llvm-6502/test/CodeGen/PowerPC/ppc64le-aggregates.ll
Bill Schmidt b900895384 [PowerPC 1/4] Little-endian adjustments for VSX loads/stores
This patch addresses the inherent big-endian bias in the lxvd2x,
lxvw4x, stxvd2x, and stxvw4x instructions.  These instructions load
vector elements into registers left-to-right (with the first element
loaded into the high-order bits of the register), regardless of the
endian setting of the processor.  However, these are the only
vector memory instructions that permit unaligned storage accesses, so
we want to use them for little-endian.

To make this work, a lxvd2x or lxvw4x is replaced with an lxvd2x
followed by an xxswapd, which swaps the doublewords.  This works for
lxvw4x as well as lxvd2x, because for lxvw4x on an LE system the
vector elements are in LE order (right-to-left) within each
doubleword.  (Thus after lxvw2x of a <4 x float> the elements will
appear as 1, 0, 3, 2.  Following the swap, they will appear as 3, 2,
0, 1, as desired.)   For stores, an stxvd2x or stxvw4x is replaced
with an stxvd2x preceded by an xxswapd.

Introduction of extra swap instructions provides correctness, but
obviously is not ideal from a performance perspective.  Future patches
will address this with optimizations to remove most of the introduced
swaps, which have proven effective in other implementations.

The introduction of the swaps is performed during lowering of LOAD,
STORE, INTRINSIC_W_CHAIN, and INTRINSIC_VOID operations.  The latter
are used to translate intrinsics that specify the VSX loads and stores
directly into equivalent sequences for little endian.  Thus code that
uses vec_vsx_ld and vec_vsx_st does not have to be modified to be
ported from BE to LE.

We introduce new PPCISD opcodes for LXVD2X, STXVD2X, and XXSWAPD for
use during this lowering step.  In PPCInstrVSX.td, we add new SDType
and SDNode definitions for these (PPClxvd2x, PPCstxvd2x, PPCxxswapd).
These are recognized during instruction selection and mapped to the
correct instructions.

Several tests that were written to use -mcpu=pwr7 or pwr8 are modified
to disable VSX on LE variants because code generation changes with
this and subsequent patches in this set.  I chose to include all of
these in the first patch than try to rigorously sort out which tests
were broken by one or another of the patches.  Sorry about that.

The new test vsx-ldst-builtin-le.ll, and the changes to vsx-ldst.ll,
are disabled until LE support is enabled because of breakages that
occur as noted in those tests.  They are re-enabled in patch 4/4.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223783 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-09 16:35:51 +00:00

334 lines
8.3 KiB
LLVM

; RUN: llc < %s -march=ppc64le -mcpu=pwr8 -mattr=+altivec -mattr=-vsx | FileCheck %s
; Currently VSX support is disabled for this test because we generate lxsdx
; instead of lfd, and stxsdx instead of stfd. That is a poor choice when we
; have reg+imm addressing, and is on the list of things to be fixed.
target datalayout = "e-m:e-i64:64-n32:64"
target triple = "powerpc64le-unknown-linux-gnu"
;
; Verify use of registers for float/vector aggregate return.
;
define [8 x float] @return_float([8 x float] %x) {
entry:
ret [8 x float] %x
}
; CHECK-LABEL: @return_float
; CHECK: %entry
; CHECK-NEXT: blr
define [8 x double] @return_double([8 x double] %x) {
entry:
ret [8 x double] %x
}
; CHECK-LABEL: @return_double
; CHECK: %entry
; CHECK-NEXT: blr
define [4 x ppc_fp128] @return_ppcf128([4 x ppc_fp128] %x) {
entry:
ret [4 x ppc_fp128] %x
}
; CHECK-LABEL: @return_ppcf128
; CHECK: %entry
; CHECK-NEXT: blr
define [8 x <4 x i32>] @return_v4i32([8 x <4 x i32>] %x) {
entry:
ret [8 x <4 x i32>] %x
}
; CHECK-LABEL: @return_v4i32
; CHECK: %entry
; CHECK-NEXT: blr
;
; Verify amount of space taken up by aggregates in the parameter save area.
;
define i64 @callee_float([7 x float] %a, [7 x float] %b, i64 %c) {
entry:
ret i64 %c
}
; CHECK-LABEL: @callee_float
; CHECK: ld 3, 96(1)
; CHECK: blr
define void @caller_float(i64 %x, [7 x float] %y) {
entry:
tail call void @test_float([7 x float] %y, [7 x float] %y, i64 %x)
ret void
}
; CHECK-LABEL: @caller_float
; CHECK: std 3, 96(1)
; CHECK: bl test_float
declare void @test_float([7 x float], [7 x float], i64)
define i64 @callee_double(i64 %a, [7 x double] %b, i64 %c) {
entry:
ret i64 %c
}
; CHECK-LABEL: @callee_double
; CHECK: ld 3, 96(1)
; CHECK: blr
define void @caller_double(i64 %x, [7 x double] %y) {
entry:
tail call void @test_double(i64 %x, [7 x double] %y, i64 %x)
ret void
}
; CHECK-LABEL: @caller_double
; CHECK: std 3, 96(1)
; CHECK: bl test_double
declare void @test_double(i64, [7 x double], i64)
define i64 @callee_ppcf128(i64 %a, [4 x ppc_fp128] %b, i64 %c) {
entry:
ret i64 %c
}
; CHECK-LABEL: @callee_ppcf128
; CHECK: ld 3, 104(1)
; CHECK: blr
define void @caller_ppcf128(i64 %x, [4 x ppc_fp128] %y) {
entry:
tail call void @test_ppcf128(i64 %x, [4 x ppc_fp128] %y, i64 %x)
ret void
}
; CHECK-LABEL: @caller_ppcf128
; CHECK: std 3, 104(1)
; CHECK: bl test_ppcf128
declare void @test_ppcf128(i64, [4 x ppc_fp128], i64)
define i64 @callee_i64(i64 %a, [7 x i64] %b, i64 %c) {
entry:
ret i64 %c
}
; CHECK-LABEL: @callee_i64
; CHECK: ld 3, 96(1)
; CHECK: blr
define void @caller_i64(i64 %x, [7 x i64] %y) {
entry:
tail call void @test_i64(i64 %x, [7 x i64] %y, i64 %x)
ret void
}
; CHECK-LABEL: @caller_i64
; CHECK: std 3, 96(1)
; CHECK: bl test_i64
declare void @test_i64(i64, [7 x i64], i64)
define i64 @callee_i128(i64 %a, [4 x i128] %b, i64 %c) {
entry:
ret i64 %c
}
; CHECK-LABEL: @callee_i128
; CHECK: ld 3, 112(1)
; CHECK: blr
define void @caller_i128(i64 %x, [4 x i128] %y) {
entry:
tail call void @test_i128(i64 %x, [4 x i128] %y, i64 %x)
ret void
}
; CHECK-LABEL: @caller_i128
; CHECK: std 3, 112(1)
; CHECK: bl test_i128
declare void @test_i128(i64, [4 x i128], i64)
define i64 @callee_v4i32(i64 %a, [4 x <4 x i32>] %b, i64 %c) {
entry:
ret i64 %c
}
; CHECK-LABEL: @callee_v4i32
; CHECK: ld 3, 112(1)
; CHECK: blr
define void @caller_v4i32(i64 %x, [4 x <4 x i32>] %y) {
entry:
tail call void @test_v4i32(i64 %x, [4 x <4 x i32>] %y, i64 %x)
ret void
}
; CHECK-LABEL: @caller_v4i32
; CHECK: std 3, 112(1)
; CHECK: bl test_v4i32
declare void @test_v4i32(i64, [4 x <4 x i32>], i64)
;
; Verify handling of floating point arguments in GPRs
;
%struct.float8 = type { [8 x float] }
%struct.float5 = type { [5 x float] }
%struct.float2 = type { [2 x float] }
@g8 = common global %struct.float8 zeroinitializer, align 4
@g5 = common global %struct.float5 zeroinitializer, align 4
@g2 = common global %struct.float2 zeroinitializer, align 4
define float @callee0([7 x float] %a, [7 x float] %b) {
entry:
%b.extract = extractvalue [7 x float] %b, 6
ret float %b.extract
}
; CHECK-LABEL: @callee0
; CHECK: stw 10, [[OFF:.*]](1)
; CHECK: lfs 1, [[OFF]](1)
; CHECK: blr
define void @caller0([7 x float] %a) {
entry:
tail call void @test0([7 x float] %a, [7 x float] %a)
ret void
}
; CHECK-LABEL: @caller0
; CHECK-DAG: fmr 8, 1
; CHECK-DAG: fmr 9, 2
; CHECK-DAG: fmr 10, 3
; CHECK-DAG: fmr 11, 4
; CHECK-DAG: fmr 12, 5
; CHECK-DAG: fmr 13, 6
; CHECK-DAG: stfs 7, [[OFF:[0-9]+]](1)
; CHECK-DAG: lwz 10, [[OFF]](1)
; CHECK: bl test0
declare void @test0([7 x float], [7 x float])
define float @callee1([8 x float] %a, [8 x float] %b) {
entry:
%b.extract = extractvalue [8 x float] %b, 7
ret float %b.extract
}
; CHECK-LABEL: @callee1
; CHECK: rldicl [[REG:[0-9]+]], 10, 32, 32
; CHECK: stw [[REG]], [[OFF:.*]](1)
; CHECK: lfs 1, [[OFF]](1)
; CHECK: blr
define void @caller1([8 x float] %a) {
entry:
tail call void @test1([8 x float] %a, [8 x float] %a)
ret void
}
; CHECK-LABEL: @caller1
; CHECK-DAG: fmr 9, 1
; CHECK-DAG: fmr 10, 2
; CHECK-DAG: fmr 11, 3
; CHECK-DAG: fmr 12, 4
; CHECK-DAG: fmr 13, 5
; CHECK-DAG: stfs 5, [[OFF0:[0-9]+]](1)
; CHECK-DAG: stfs 6, [[OFF1:[0-9]+]](1)
; CHECK-DAG: stfs 7, [[OFF2:[0-9]+]](1)
; CHECK-DAG: stfs 8, [[OFF3:[0-9]+]](1)
; CHECK-DAG: lwz [[REG0:[0-9]+]], [[OFF0]](1)
; CHECK-DAG: lwz [[REG1:[0-9]+]], [[OFF1]](1)
; CHECK-DAG: lwz [[REG2:[0-9]+]], [[OFF2]](1)
; CHECK-DAG: lwz [[REG3:[0-9]+]], [[OFF3]](1)
; CHECK-DAG: sldi [[REG1]], [[REG1]], 32
; CHECK-DAG: sldi [[REG3]], [[REG3]], 32
; CHECK-DAG: or 9, [[REG0]], [[REG1]]
; CHECK-DAG: or 10, [[REG2]], [[REG3]]
; CHECK: bl test1
declare void @test1([8 x float], [8 x float])
define float @callee2([8 x float] %a, [5 x float] %b, [2 x float] %c) {
entry:
%c.extract = extractvalue [2 x float] %c, 1
ret float %c.extract
}
; CHECK-LABEL: @callee2
; CHECK: rldicl [[REG:[0-9]+]], 10, 32, 32
; CHECK: stw [[REG]], [[OFF:.*]](1)
; CHECK: lfs 1, [[OFF]](1)
; CHECK: blr
define void @caller2() {
entry:
%0 = load [8 x float]* getelementptr inbounds (%struct.float8* @g8, i64 0, i32 0), align 4
%1 = load [5 x float]* getelementptr inbounds (%struct.float5* @g5, i64 0, i32 0), align 4
%2 = load [2 x float]* getelementptr inbounds (%struct.float2* @g2, i64 0, i32 0), align 4
tail call void @test2([8 x float] %0, [5 x float] %1, [2 x float] %2)
ret void
}
; CHECK-LABEL: @caller2
; CHECK: ld [[REG:[0-9]+]], .LC
; CHECK-DAG: lfs 1, 0([[REG]])
; CHECK-DAG: lfs 2, 4([[REG]])
; CHECK-DAG: lfs 3, 8([[REG]])
; CHECK-DAG: lfs 4, 12([[REG]])
; CHECK-DAG: lfs 5, 16([[REG]])
; CHECK-DAG: lfs 6, 20([[REG]])
; CHECK-DAG: lfs 7, 24([[REG]])
; CHECK-DAG: lfs 8, 28([[REG]])
; CHECK: ld [[REG:[0-9]+]], .LC
; CHECK-DAG: lfs 9, 0([[REG]])
; CHECK-DAG: lfs 10, 4([[REG]])
; CHECK-DAG: lfs 11, 8([[REG]])
; CHECK-DAG: lfs 12, 12([[REG]])
; CHECK-DAG: lfs 13, 16([[REG]])
; CHECK: ld [[REG:[0-9]+]], .LC
; CHECK-DAG: lwz [[REG0:[0-9]+]], 0([[REG]])
; CHECK-DAG: lwz [[REG1:[0-9]+]], 4([[REG]])
; CHECK-DAG: sldi [[REG1]], [[REG1]], 32
; CHECK-DAG: or 10, [[REG0]], [[REG1]]
; CHECK: bl test2
declare void @test2([8 x float], [5 x float], [2 x float])
define double @callee3([8 x float] %a, [5 x float] %b, double %c) {
entry:
ret double %c
}
; CHECK-LABEL: @callee3
; CHECK: std 10, [[OFF:.*]](1)
; CHECK: lfd 1, [[OFF]](1)
; CHECK: blr
define void @caller3(double %d) {
entry:
%0 = load [8 x float]* getelementptr inbounds (%struct.float8* @g8, i64 0, i32 0), align 4
%1 = load [5 x float]* getelementptr inbounds (%struct.float5* @g5, i64 0, i32 0), align 4
tail call void @test3([8 x float] %0, [5 x float] %1, double %d)
ret void
}
; CHECK-LABEL: @caller3
; CHECK: stfd 1, [[OFF:.*]](1)
; CHECK: ld 10, [[OFF]](1)
; CHECK: bl test3
declare void @test3([8 x float], [5 x float], double)
define float @callee4([8 x float] %a, [5 x float] %b, float %c) {
entry:
ret float %c
}
; CHECK-LABEL: @callee4
; CHECK: stw 10, [[OFF:.*]](1)
; CHECK: lfs 1, [[OFF]](1)
; CHECK: blr
define void @caller4(float %f) {
entry:
%0 = load [8 x float]* getelementptr inbounds (%struct.float8* @g8, i64 0, i32 0), align 4
%1 = load [5 x float]* getelementptr inbounds (%struct.float5* @g5, i64 0, i32 0), align 4
tail call void @test4([8 x float] %0, [5 x float] %1, float %f)
ret void
}
; CHECK-LABEL: @caller4
; CHECK: stfs 1, [[OFF:.*]](1)
; CHECK: lwz 10, [[OFF]](1)
; CHECK: bl test4
declare void @test4([8 x float], [5 x float], float)