llvm-6502/lib/Target/ARM/ARMInstrThumb2.td
2009-07-01 00:01:13 +00:00

800 lines
32 KiB
TableGen

//===- ARMInstrThumb2.td - Thumb2 support for ARM -------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the Thumb2 instruction set.
//
//===----------------------------------------------------------------------===//
// Shifted operands. No register controlled shifts for Thumb2.
// Note: We do not support rrx shifted operands yet.
def t2_so_reg : Operand<i32>, // reg imm
ComplexPattern<i32, 2, "SelectT2ShifterOperandReg",
[shl,srl,sra,rotr]> {
let PrintMethod = "printT2SOOperand";
let MIOperandInfo = (ops GPR, i32imm);
}
// t2_so_imm_XFORM - Return a t2_so_imm value packed into the format
// described for t2_so_imm def below.
def t2_so_imm_XFORM : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(
ARM_AM::getT2SOImmVal(N->getZExtValue()), MVT::i32);
}]>;
// t2_so_imm_not_XFORM - Return the complement of a t2_so_imm value
def t2_so_imm_not_XFORM : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(
ARM_AM::getT2SOImmVal(~((uint32_t)N->getZExtValue())), MVT::i32);
}]>;
// t2_so_imm_neg_XFORM - Return the negation of a t2_so_imm value
def t2_so_imm_neg_XFORM : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(
ARM_AM::getT2SOImmVal(-((int)N->getZExtValue())), MVT::i32);
}]>;
// t2_so_imm - Match a 32-bit immediate operand, which is an
// 8-bit immediate rotated by an arbitrary number of bits, or an 8-bit
// immediate splatted into multiple bytes of the word. t2_so_imm values are
// represented in the imm field in the same 12-bit form that they are encoded
// into t2_so_imm instructions: the 8-bit immediate is the least significant bits
// [bits 0-7], the 4-bit shift/splat amount is the next 4 bits [bits 8-11].
def t2_so_imm : Operand<i32>,
PatLeaf<(imm), [{
return ARM_AM::getT2SOImmVal((uint32_t)N->getZExtValue()) != -1;
}], t2_so_imm_XFORM> {
let PrintMethod = "printT2SOImmOperand";
}
// t2_so_imm_not - Match an immediate that is a complement
// of a t2_so_imm.
def t2_so_imm_not : Operand<i32>,
PatLeaf<(imm), [{
return ARM_AM::getT2SOImmVal(~((uint32_t)N->getZExtValue())) != -1;
}], t2_so_imm_not_XFORM> {
let PrintMethod = "printT2SOImmOperand";
}
// t2_so_imm_neg - Match an immediate that is a negation of a t2_so_imm.
def t2_so_imm_neg : Operand<i32>,
PatLeaf<(imm), [{
return ARM_AM::getT2SOImmVal(-((int)N->getZExtValue())) != -1;
}], t2_so_imm_neg_XFORM> {
let PrintMethod = "printT2SOImmOperand";
}
/// imm1_31 predicate - True if the 32-bit immediate is in the range [1,31].
def imm1_31 : PatLeaf<(i32 imm), [{
return (int32_t)N->getZExtValue() >= 1 && (int32_t)N->getZExtValue() < 32;
}]>;
/// imm0_4095 predicate - True if the 32-bit immediate is in the range [0.4095].
def imm0_4095 : PatLeaf<(i32 imm), [{
return (uint32_t)N->getZExtValue() < 4096;
}]>;
def imm0_4095_neg : PatLeaf<(i32 imm), [{
return (uint32_t)(-N->getZExtValue()) < 4096;
}], imm_neg_XFORM>;
/// imm0_65535 predicate - True if the 32-bit immediate is in the range
/// [0.65535].
def imm0_65535 : PatLeaf<(i32 imm), [{
return (uint32_t)N->getZExtValue() < 65536;
}]>;
/// bf_inv_mask_imm predicate - An AND mask to clear an arbitrary width bitfield
/// e.g., 0xf000ffff
def bf_inv_mask_imm : Operand<i32>,
PatLeaf<(imm), [{
uint32_t v = (uint32_t)N->getZExtValue();
if (v == 0xffffffff)
return 0;
// naive checker. should do better, but simple is best for now since it's
// more likely to be correct.
while (v & 1) v >>= 1; // shift off the leading 1's
if (v)
{
while (!(v & 1)) v >>=1; // shift off the mask
while (v & 1) v >>= 1; // shift off the trailing 1's
}
// if this is a mask for clearing a bitfield, what's left should be zero.
return (v == 0);
}] > {
let PrintMethod = "printBitfieldInvMaskImmOperand";
}
/// Split a 32-bit immediate into two 16 bit parts.
def t2_lo16 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant((uint32_t)N->getZExtValue() & 0xffff,
MVT::i32);
}]>;
def t2_hi16 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant((uint32_t)N->getZExtValue() >> 16, MVT::i32);
}]>;
def t2_lo16AllZero : PatLeaf<(i32 imm), [{
// Returns true if all low 16-bits are 0.
return (((uint32_t)N->getZExtValue()) & 0xFFFFUL) == 0;
}], t2_hi16>;
// Define Thumb2 specific addressing modes.
// t2addrmode_imm12 := reg + imm12
def t2addrmode_imm12 : Operand<i32>,
ComplexPattern<i32, 2, "SelectT2AddrModeImm12", []> {
let PrintMethod = "printT2AddrModeImm12Operand";
let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm);
}
// t2addrmode_imm8 := reg - imm8 (also reg + imm8 for some instructions)
def t2addrmode_imm8 : Operand<i32>,
ComplexPattern<i32, 2, "SelectT2AddrModeImm8", []> {
let PrintMethod = "printT2AddrModeImm8Operand";
let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm);
}
// t2addrmode_imm8s4 := reg + (imm8 << 2)
def t2addrmode_imm8s4 : Operand<i32>,
ComplexPattern<i32, 2, "SelectT2AddrModeImm8s4", []> {
let PrintMethod = "printT2AddrModeImm8Operand";
let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm);
}
// t2addrmode_so_reg := reg + reg << imm2
def t2addrmode_so_reg : Operand<i32>,
ComplexPattern<i32, 3, "SelectT2AddrModeSoReg", []> {
let PrintMethod = "printT2AddrModeSoRegOperand";
let MIOperandInfo = (ops GPR:$base, GPR:$offsreg, i32imm:$offsimm);
}
//===----------------------------------------------------------------------===//
// Multiclass helpers...
//
/// T2I_un_irs - Defines a set of (op reg, {so_imm|r|so_reg}) patterns for a
/// unary operation that produces a value. These are predicable and can be
/// changed to modify CPSR.
multiclass T2I_un_irs<string opc, PatFrag opnode, bit Cheap = 0, bit ReMat = 0>{
// shifted imm
def i : T2sI<(outs GPR:$dst), (ins t2_so_imm:$src),
opc, " $dst, $src",
[(set GPR:$dst, (opnode t2_so_imm:$src))]> {
let isAsCheapAsAMove = Cheap;
let isReMaterializable = ReMat;
}
// register
def r : T2I<(outs GPR:$dst), (ins GPR:$src),
opc, " $dst, $src",
[(set GPR:$dst, (opnode GPR:$src))]>;
// shifted register
def s : T2I<(outs GPR:$dst), (ins t2_so_reg:$src),
opc, " $dst, $src",
[(set GPR:$dst, (opnode t2_so_reg:$src))]>;
}
/// T2I_bin_irs - Defines a set of (op reg, {so_imm|r|so_reg}) patterns for a
// binary operation that produces a value. These are predicable and can be
/// changed to modify CPSR.
multiclass T2I_bin_irs<string opc, PatFrag opnode, bit Commutable = 0> {
// shifted imm
def ri : T2sI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_imm:$rhs),
opc, " $dst, $lhs, $rhs",
[(set GPR:$dst, (opnode GPR:$lhs, t2_so_imm:$rhs))]>;
// register
def rr : T2sI<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs),
opc, " $dst, $lhs, $rhs",
[(set GPR:$dst, (opnode GPR:$lhs, GPR:$rhs))]> {
let isCommutable = Commutable;
}
// shifted register
def rs : T2sI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_reg:$rhs),
opc, " $dst, $lhs, $rhs",
[(set GPR:$dst, (opnode GPR:$lhs, t2_so_reg:$rhs))]>;
}
/// T2I_rbin_is - Same as T2I_bin_irs except the order of operands are
/// reversed. It doesn't define the 'rr' form since it's handled by its
/// T2I_bin_irs counterpart.
multiclass T2I_rbin_is<string opc, PatFrag opnode> {
// shifted imm
def ri : T2I<(outs GPR:$dst), (ins GPR:$rhs, t2_so_imm:$lhs),
opc, " $dst, $rhs, $lhs",
[(set GPR:$dst, (opnode t2_so_imm:$lhs, GPR:$rhs))]>;
// shifted register
def rs : T2I<(outs GPR:$dst), (ins GPR:$rhs, t2_so_reg:$lhs),
opc, " $dst, $rhs, $lhs",
[(set GPR:$dst, (opnode t2_so_reg:$lhs, GPR:$rhs))]>;
}
/// T2I_bin_s_irs - Similar to T2I_bin_irs except it sets the 's' bit so the
/// instruction modifies the CPSR register.
let Defs = [CPSR] in {
multiclass T2I_bin_s_irs<string opc, PatFrag opnode, bit Commutable = 0> {
// shifted imm
def ri : T2I<(outs GPR:$dst), (ins GPR:$lhs, t2_so_imm:$rhs),
!strconcat(opc, "s"), " $dst, $lhs, $rhs",
[(set GPR:$dst, (opnode GPR:$lhs, t2_so_imm:$rhs))]>;
// register
def rr : T2I<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs),
!strconcat(opc, "s"), " $dst, $lhs, $rhs",
[(set GPR:$dst, (opnode GPR:$lhs, GPR:$rhs))]> {
let isCommutable = Commutable;
}
// shifted register
def rs : T2I<(outs GPR:$dst), (ins GPR:$lhs, t2_so_reg:$rhs),
!strconcat(opc, "s"), " $dst, $lhs, $rhs",
[(set GPR:$dst, (opnode GPR:$lhs, t2_so_reg:$rhs))]>;
}
}
/// T2I_bin_ii12rs - Defines a set of (op reg, {so_imm|imm0_4095|r|so_reg})
/// patterns for a binary operation that produces a value.
multiclass T2I_bin_ii12rs<string opc, PatFrag opnode, bit Commutable = 0> {
// shifted imm
def ri : T2sI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_imm:$rhs),
opc, " $dst, $lhs, $rhs",
[(set GPR:$dst, (opnode GPR:$lhs, t2_so_imm:$rhs))]>;
// 12-bit imm
def ri12 : T2sI<(outs GPR:$dst), (ins GPR:$lhs, i32imm:$rhs),
!strconcat(opc, "w"), " $dst, $lhs, $rhs",
[(set GPR:$dst, (opnode GPR:$lhs, imm0_4095:$rhs))]>;
// register
def rr : T2sI<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs),
opc, " $dst, $lhs, $rhs",
[(set GPR:$dst, (opnode GPR:$lhs, GPR:$rhs))]> {
let isCommutable = Commutable;
}
// shifted register
def rs : T2sI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_reg:$rhs),
opc, " $dst, $lhs, $rhs",
[(set GPR:$dst, (opnode GPR:$lhs, t2_so_reg:$rhs))]>;
}
/// T2I_adde_sube_irs - Defines a set of (op reg, {so_imm|r|so_reg}) patterns for a
/// binary operation that produces a value and use and define the carry bit.
/// It's not predicable.
let Uses = [CPSR] in {
multiclass T2I_adde_sube_irs<string opc, PatFrag opnode, bit Commutable = 0> {
// shifted imm
def ri : T2sI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_imm:$rhs),
opc, " $dst, $lhs, $rhs",
[(set GPR:$dst, (opnode GPR:$lhs, t2_so_imm:$rhs))]>,
Requires<[IsThumb, HasThumb2, CarryDefIsUnused]>;
// register
def rr : T2sI<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs),
opc, " $dst, $lhs, $rhs",
[(set GPR:$dst, (opnode GPR:$lhs, GPR:$rhs))]>,
Requires<[IsThumb, HasThumb2, CarryDefIsUnused]> {
let isCommutable = Commutable;
}
// shifted register
def rs : T2sI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_reg:$rhs),
opc, " $dst, $lhs, $rhs",
[(set GPR:$dst, (opnode GPR:$lhs, t2_so_reg:$rhs))]>,
Requires<[IsThumb, HasThumb2, CarryDefIsUnused]>;
// Carry setting variants
// shifted imm
def Sri : T2XI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_imm:$rhs),
!strconcat(opc, "s $dst, $lhs, $rhs"),
[(set GPR:$dst, (opnode GPR:$lhs, t2_so_imm:$rhs))]>,
Requires<[IsThumb, HasThumb2, CarryDefIsUsed]> {
let Defs = [CPSR];
}
// register
def Srr : T2XI<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs),
!strconcat(opc, "s $dst, $lhs, $rhs"),
[(set GPR:$dst, (opnode GPR:$lhs, GPR:$rhs))]>,
Requires<[IsThumb, HasThumb2, CarryDefIsUsed]> {
let Defs = [CPSR];
let isCommutable = Commutable;
}
// shifted register
def Srs : T2XI<(outs GPR:$dst), (ins GPR:$lhs, t2_so_reg:$rhs),
!strconcat(opc, "s $dst, $lhs, $rhs"),
[(set GPR:$dst, (opnode GPR:$lhs, t2_so_reg:$rhs))]>,
Requires<[IsThumb, HasThumb2, CarryDefIsUsed]> {
let Defs = [CPSR];
}
}
}
/// T2I_rsc_is - Same as T2I_adde_sube_irs except the order of operands are
/// reversed. It doesn't define the 'rr' form since it's handled by its
/// T2I_adde_sube_irs counterpart.
let Defs = [CPSR], Uses = [CPSR] in {
multiclass T2I_rsc_is<string opc, PatFrag opnode> {
// shifted imm
def ri : T2sI<(outs GPR:$dst), (ins GPR:$rhs, t2_so_imm:$lhs),
opc, " $dst, $rhs, $lhs",
[(set GPR:$dst, (opnode t2_so_imm:$lhs, GPR:$rhs))]>,
Requires<[IsThumb, HasThumb2, CarryDefIsUnused]>;
// shifted register
def rs : T2sI<(outs GPR:$dst), (ins GPR:$rhs, t2_so_reg:$lhs),
opc, " $dst, $rhs, $lhs",
[(set GPR:$dst, (opnode t2_so_reg:$lhs, GPR:$rhs))]>,
Requires<[IsThumb, HasThumb2, CarryDefIsUnused]>;
// shifted imm
def Sri : T2XI<(outs GPR:$dst), (ins GPR:$rhs, t2_so_imm:$lhs),
!strconcat(opc, "s $dst, $rhs, $lhs"),
[(set GPR:$dst, (opnode t2_so_imm:$lhs, GPR:$rhs))]>,
Requires<[IsThumb, HasThumb2, CarryDefIsUsed]> {
let Defs = [CPSR];
}
// shifted register
def Srs : T2XI<(outs GPR:$dst), (ins GPR:$rhs, t2_so_reg:$lhs),
!strconcat(opc, "s $dst, $rhs, $lhs"),
[(set GPR:$dst, (opnode t2_so_reg:$lhs, GPR:$rhs))]>,
Requires<[IsThumb, HasThumb2, CarryDefIsUsed]> {
let Defs = [CPSR];
}
}
}
/// T2I_rbin_s_is - Same as T2I_bin_s_irs except the order of operands are
/// reversed. It doesn't define the 'rr' form since it's handled by its
/// T2I_bin_s_irs counterpart.
let Defs = [CPSR] in {
multiclass T2I_rbin_s_is<string opc, PatFrag opnode> {
// shifted imm
def ri : T2XI<(outs GPR:$dst), (ins GPR:$rhs, t2_so_imm:$lhs, cc_out:$s),
!strconcat(opc, "${s} $dst, $rhs, $lhs"),
[(set GPR:$dst, (opnode t2_so_imm:$lhs, GPR:$rhs))]>;
// shifted register
def rs : T2XI<(outs GPR:$dst), (ins GPR:$rhs, t2_so_reg:$lhs, cc_out:$s),
!strconcat(opc, "${s} $dst, $rhs, $lhs"),
[(set GPR:$dst, (opnode t2_so_reg:$lhs, GPR:$rhs))]>;
}
}
/// T2I_sh_ir - Defines a set of (op reg, {so_imm|r}) patterns for a shift /
// rotate operation that produces a value.
multiclass T2I_sh_ir<string opc, PatFrag opnode> {
// 5-bit imm
def ri : T2sI<(outs GPR:$dst), (ins GPR:$lhs, i32imm:$rhs),
opc, " $dst, $lhs, $rhs",
[(set GPR:$dst, (opnode GPR:$lhs, imm1_31:$rhs))]>;
// register
def rr : T2sI<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs),
opc, " $dst, $lhs, $rhs",
[(set GPR:$dst, (opnode GPR:$lhs, GPR:$rhs))]>;
}
/// T21_cmp_irs - Defines a set of (op r, {so_imm|r|so_reg}) cmp / test
/// patterns. Similar to T2I_bin_irs except the instruction does not produce
/// a explicit result, only implicitly set CPSR.
let Uses = [CPSR] in {
multiclass T2I_cmp_is<string opc, PatFrag opnode> {
// shifted imm
def ri : T2I<(outs), (ins GPR:$lhs, t2_so_imm:$rhs),
opc, " $lhs, $rhs",
[(opnode GPR:$lhs, t2_so_imm:$rhs)]>;
// register
def rr : T2I<(outs), (ins GPR:$lhs, GPR:$rhs),
opc, " $lhs, $rhs",
[(opnode GPR:$lhs, GPR:$rhs)]>;
// shifted register
def rs : T2I<(outs), (ins GPR:$lhs, t2_so_reg:$rhs),
opc, " $lhs, $rhs",
[(opnode GPR:$lhs, t2_so_reg:$rhs)]>;
}
}
/// T2I_ld - Defines a set of (op r, {imm12|imm8|so_reg}) load patterns.
multiclass T2I_ld<string opc, PatFrag opnode> {
def i12 : T2Ii12<(outs GPR:$dst), (ins t2addrmode_imm12:$addr),
opc, " $dst, $addr",
[(set GPR:$dst, (opnode t2addrmode_imm12:$addr))]>;
def i8 : T2Ii8 <(outs GPR:$dst), (ins t2addrmode_imm8:$addr),
opc, " $dst, $addr",
[(set GPR:$dst, (opnode t2addrmode_imm8:$addr))]>;
def s : T2Iso <(outs GPR:$dst), (ins t2addrmode_so_reg:$addr),
opc, " $dst, $addr",
[(set GPR:$dst, (opnode t2addrmode_so_reg:$addr))]>;
def pci : T2Ipc <(outs GPR:$dst), (ins i32imm:$addr),
opc, " $dst, $addr",
[(set GPR:$dst, (opnode (ARMWrapper tconstpool:$addr)))]>;
}
/// T2I_st - Defines a set of (op r, {imm12|imm8|so_reg}) store patterns.
multiclass T2I_st<string opc, PatFrag opnode> {
def i12 : T2Ii12<(outs), (ins GPR:$src, t2addrmode_imm12:$addr),
opc, " $src, $addr",
[(opnode GPR:$src, t2addrmode_imm12:$addr)]>;
def i8 : T2Ii8 <(outs), (ins GPR:$src, t2addrmode_imm8:$addr),
opc, " $src, $addr",
[(opnode GPR:$src, t2addrmode_imm8:$addr)]>;
def s : T2Iso <(outs), (ins GPR:$src, t2addrmode_so_reg:$addr),
opc, " $src, $addr",
[(opnode GPR:$src, t2addrmode_so_reg:$addr)]>;
}
/// T2I_picld - Defines the PIC load pattern.
class T2I_picld<string opc, PatFrag opnode> :
T2I<(outs GPR:$dst), (ins addrmodepc:$addr),
!strconcat("${addr:label}:\n\t", opc), " $dst, $addr",
[(set GPR:$dst, (opnode addrmodepc:$addr))]>;
/// T2I_picst - Defines the PIC store pattern.
class T2I_picst<string opc, PatFrag opnode> :
T2I<(outs), (ins GPR:$src, addrmodepc:$addr),
!strconcat("${addr:label}:\n\t", opc), " $src, $addr",
[(opnode GPR:$src, addrmodepc:$addr)]>;
//===----------------------------------------------------------------------===//
// Instructions
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Miscellaneous Instructions.
//
let isNotDuplicable = 1 in
def t2PICADD : T2XI<(outs tGPR:$dst), (ins tGPR:$lhs, pclabel:$cp),
"$cp:\n\tadd $dst, pc",
[(set tGPR:$dst, (ARMpic_add tGPR:$lhs, imm:$cp))]>;
// LEApcrel - Load a pc-relative address into a register without offending the
// assembler.
def t2LEApcrel : T2XI<(outs GPR:$dst), (ins i32imm:$label, pred:$p),
!strconcat(!strconcat(".set PCRELV${:uid}, ($label-(",
"${:private}PCRELL${:uid}+8))\n"),
!strconcat("${:private}PCRELL${:uid}:\n\t",
"add$p $dst, pc, #PCRELV${:uid}")),
[]>;
def t2LEApcrelJT : T2XI<(outs GPR:$dst),
(ins i32imm:$label, i32imm:$id, pred:$p),
!strconcat(!strconcat(".set PCRELV${:uid}, (${label}_${id:no_hash}-(",
"${:private}PCRELL${:uid}+8))\n"),
!strconcat("${:private}PCRELL${:uid}:\n\t",
"add$p $dst, pc, #PCRELV${:uid}")),
[]>;
// ADD rd, sp, #so_imm
def t2ADDrSPi : T2XI<(outs GPR:$dst), (ins GPR:$sp, t2_so_imm:$imm),
"add $dst, $sp, $imm",
[]>;
// ADD rd, sp, #imm12
def t2ADDrSPi12 : T2XI<(outs GPR:$dst), (ins GPR:$sp, i32imm:$imm),
"addw $dst, $sp, $imm",
[]>;
def t2ADDrSPs : T2XI<(outs GPR:$dst), (ins GPR:$sp, t2_so_reg:$rhs),
"addw $dst, $sp, $rhs",
[]>;
//===----------------------------------------------------------------------===//
// Load / store Instructions.
//
// Load
let canFoldAsLoad = 1 in
defm t2LDR : T2I_ld<"ldr", UnOpFrag<(load node:$Src)>>;
// Loads with zero extension
defm t2LDRH : T2I_ld<"ldrh", UnOpFrag<(zextloadi16 node:$Src)>>;
defm t2LDRB : T2I_ld<"ldrb", UnOpFrag<(zextloadi8 node:$Src)>>;
// Loads with sign extension
defm t2LDRSH : T2I_ld<"ldrsh", UnOpFrag<(sextloadi16 node:$Src)>>;
defm t2LDRSB : T2I_ld<"ldrsb", UnOpFrag<(sextloadi8 node:$Src)>>;
let mayLoad = 1 in {
// Load doubleword
def t2LDRDi8 : T2Ii8s4<(outs GPR:$dst), (ins t2addrmode_imm8s4:$addr),
"ldrd", " $dst, $addr", []>;
def t2LDRDpci : T2Ii8s4<(outs GPR:$dst), (ins i32imm:$addr),
"ldrd", " $dst, $addr", []>;
}
// zextload i1 -> zextload i8
def : T2Pat<(zextloadi1 t2addrmode_imm12:$addr),
(t2LDRBi12 t2addrmode_imm12:$addr)>;
def : T2Pat<(zextloadi1 t2addrmode_imm8:$addr),
(t2LDRBi8 t2addrmode_imm8:$addr)>;
def : T2Pat<(zextloadi1 t2addrmode_so_reg:$addr),
(t2LDRBs t2addrmode_so_reg:$addr)>;
def : T2Pat<(zextloadi1 (ARMWrapper tconstpool:$addr)),
(t2LDRBpci tconstpool:$addr)>;
// extload -> zextload
// FIXME: Reduce the number of patterns by legalizing extload to zextload
// earlier?
def : T2Pat<(extloadi1 t2addrmode_imm12:$addr),
(t2LDRBi12 t2addrmode_imm12:$addr)>;
def : T2Pat<(extloadi1 t2addrmode_imm8:$addr),
(t2LDRBi8 t2addrmode_imm8:$addr)>;
def : T2Pat<(extloadi1 t2addrmode_so_reg:$addr),
(t2LDRBs t2addrmode_so_reg:$addr)>;
def : T2Pat<(extloadi1 (ARMWrapper tconstpool:$addr)),
(t2LDRBpci tconstpool:$addr)>;
def : T2Pat<(extloadi8 t2addrmode_imm12:$addr),
(t2LDRBi12 t2addrmode_imm12:$addr)>;
def : T2Pat<(extloadi8 t2addrmode_imm8:$addr),
(t2LDRBi8 t2addrmode_imm8:$addr)>;
def : T2Pat<(extloadi8 t2addrmode_so_reg:$addr),
(t2LDRBs t2addrmode_so_reg:$addr)>;
def : T2Pat<(extloadi8 (ARMWrapper tconstpool:$addr)),
(t2LDRBpci tconstpool:$addr)>;
def : T2Pat<(extloadi16 t2addrmode_imm12:$addr),
(t2LDRHi12 t2addrmode_imm12:$addr)>;
def : T2Pat<(extloadi16 t2addrmode_imm8:$addr),
(t2LDRHi8 t2addrmode_imm8:$addr)>;
def : T2Pat<(extloadi16 t2addrmode_so_reg:$addr),
(t2LDRHs t2addrmode_so_reg:$addr)>;
def : T2Pat<(extloadi16 (ARMWrapper tconstpool:$addr)),
(t2LDRHpci tconstpool:$addr)>;
// Store
defm t2STR : T2I_st<"str", BinOpFrag<(store node:$LHS, node:$RHS)>>;
defm t2STRB : T2I_st<"strb", BinOpFrag<(truncstorei8 node:$LHS, node:$RHS)>>;
defm t2STRH : T2I_st<"strh", BinOpFrag<(truncstorei16 node:$LHS, node:$RHS)>>;
// Store doubleword
let mayLoad = 1 in
def t2STRDi8 : T2Ii8s4<(outs), (ins GPR:$src, t2addrmode_imm8s4:$addr),
"strd", " $src, $addr", []>;
// Address computation and loads and stores in PIC mode.
let isNotDuplicable = 1, AddedComplexity = 10 in {
let canFoldAsLoad = 1 in
def t2PICLDR : T2I_picld<"ldr", UnOpFrag<(load node:$Src)>>;
def t2PICLDRH : T2I_picld<"ldrh", UnOpFrag<(zextloadi16 node:$Src)>>;
def t2PICLDRB : T2I_picld<"ldrb", UnOpFrag<(zextloadi8 node:$Src)>>;
def t2PICLDRSH : T2I_picld<"ldrsh", UnOpFrag<(sextloadi16 node:$Src)>>;
def t2PICLDRSB : T2I_picld<"ldrsb", UnOpFrag<(sextloadi8 node:$Src)>>;
def t2PICSTR : T2I_picst<"str", BinOpFrag<(store node:$LHS, node:$RHS)>>;
def t2PICSTRH : T2I_picst<"strh", BinOpFrag<(truncstorei16 node:$LHS, node:$RHS)>>;
def t2PICSTRB : T2I_picst<"strb", BinOpFrag<(truncstorei8 node:$LHS, node:$RHS)>>;
} // isNotDuplicable = 1, AddedComplexity = 10
//===----------------------------------------------------------------------===//
// Move Instructions.
//
let neverHasSideEffects = 1 in
def t2MOVr : T2sI<(outs GPR:$dst), (ins GPR:$src),
"mov", " $dst, $src", []>;
let isReMaterializable = 1, isAsCheapAsAMove = 1 in
def t2MOVi : T2sI<(outs GPR:$dst), (ins t2_so_imm:$src),
"mov", " $dst, $src",
[(set GPR:$dst, t2_so_imm:$src)]>;
let isReMaterializable = 1, isAsCheapAsAMove = 1 in
def t2MOVi16 : T2I<(outs GPR:$dst), (ins i32imm:$src),
"movw", " $dst, $src",
[(set GPR:$dst, imm0_65535:$src)]>;
// FIXME: Also available in ARM mode.
let Constraints = "$src = $dst" in
def t2MOVTi16 : T2sI<(outs GPR:$dst), (ins GPR:$src, i32imm:$imm),
"movt", " $dst, $imm",
[(set GPR:$dst,
(or (and GPR:$src, 0xffff), t2_lo16AllZero:$imm))]>;
//===----------------------------------------------------------------------===//
// Arithmetic Instructions.
//
defm t2ADD : T2I_bin_ii12rs<"add", BinOpFrag<(add node:$LHS, node:$RHS)>, 1>;
defm t2SUB : T2I_bin_ii12rs<"sub", BinOpFrag<(sub node:$LHS, node:$RHS)>>;
// ADD and SUB with 's' bit set. No 12-bit immediate (T4) variants.
defm t2ADDS : T2I_bin_s_irs <"add", BinOpFrag<(addc node:$LHS, node:$RHS)>, 1>;
defm t2SUBS : T2I_bin_s_irs <"sub", BinOpFrag<(subc node:$LHS, node:$RHS)>>;
defm t2ADC : T2I_adde_sube_irs<"adc",BinOpFrag<(adde node:$LHS, node:$RHS)>,1>;
defm t2SBC : T2I_adde_sube_irs<"sbc",BinOpFrag<(sube node:$LHS, node:$RHS)>>;
// RSB, RSC
defm t2RSB : T2I_rbin_is <"rsb", BinOpFrag<(sub node:$LHS, node:$RHS)>>;
defm t2RSBS : T2I_rbin_s_is <"rsb", BinOpFrag<(subc node:$LHS, node:$RHS)>>;
defm t2RSC : T2I_rsc_is <"rsc", BinOpFrag<(sube node:$LHS, node:$RHS)>>;
// (sub X, imm) gets canonicalized to (add X, -imm). Match this form.
def : T2Pat<(add GPR:$src, t2_so_imm_neg:$imm),
(t2SUBri GPR:$src, t2_so_imm_neg:$imm)>;
def : T2Pat<(add GPR:$src, imm0_4095_neg:$imm),
(t2SUBri12 GPR:$src, imm0_4095_neg:$imm)>;
//===----------------------------------------------------------------------===//
// Shift and rotate Instructions.
//
defm t2LSL : T2I_sh_ir<"lsl", BinOpFrag<(shl node:$LHS, node:$RHS)>>;
defm t2LSR : T2I_sh_ir<"lsr", BinOpFrag<(srl node:$LHS, node:$RHS)>>;
defm t2ASR : T2I_sh_ir<"asr", BinOpFrag<(sra node:$LHS, node:$RHS)>>;
defm t2ROR : T2I_sh_ir<"ror", BinOpFrag<(rotr node:$LHS, node:$RHS)>>;
def t2MOVrx : T2sI<(outs GPR:$dst), (ins GPR:$src),
"mov", " $dst, $src, rrx",
[(set GPR:$dst, (ARMrrx GPR:$src))]>;
//===----------------------------------------------------------------------===//
// Bitwise Instructions.
//
defm t2AND : T2I_bin_irs<"and", BinOpFrag<(and node:$LHS, node:$RHS)>, 1>;
defm t2ORR : T2I_bin_irs<"orr", BinOpFrag<(or node:$LHS, node:$RHS)>, 1>;
defm t2EOR : T2I_bin_irs<"eor", BinOpFrag<(xor node:$LHS, node:$RHS)>, 1>;
defm t2BIC : T2I_bin_irs<"bic", BinOpFrag<(and node:$LHS, (not node:$RHS))>>;
def : T2Pat<(and GPR:$src, t2_so_imm_not:$imm),
(t2BICri GPR:$src, t2_so_imm_not:$imm)>;
defm t2ORN : T2I_bin_irs<"orn", BinOpFrag<(or node:$LHS, (not node:$RHS))>>;
def : T2Pat<(or GPR:$src, t2_so_imm_not:$imm),
(t2ORNri GPR:$src, t2_so_imm_not:$imm)>;
// Prefer over of t2EORri ra, rb, -1 because mvn has 16-bit version
let AddedComplexity = 1 in
defm t2MVN : T2I_un_irs <"mvn", UnOpFrag<(not node:$Src)>, 1, 1>;
def : T2Pat<(t2_so_imm_not:$src),
(t2MVNi t2_so_imm_not:$src)>;
// A8.6.17 BFC - Bitfield clear
// FIXME: Also available in ARM mode.
let Constraints = "$src = $dst" in
def t2BFC : T2I<(outs GPR:$dst), (ins GPR:$src, bf_inv_mask_imm:$imm),
"bfc", " $dst, $imm",
[(set GPR:$dst, (and GPR:$src, bf_inv_mask_imm:$imm))]>;
// FIXME: A8.6.18 BFI - Bitfield insert (Encoding T1)
//===----------------------------------------------------------------------===//
// Multiply Instructions.
//
let isCommutable = 1 in
def t2MUL: T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b),
"mul", " $dst, $a, $b",
[(set GPR:$dst, (mul GPR:$a, GPR:$b))]>;
def t2MLA: T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$c),
"mla", " $dst, $a, $b, $c",
[(set GPR:$dst, (add (mul GPR:$a, GPR:$b), GPR:$c))]>;
def t2MLS: T2I<(outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$c),
"mls", " $dst, $a, $b, $c",
[(set GPR:$dst, (sub GPR:$c, (mul GPR:$a, GPR:$b)))]>;
// FIXME: SMULL, etc.
//===----------------------------------------------------------------------===//
// Misc. Arithmetic Instructions.
//
def t2CLZ : T2I<(outs GPR:$dst), (ins GPR:$src),
"clz", " $dst, $src",
[(set GPR:$dst, (ctlz GPR:$src))]>;
def t2REV : T2I<(outs GPR:$dst), (ins GPR:$src),
"rev", " $dst, $src",
[(set GPR:$dst, (bswap GPR:$src))]>;
def t2REV16 : T2I<(outs GPR:$dst), (ins GPR:$src),
"rev16", " $dst, $src",
[(set GPR:$dst,
(or (and (srl GPR:$src, (i32 8)), 0xFF),
(or (and (shl GPR:$src, (i32 8)), 0xFF00),
(or (and (srl GPR:$src, (i32 8)), 0xFF0000),
(and (shl GPR:$src, (i32 8)), 0xFF000000)))))]>;
/////
/// A8.6.137 REVSH
/////
def t2REVSH : T2I<(outs GPR:$dst), (ins GPR:$src),
"revsh", " $dst, $src",
[(set GPR:$dst,
(sext_inreg
(or (srl (and GPR:$src, 0xFFFF), (i32 8)),
(shl GPR:$src, (i32 8))), i16))]>;
// FIXME: PKHxx etc.
//===----------------------------------------------------------------------===//
// Comparison Instructions...
//
defm t2CMP : T2I_cmp_is<"cmp",
BinOpFrag<(ARMcmp node:$LHS, node:$RHS)>>;
defm t2CMPz : T2I_cmp_is<"cmp",
BinOpFrag<(ARMcmpZ node:$LHS, node:$RHS)>>;
defm t2CMN : T2I_cmp_is<"cmn",
BinOpFrag<(ARMcmp node:$LHS,(ineg node:$RHS))>>;
defm t2CMNz : T2I_cmp_is<"cmn",
BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))>>;
def : T2Pat<(ARMcmp GPR:$src, t2_so_imm_neg:$imm),
(t2CMNri GPR:$src, t2_so_imm_neg:$imm)>;
def : T2Pat<(ARMcmpZ GPR:$src, t2_so_imm_neg:$imm),
(t2CMNri GPR:$src, t2_so_imm_neg:$imm)>;
defm t2TST : T2I_cmp_is<"tst",
BinOpFrag<(ARMcmpZ (and node:$LHS, node:$RHS), 0)>>;
defm t2TEQ : T2I_cmp_is<"teq",
BinOpFrag<(ARMcmpZ (xor node:$LHS, node:$RHS), 0)>>;
// A8.6.27 CBNZ, CBZ - Compare and branch on (non)zero.
// Short range conditional branch. Looks awesome for loops. Need to figure
// out how to use this one.
// FIXME: Conditional moves
//===----------------------------------------------------------------------===//
// Control-Flow Instructions
//
let isBranch = 1, isTerminator = 1, isBarrier = 1 in {
let isPredicable = 1 in
def t2B : T2XI<(outs), (ins brtarget:$target),
"b $target",
[(br bb:$target)]>;
let isNotDuplicable = 1, isIndirectBranch = 1 in {
def t2BR_JTr : T2JTI<(outs), (ins GPR:$target, jtblock_operand:$jt, i32imm:$id),
"mov pc, $target \n$jt",
[(ARMbrjt GPR:$target, tjumptable:$jt, imm:$id)]>;
def t2BR_JTm :
T2JTI<(outs),
(ins t2addrmode_so_reg:$target, jtblock_operand:$jt, i32imm:$id),
"ldr pc, $target \n$jt",
[(ARMbrjt (i32 (load t2addrmode_so_reg:$target)), tjumptable:$jt,
imm:$id)]>;
def t2BR_JTadd :
T2JTI<(outs),
(ins GPR:$target, GPR:$idx, jtblock_operand:$jt, i32imm:$id),
"add pc, $target, $idx \n$jt",
[(ARMbrjt (add GPR:$target, GPR:$idx), tjumptable:$jt, imm:$id)]>;
} // isNotDuplicate, isIndirectBranch
} // isBranch, isTerminator, isBarrier
// FIXME: should be able to write a pattern for ARMBrcond, but can't use
// a two-value operand where a dag node expects two operands. :(
let isBranch = 1, isTerminator = 1 in
def t2Bcc : T2I<(outs), (ins brtarget:$target),
"b", " $target",
[/*(ARMbrcond bb:$target, imm:$cc)*/]>;
//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
//
// ConstantPool, GlobalAddress, and JumpTable
def : T2Pat<(ARMWrapper tglobaladdr :$dst), (t2LEApcrel tglobaladdr :$dst)>;
def : T2Pat<(ARMWrapper tconstpool :$dst), (t2LEApcrel tconstpool :$dst)>;
def : T2Pat<(ARMWrapperJT tjumptable:$dst, imm:$id),
(t2LEApcrelJT tjumptable:$dst, imm:$id)>;
// Large immediate handling.
def : T2Pat<(i32 imm:$src),
(t2MOVTi16 (t2MOVi16 (t2_lo16 imm:$src)), (t2_hi16 imm:$src))>;