))
PredsToSplit.push_back(*PI);
// Split them out to their own block.
UnavailablePred =
SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
"thread-pre-split", this);
}
// If the value isn't available in all predecessors, then there will be
// exactly one where it isn't available. Insert a load on that edge and add
// it to the AvailablePreds list.
if (UnavailablePred) {
assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
"Can't handle critical edge here!");
Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
LI->getAlignment(),
UnavailablePred->getTerminator());
AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
}
// Now we know that each predecessor of this block has a value in
// AvailablePreds, sort them for efficient access as we're walking the preds.
array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
// Create a PHI node at the start of the block for the PRE'd load value.
PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
PN->takeName(LI);
// Insert new entries into the PHI for each predecessor. A single block may
// have multiple entries here.
for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
++PI) {
AvailablePredsTy::iterator I =
std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
std::make_pair(*PI, (Value*)0));
assert(I != AvailablePreds.end() && I->first == *PI &&
"Didn't find entry for predecessor!");
PN->addIncoming(I->second, I->first);
}
//cerr << "PRE: " << *LI << *PN << "\n";
LI->replaceAllUsesWith(PN);
LI->eraseFromParent();
return true;
}
/// FindMostPopularDest - The specified list contains multiple possible
/// threadable destinations. Pick the one that occurs the most frequently in
/// the list.
static BasicBlock *
FindMostPopularDest(BasicBlock *BB,
const SmallVectorImpl<std::pair<BasicBlock*,
BasicBlock*> > &PredToDestList) {
assert(!PredToDestList.empty());
// Determine popularity. If there are multiple possible destinations, we
// explicitly choose to ignore 'undef' destinations. We prefer to thread
// blocks with known and real destinations to threading undef. We'll handle
// them later if interesting.
DenseMap<BasicBlock*, unsigned> DestPopularity;
for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
if (PredToDestList[i].second)
DestPopularity[PredToDestList[i].second]++;
// Find the most popular dest.
DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
BasicBlock *MostPopularDest = DPI->first;
unsigned Popularity = DPI->second;
SmallVector<BasicBlock*, 4> SamePopularity;
for (++DPI; DPI != DestPopularity.end(); ++DPI) {
// If the popularity of this entry isn't higher than the popularity we've
// seen so far, ignore it.
if (DPI->second < Popularity)
; // ignore.
else if (DPI->second == Popularity) {
// If it is the same as what we've seen so far, keep track of it.
SamePopularity.push_back(DPI->first);
} else {
// If it is more popular, remember it.
SamePopularity.clear();
MostPopularDest = DPI->first;
Popularity = DPI->second;
}
}
// Okay, now we know the most popular destination. If there is more than
// destination, we need to determine one. This is arbitrary, but we need
// to make a deterministic decision. Pick the first one that appears in the
// successor list.
if (!SamePopularity.empty()) {
SamePopularity.push_back(MostPopularDest);
TerminatorInst *TI = BB->getTerminator();
for (unsigned i = 0; ; ++i) {
assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
if (std::find(SamePopularity.begin(), SamePopularity.end(),
TI->getSuccessor(i)) == SamePopularity.end())
continue;
MostPopularDest = TI->getSuccessor(i);
break;
}
}
// Okay, we have finally picked the most popular destination.
return MostPopularDest;
}
bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) {
// If threading this would thread across a loop header, don't even try to
// thread the edge.
if (LoopHeaders.count(BB))
return false;
SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues))
return false;
assert(!PredValues.empty() &&
"ComputeValueKnownInPredecessors returned true with no values");
DEBUG(errs() << "IN BB: " << *BB;
for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
errs() << " BB '" << BB->getName() << "': FOUND condition = ";
if (PredValues[i].first)
errs() << *PredValues[i].first;
else
errs() << "UNDEF";
errs() << " for pred '" << PredValues[i].second->getName()
<< "'.\n";
});
// Decide what we want to thread through. Convert our list of known values to
// a list of known destinations for each pred. This also discards duplicate
// predecessors and keeps track of the undefined inputs (which are represented
// as a null dest in the PredToDestList).
SmallPtrSet<BasicBlock*, 16> SeenPreds;
SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
BasicBlock *OnlyDest = 0;
BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
BasicBlock *Pred = PredValues[i].second;
if (!SeenPreds.insert(Pred))
continue; // Duplicate predecessor entry.
// If the predecessor ends with an indirect goto, we can't change its
// destination.
if (isa<IndirectBrInst>(Pred->getTerminator()))
continue;
ConstantInt *Val = PredValues[i].first;
BasicBlock *DestBB;
if (Val == 0) // Undef.
DestBB = 0;
else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
DestBB = BI->getSuccessor(Val->isZero());
else {
SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
DestBB = SI->getSuccessor(SI->findCaseValue(Val));
}
// If we have exactly one destination, remember it for efficiency below.
if (i == 0)
OnlyDest = DestBB;
else if (OnlyDest != DestBB)
OnlyDest = MultipleDestSentinel;
PredToDestList.push_back(std::make_pair(Pred, DestBB));
}
// If all edges were unthreadable, we fail.
if (PredToDestList.empty())
return false;
// Determine which is the most common successor. If we have many inputs and
// this block is a switch, we want to start by threading the batch that goes
// to the most popular destination first. If we only know about one
// threadable destination (the common case) we can avoid this.
BasicBlock *MostPopularDest = OnlyDest;
if (MostPopularDest == MultipleDestSentinel)
MostPopularDest = FindMostPopularDest(BB, PredToDestList);
// Now that we know what the most popular destination is, factor all
// predecessors that will jump to it into a single predecessor.
SmallVector<BasicBlock*, 16> PredsToFactor;
for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
if (PredToDestList[i].second == MostPopularDest) {
BasicBlock *Pred = PredToDestList[i].first;
// This predecessor may be a switch or something else that has multiple
// edges to the block. Factor each of these edges by listing them
// according to # occurrences in PredsToFactor.
TerminatorInst *PredTI = Pred->getTerminator();
for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
if (PredTI->getSuccessor(i) == BB)
PredsToFactor.push_back(Pred);
}
// If the threadable edges are branching on an undefined value, we get to pick
// the destination that these predecessors should get to.
if (MostPopularDest == 0)
MostPopularDest = BB->getTerminator()->
getSuccessor(GetBestDestForJumpOnUndef(BB));
// Ok, try to thread it!
return ThreadEdge(BB, PredsToFactor, MostPopularDest);
}
/// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in
/// the current block. See if there are any simplifications we can do based on
/// inputs to the phi node.
///
bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
BasicBlock *BB = PN->getParent();
// If any of the predecessor blocks end in an unconditional branch, we can
// *duplicate* the jump into that block in order to further encourage jump
// threading and to eliminate cases where we have branch on a phi of an icmp
// (branch on icmp is much better).
// We don't want to do this tranformation for switches, because we don't
// really want to duplicate a switch.
if (isa<SwitchInst>(BB->getTerminator()))
return false;
// Look for unconditional branch predecessors.
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
BasicBlock *PredBB = PN->getIncomingBlock(i);
if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
if (PredBr->isUnconditional() &&
// Try to duplicate BB into PredBB.
DuplicateCondBranchOnPHIIntoPred(BB, PredBB))
return true;
}
return false;
}
/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
/// predecessor to the PHIBB block. If it has PHI nodes, add entries for
/// NewPred using the entries from OldPred (suitably mapped).
static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
BasicBlock *OldPred,
BasicBlock *NewPred,
DenseMap<Instruction*, Value*> &ValueMap) {
for (BasicBlock::iterator PNI = PHIBB->begin();
PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
// Ok, we have a PHI node. Figure out what the incoming value was for the
// DestBlock.
Value *IV = PN->getIncomingValueForBlock(OldPred);
// Remap the value if necessary.
if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
if (I != ValueMap.end())
IV = I->second;
}
PN->addIncoming(IV, NewPred);
}
}
/// ThreadEdge - We have decided that it is safe and profitable to factor the
/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
/// across BB. Transform the IR to reflect this change.
bool JumpThreading::ThreadEdge(BasicBlock *BB,
const SmallVectorImpl<BasicBlock*> &PredBBs,
BasicBlock *SuccBB) {
// If threading to the same block as we come from, we would infinite loop.
if (SuccBB == BB) {
DEBUG(errs() << " Not threading across BB '" << BB->getName()
<< "' - would thread to self!\n");
return false;
}
// If threading this would thread across a loop header, don't thread the edge.
// See the comments above FindLoopHeaders for justifications and caveats.
if (LoopHeaders.count(BB)) {
DEBUG(errs() << " Not threading across loop header BB '" << BB->getName()
<< "' to dest BB '" << SuccBB->getName()
<< "' - it might create an irreducible loop!\n");
return false;
}
unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
if (JumpThreadCost > Threshold) {
DEBUG(errs() << " Not threading BB '" << BB->getName()
<< "' - Cost is too high: " << JumpThreadCost << "\n");
return false;
}
// And finally, do it! Start by factoring the predecessors is needed.
BasicBlock *PredBB;
if (PredBBs.size() == 1)
PredBB = PredBBs[0];
else {
DEBUG(errs() << " Factoring out " << PredBBs.size()
<< " common predecessors.\n");
PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
".thr_comm", this);
}
// And finally, do it!
DEBUG(errs() << " Threading edge from '" << PredBB->getName() << "' to '"
<< SuccBB->getName() << "' with cost: " << JumpThreadCost
<< ", across block:\n "
<< *BB << "\n");
// We are going to have to map operands from the original BB block to the new
// copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
// account for entry from PredBB.
DenseMap<Instruction*, Value*> ValueMapping;
BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
BB->getName()+".thread",
BB->getParent(), BB);
NewBB->moveAfter(PredBB);
BasicBlock::iterator BI = BB->begin();
for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
// Clone the non-phi instructions of BB into NewBB, keeping track of the
// mapping and using it to remap operands in the cloned instructions.
for (; !isa<TerminatorInst>(BI); ++BI) {
Instruction *New = BI->clone();
New->setName(BI->getName());
NewBB->getInstList().push_back(New);
ValueMapping[BI] = New;
// Remap operands to patch up intra-block references.
for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
if (I != ValueMapping.end())
New->setOperand(i, I->second);
}
}
// We didn't copy the terminator from BB over to NewBB, because there is now
// an unconditional jump to SuccBB. Insert the unconditional jump.
BranchInst::Create(SuccBB, NewBB);
// Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
// PHI nodes for NewBB now.
AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
// If there were values defined in BB that are used outside the block, then we
// now have to update all uses of the value to use either the original value,
// the cloned value, or some PHI derived value. This can require arbitrary
// PHI insertion, of which we are prepared to do, clean these up now.
SSAUpdater SSAUpdate;
SmallVector<Use*, 16> UsesToRename;
for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
// Scan all uses of this instruction to see if it is used outside of its
// block, and if so, record them in UsesToRename.
for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
++UI) {
Instruction *User = cast<Instruction>(*UI);
if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
if (UserPN->getIncomingBlock(UI) == BB)
continue;
} else if (User->getParent() == BB)
continue;
UsesToRename.push_back(&UI.getUse());
}
// If there are no uses outside the block, we're done with this instruction.
if (UsesToRename.empty())
continue;
DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
// We found a use of I outside of BB. Rename all uses of I that are outside
// its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
// with the two values we know.
SSAUpdate.Initialize(I);
SSAUpdate.AddAvailableValue(BB, I);
SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
while (!UsesToRename.empty())
SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
DEBUG(errs() << "\n");
}
// Ok, NewBB is good to go. Update the terminator of PredBB to jump to
// NewBB instead of BB. This eliminates predecessors from BB, which requires
// us to simplify any PHI nodes in BB.
TerminatorInst *PredTerm = PredBB->getTerminator();
for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
if (PredTerm->getSuccessor(i) == BB) {
RemovePredecessorAndSimplify(BB, PredBB, TD);
PredTerm->setSuccessor(i, NewBB);
}
// At this point, the IR is fully up to date and consistent. Do a quick scan
// over the new instructions and zap any that are constants or dead. This
// frequently happens because of phi translation.
BI = NewBB->begin();
for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
Instruction *Inst = BI++;
if (Value *V = SimplifyInstruction(Inst, TD)) {
WeakVH BIHandle(BI);
ReplaceAndSimplifyAllUses(Inst, V, TD);
if (BIHandle == 0)
BI = NewBB->begin();
continue;
}
RecursivelyDeleteTriviallyDeadInstructions(Inst);
}
// Threaded an edge!
++NumThreads;
return true;
}
/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
/// If we can duplicate the contents of BB up into PredBB do so now, this
/// improves the odds that the branch will be on an analyzable instruction like
/// a compare.
bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
BasicBlock *PredBB) {
// If BB is a loop header, then duplicating this block outside the loop would
// cause us to transform this into an irreducible loop, don't do this.
// See the comments above FindLoopHeaders for justifications and caveats.
if (LoopHeaders.count(BB)) {
DEBUG(errs() << " Not duplicating loop header '" << BB->getName()
<< "' into predecessor block '" << PredBB->getName()
<< "' - it might create an irreducible loop!\n");
return false;
}
unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
if (DuplicationCost > Threshold) {
DEBUG(errs() << " Not duplicating BB '" << BB->getName()
<< "' - Cost is too high: " << DuplicationCost << "\n");
return false;
}
// Okay, we decided to do this! Clone all the instructions in BB onto the end
// of PredBB.
DEBUG(errs() << " Duplicating block '" << BB->getName() << "' into end of '"
<< PredBB->getName() << "' to eliminate branch on phi. Cost: "
<< DuplicationCost << " block is:" << *BB << "\n");
// We are going to have to map operands from the original BB block into the
// PredBB block. Evaluate PHI nodes in BB.
DenseMap<Instruction*, Value*> ValueMapping;
BasicBlock::iterator BI = BB->begin();
for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
// Clone the non-phi instructions of BB into PredBB, keeping track of the
// mapping and using it to remap operands in the cloned instructions.
for (; BI != BB->end(); ++BI) {
Instruction *New = BI->clone();
New->setName(BI->getName());
PredBB->getInstList().insert(OldPredBranch, New);
ValueMapping[BI] = New;
// Remap operands to patch up intra-block references.
for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
if (I != ValueMapping.end())
New->setOperand(i, I->second);
}
}
// Check to see if the targets of the branch had PHI nodes. If so, we need to
// add entries to the PHI nodes for branch from PredBB now.
BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
ValueMapping);
AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
ValueMapping);
// If there were values defined in BB that are used outside the block, then we
// now have to update all uses of the value to use either the original value,
// the cloned value, or some PHI derived value. This can require arbitrary
// PHI insertion, of which we are prepared to do, clean these up now.
SSAUpdater SSAUpdate;
SmallVector<Use*, 16> UsesToRename;
for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
// Scan all uses of this instruction to see if it is used outside of its
// block, and if so, record them in UsesToRename.
for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
++UI) {
Instruction *User = cast<Instruction>(*UI);
if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
if (UserPN->getIncomingBlock(UI) == BB)
continue;
} else if (User->getParent() == BB)
continue;
UsesToRename.push_back(&UI.getUse());
}
// If there are no uses outside the block, we're done with this instruction.
if (UsesToRename.empty())
continue;
DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
// We found a use of I outside of BB. Rename all uses of I that are outside
// its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
// with the two values we know.
SSAUpdate.Initialize(I);
SSAUpdate.AddAvailableValue(BB, I);
SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
while (!UsesToRename.empty())
SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
DEBUG(errs() << "\n");
}
// PredBB no longer jumps to BB, remove entries in the PHI node for the edge
// that we nuked.
RemovePredecessorAndSimplify(BB, PredBB, TD);
// Remove the unconditional branch at the end of the PredBB block.
OldPredBranch->eraseFromParent();
++NumDupes;
return true;
}