mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-10 18:34:09 +00:00
b0b53491ef
This is a short term workaround. The current solution is for the JIT memory manager to manage code and data memory separately. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@58688 91177308-0d34-0410-b5e6-96231b3b80d8
626 lines
21 KiB
C++
626 lines
21 KiB
C++
//===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This tool implements a just-in-time compiler for LLVM, allowing direct
|
|
// execution of LLVM bitcode in an efficient manner.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "JIT.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/GlobalVariable.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/ModuleProvider.h"
|
|
#include "llvm/CodeGen/MachineCodeEmitter.h"
|
|
#include "llvm/ExecutionEngine/GenericValue.h"
|
|
#include "llvm/Support/MutexGuard.h"
|
|
#include "llvm/System/DynamicLibrary.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetJITInfo.h"
|
|
|
|
#include "llvm/Config/config.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#ifdef __APPLE__
|
|
// Apple gcc defaults to -fuse-cxa-atexit (i.e. calls __cxa_atexit instead
|
|
// of atexit). It passes the address of linker generated symbol __dso_handle
|
|
// to the function.
|
|
// This configuration change happened at version 5330.
|
|
# include <AvailabilityMacros.h>
|
|
# if defined(MAC_OS_X_VERSION_10_4) && \
|
|
((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \
|
|
(MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \
|
|
__APPLE_CC__ >= 5330))
|
|
# ifndef HAVE___DSO_HANDLE
|
|
# define HAVE___DSO_HANDLE 1
|
|
# endif
|
|
# endif
|
|
#endif
|
|
|
|
#if HAVE___DSO_HANDLE
|
|
extern void *__dso_handle __attribute__ ((__visibility__ ("hidden")));
|
|
#endif
|
|
|
|
namespace {
|
|
|
|
static struct RegisterJIT {
|
|
RegisterJIT() { JIT::Register(); }
|
|
} JITRegistrator;
|
|
|
|
}
|
|
|
|
namespace llvm {
|
|
void LinkInJIT() {
|
|
}
|
|
}
|
|
|
|
|
|
#if defined (__GNUC__)
|
|
|
|
// libgcc defines the __register_frame function to dynamically register new
|
|
// dwarf frames for exception handling. This functionality is not portable
|
|
// across compilers and is only provided by GCC. We use the __register_frame
|
|
// function here so that code generated by the JIT cooperates with the unwinding
|
|
// runtime of libgcc. When JITting with exception handling enable, LLVM
|
|
// generates dwarf frames and registers it to libgcc with __register_frame.
|
|
//
|
|
// The __register_frame function works with Linux.
|
|
//
|
|
// Unfortunately, this functionality seems to be in libgcc after the unwinding
|
|
// library of libgcc for darwin was written. The code for darwin overwrites the
|
|
// value updated by __register_frame with a value fetched with "keymgr".
|
|
// "keymgr" is an obsolete functionality, which should be rewritten some day.
|
|
// In the meantime, since "keymgr" is on all libgccs shipped with apple-gcc, we
|
|
// need a workaround in LLVM which uses the "keymgr" to dynamically modify the
|
|
// values of an opaque key, used by libgcc to find dwarf tables.
|
|
|
|
extern "C" void __register_frame(void*);
|
|
|
|
#if defined (__APPLE__)
|
|
|
|
namespace {
|
|
|
|
// LibgccObject - This is the structure defined in libgcc. There is no #include
|
|
// provided for this structure, so we also define it here. libgcc calls it
|
|
// "struct object". The structure is undocumented in libgcc.
|
|
struct LibgccObject {
|
|
void *unused1;
|
|
void *unused2;
|
|
void *unused3;
|
|
|
|
/// frame - Pointer to the exception table.
|
|
void *frame;
|
|
|
|
/// encoding - The encoding of the object?
|
|
union {
|
|
struct {
|
|
unsigned long sorted : 1;
|
|
unsigned long from_array : 1;
|
|
unsigned long mixed_encoding : 1;
|
|
unsigned long encoding : 8;
|
|
unsigned long count : 21;
|
|
} b;
|
|
size_t i;
|
|
} encoding;
|
|
|
|
/// fde_end - libgcc defines this field only if some macro is defined. We
|
|
/// include this field even if it may not there, to make libgcc happy.
|
|
char *fde_end;
|
|
|
|
/// next - At least we know it's a chained list!
|
|
struct LibgccObject *next;
|
|
};
|
|
|
|
// "kemgr" stuff. Apparently, all frame tables are stored there.
|
|
extern "C" void _keymgr_set_and_unlock_processwide_ptr(int, void *);
|
|
extern "C" void *_keymgr_get_and_lock_processwide_ptr(int);
|
|
#define KEYMGR_GCC3_DW2_OBJ_LIST 302 /* Dwarf2 object list */
|
|
|
|
/// LibgccObjectInfo - libgcc defines this struct as km_object_info. It
|
|
/// probably contains all dwarf tables that are loaded.
|
|
struct LibgccObjectInfo {
|
|
|
|
/// seenObjects - LibgccObjects already parsed by the unwinding runtime.
|
|
///
|
|
struct LibgccObject* seenObjects;
|
|
|
|
/// unseenObjects - LibgccObjects not parsed yet by the unwinding runtime.
|
|
///
|
|
struct LibgccObject* unseenObjects;
|
|
|
|
unsigned unused[2];
|
|
};
|
|
|
|
// for DW_EH_PE_omit
|
|
#include "llvm/Support/Dwarf.h"
|
|
|
|
/// darwin_register_frame - Since __register_frame does not work with darwin's
|
|
/// libgcc,we provide our own function, which "tricks" libgcc by modifying the
|
|
/// "Dwarf2 object list" key.
|
|
void DarwinRegisterFrame(void* FrameBegin) {
|
|
// Get the key.
|
|
struct LibgccObjectInfo* LOI = (struct LibgccObjectInfo*)
|
|
_keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST);
|
|
|
|
// Allocate a new LibgccObject to represent this frame. Deallocation of this
|
|
// object may be impossible: since darwin code in libgcc was written after
|
|
// the ability to dynamically register frames, things may crash if we
|
|
// deallocate it.
|
|
struct LibgccObject* ob = (struct LibgccObject*)
|
|
malloc(sizeof(struct LibgccObject));
|
|
|
|
// Do like libgcc for the values of the field.
|
|
ob->unused1 = (void *)-1;
|
|
ob->unused2 = 0;
|
|
ob->unused3 = 0;
|
|
ob->frame = FrameBegin;
|
|
ob->encoding.i = 0;
|
|
ob->encoding.b.encoding = llvm::dwarf::DW_EH_PE_omit;
|
|
|
|
// Put the info on both places, as libgcc uses the first or the the second
|
|
// field. Note that we rely on having two pointers here. If fde_end was a
|
|
// char, things would get complicated.
|
|
ob->fde_end = (char*)LOI->unseenObjects;
|
|
ob->next = LOI->unseenObjects;
|
|
|
|
// Update the key's unseenObjects list.
|
|
LOI->unseenObjects = ob;
|
|
|
|
// Finally update the "key". Apparently, libgcc requires it.
|
|
_keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST,
|
|
LOI);
|
|
|
|
}
|
|
|
|
}
|
|
#endif // __APPLE__
|
|
#endif // __GNUC__
|
|
|
|
/// createJIT - This is the factory method for creating a JIT for the current
|
|
/// machine, it does not fall back to the interpreter. This takes ownership
|
|
/// of the module provider.
|
|
ExecutionEngine *ExecutionEngine::createJIT(ModuleProvider *MP,
|
|
std::string *ErrorStr,
|
|
JITMemoryManager *JMM,
|
|
bool Fast) {
|
|
ExecutionEngine *EE = JIT::createJIT(MP, ErrorStr, JMM, Fast);
|
|
if (!EE) return 0;
|
|
|
|
// Make sure we can resolve symbols in the program as well. The zero arg
|
|
// to the function tells DynamicLibrary to load the program, not a library.
|
|
sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr);
|
|
return EE;
|
|
}
|
|
|
|
JIT::JIT(ModuleProvider *MP, TargetMachine &tm, TargetJITInfo &tji,
|
|
JITMemoryManager *JMM, bool Fast)
|
|
: ExecutionEngine(MP), TM(tm), TJI(tji) {
|
|
setTargetData(TM.getTargetData());
|
|
|
|
jitstate = new JITState(MP);
|
|
|
|
// Initialize MCE
|
|
MCE = createEmitter(*this, JMM);
|
|
|
|
// Add target data
|
|
MutexGuard locked(lock);
|
|
FunctionPassManager &PM = jitstate->getPM(locked);
|
|
PM.add(new TargetData(*TM.getTargetData()));
|
|
|
|
// Turn the machine code intermediate representation into bytes in memory that
|
|
// may be executed.
|
|
if (TM.addPassesToEmitMachineCode(PM, *MCE, Fast)) {
|
|
cerr << "Target does not support machine code emission!\n";
|
|
abort();
|
|
}
|
|
|
|
// Register routine for informing unwinding runtime about new EH frames
|
|
#if defined(__GNUC__)
|
|
#if defined(__APPLE__)
|
|
struct LibgccObjectInfo* LOI = (struct LibgccObjectInfo*)
|
|
_keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST);
|
|
|
|
// The key is created on demand, and libgcc creates it the first time an
|
|
// exception occurs. Since we need the key to register frames, we create
|
|
// it now.
|
|
if (!LOI) {
|
|
LOI = (LibgccObjectInfo*)malloc(sizeof(struct LibgccObjectInfo));
|
|
_keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST,
|
|
LOI);
|
|
}
|
|
InstallExceptionTableRegister(DarwinRegisterFrame);
|
|
#else
|
|
InstallExceptionTableRegister(__register_frame);
|
|
#endif // __APPLE__
|
|
#endif // __GNUC__
|
|
|
|
// Initialize passes.
|
|
PM.doInitialization();
|
|
}
|
|
|
|
JIT::~JIT() {
|
|
delete jitstate;
|
|
delete MCE;
|
|
delete &TM;
|
|
}
|
|
|
|
/// addModuleProvider - Add a new ModuleProvider to the JIT. If we previously
|
|
/// removed the last ModuleProvider, we need re-initialize jitstate with a valid
|
|
/// ModuleProvider.
|
|
void JIT::addModuleProvider(ModuleProvider *MP) {
|
|
MutexGuard locked(lock);
|
|
|
|
if (Modules.empty()) {
|
|
assert(!jitstate && "jitstate should be NULL if Modules vector is empty!");
|
|
|
|
jitstate = new JITState(MP);
|
|
|
|
FunctionPassManager &PM = jitstate->getPM(locked);
|
|
PM.add(new TargetData(*TM.getTargetData()));
|
|
|
|
// Turn the machine code intermediate representation into bytes in memory
|
|
// that may be executed.
|
|
if (TM.addPassesToEmitMachineCode(PM, *MCE, false /*fast*/)) {
|
|
cerr << "Target does not support machine code emission!\n";
|
|
abort();
|
|
}
|
|
|
|
// Initialize passes.
|
|
PM.doInitialization();
|
|
}
|
|
|
|
ExecutionEngine::addModuleProvider(MP);
|
|
}
|
|
|
|
/// removeModuleProvider - If we are removing the last ModuleProvider,
|
|
/// invalidate the jitstate since the PassManager it contains references a
|
|
/// released ModuleProvider.
|
|
Module *JIT::removeModuleProvider(ModuleProvider *MP, std::string *E) {
|
|
Module *result = ExecutionEngine::removeModuleProvider(MP, E);
|
|
|
|
MutexGuard locked(lock);
|
|
if (Modules.empty()) {
|
|
delete jitstate;
|
|
jitstate = 0;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/// run - Start execution with the specified function and arguments.
|
|
///
|
|
GenericValue JIT::runFunction(Function *F,
|
|
const std::vector<GenericValue> &ArgValues) {
|
|
assert(F && "Function *F was null at entry to run()");
|
|
|
|
void *FPtr = getPointerToFunction(F);
|
|
assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
|
|
const FunctionType *FTy = F->getFunctionType();
|
|
const Type *RetTy = FTy->getReturnType();
|
|
|
|
assert((FTy->getNumParams() <= ArgValues.size() || FTy->isVarArg()) &&
|
|
"Too many arguments passed into function!");
|
|
assert(FTy->getNumParams() == ArgValues.size() &&
|
|
"This doesn't support passing arguments through varargs (yet)!");
|
|
|
|
// Handle some common cases first. These cases correspond to common `main'
|
|
// prototypes.
|
|
if (RetTy == Type::Int32Ty || RetTy == Type::VoidTy) {
|
|
switch (ArgValues.size()) {
|
|
case 3:
|
|
if (FTy->getParamType(0) == Type::Int32Ty &&
|
|
isa<PointerType>(FTy->getParamType(1)) &&
|
|
isa<PointerType>(FTy->getParamType(2))) {
|
|
int (*PF)(int, char **, const char **) =
|
|
(int(*)(int, char **, const char **))(intptr_t)FPtr;
|
|
|
|
// Call the function.
|
|
GenericValue rv;
|
|
rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
|
|
(char **)GVTOP(ArgValues[1]),
|
|
(const char **)GVTOP(ArgValues[2])));
|
|
return rv;
|
|
}
|
|
break;
|
|
case 2:
|
|
if (FTy->getParamType(0) == Type::Int32Ty &&
|
|
isa<PointerType>(FTy->getParamType(1))) {
|
|
int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
|
|
|
|
// Call the function.
|
|
GenericValue rv;
|
|
rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
|
|
(char **)GVTOP(ArgValues[1])));
|
|
return rv;
|
|
}
|
|
break;
|
|
case 1:
|
|
if (FTy->getNumParams() == 1 &&
|
|
FTy->getParamType(0) == Type::Int32Ty) {
|
|
GenericValue rv;
|
|
int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
|
|
rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
|
|
return rv;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Handle cases where no arguments are passed first.
|
|
if (ArgValues.empty()) {
|
|
GenericValue rv;
|
|
switch (RetTy->getTypeID()) {
|
|
default: assert(0 && "Unknown return type for function call!");
|
|
case Type::IntegerTyID: {
|
|
unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
|
|
if (BitWidth == 1)
|
|
rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
|
|
else if (BitWidth <= 8)
|
|
rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
|
|
else if (BitWidth <= 16)
|
|
rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
|
|
else if (BitWidth <= 32)
|
|
rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
|
|
else if (BitWidth <= 64)
|
|
rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
|
|
else
|
|
assert(0 && "Integer types > 64 bits not supported");
|
|
return rv;
|
|
}
|
|
case Type::VoidTyID:
|
|
rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
|
|
return rv;
|
|
case Type::FloatTyID:
|
|
rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
|
|
return rv;
|
|
case Type::DoubleTyID:
|
|
rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
|
|
return rv;
|
|
case Type::X86_FP80TyID:
|
|
case Type::FP128TyID:
|
|
case Type::PPC_FP128TyID:
|
|
assert(0 && "long double not supported yet");
|
|
return rv;
|
|
case Type::PointerTyID:
|
|
return PTOGV(((void*(*)())(intptr_t)FPtr)());
|
|
}
|
|
}
|
|
|
|
// Okay, this is not one of our quick and easy cases. Because we don't have a
|
|
// full FFI, we have to codegen a nullary stub function that just calls the
|
|
// function we are interested in, passing in constants for all of the
|
|
// arguments. Make this function and return.
|
|
|
|
// First, create the function.
|
|
FunctionType *STy=FunctionType::get(RetTy, std::vector<const Type*>(), false);
|
|
Function *Stub = Function::Create(STy, Function::InternalLinkage, "",
|
|
F->getParent());
|
|
|
|
// Insert a basic block.
|
|
BasicBlock *StubBB = BasicBlock::Create("", Stub);
|
|
|
|
// Convert all of the GenericValue arguments over to constants. Note that we
|
|
// currently don't support varargs.
|
|
SmallVector<Value*, 8> Args;
|
|
for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) {
|
|
Constant *C = 0;
|
|
const Type *ArgTy = FTy->getParamType(i);
|
|
const GenericValue &AV = ArgValues[i];
|
|
switch (ArgTy->getTypeID()) {
|
|
default: assert(0 && "Unknown argument type for function call!");
|
|
case Type::IntegerTyID:
|
|
C = ConstantInt::get(AV.IntVal);
|
|
break;
|
|
case Type::FloatTyID:
|
|
C = ConstantFP::get(APFloat(AV.FloatVal));
|
|
break;
|
|
case Type::DoubleTyID:
|
|
C = ConstantFP::get(APFloat(AV.DoubleVal));
|
|
break;
|
|
case Type::PPC_FP128TyID:
|
|
case Type::X86_FP80TyID:
|
|
case Type::FP128TyID:
|
|
C = ConstantFP::get(APFloat(AV.IntVal));
|
|
break;
|
|
case Type::PointerTyID:
|
|
void *ArgPtr = GVTOP(AV);
|
|
if (sizeof(void*) == 4)
|
|
C = ConstantInt::get(Type::Int32Ty, (int)(intptr_t)ArgPtr);
|
|
else
|
|
C = ConstantInt::get(Type::Int64Ty, (intptr_t)ArgPtr);
|
|
C = ConstantExpr::getIntToPtr(C, ArgTy); // Cast the integer to pointer
|
|
break;
|
|
}
|
|
Args.push_back(C);
|
|
}
|
|
|
|
CallInst *TheCall = CallInst::Create(F, Args.begin(), Args.end(),
|
|
"", StubBB);
|
|
TheCall->setTailCall();
|
|
if (TheCall->getType() != Type::VoidTy)
|
|
ReturnInst::Create(TheCall, StubBB); // Return result of the call.
|
|
else
|
|
ReturnInst::Create(StubBB); // Just return void.
|
|
|
|
// Finally, return the value returned by our nullary stub function.
|
|
return runFunction(Stub, std::vector<GenericValue>());
|
|
}
|
|
|
|
/// runJITOnFunction - Run the FunctionPassManager full of
|
|
/// just-in-time compilation passes on F, hopefully filling in
|
|
/// GlobalAddress[F] with the address of F's machine code.
|
|
///
|
|
void JIT::runJITOnFunction(Function *F) {
|
|
static bool isAlreadyCodeGenerating = false;
|
|
|
|
MutexGuard locked(lock);
|
|
assert(!isAlreadyCodeGenerating && "Error: Recursive compilation detected!");
|
|
|
|
// JIT the function
|
|
isAlreadyCodeGenerating = true;
|
|
jitstate->getPM(locked).run(*F);
|
|
isAlreadyCodeGenerating = false;
|
|
|
|
// If the function referred to a global variable that had not yet been
|
|
// emitted, it allocates memory for the global, but doesn't emit it yet. Emit
|
|
// all of these globals now.
|
|
while (!jitstate->getPendingGlobals(locked).empty()) {
|
|
const GlobalVariable *GV = jitstate->getPendingGlobals(locked).back();
|
|
jitstate->getPendingGlobals(locked).pop_back();
|
|
EmitGlobalVariable(GV);
|
|
}
|
|
}
|
|
|
|
/// getPointerToFunction - This method is used to get the address of the
|
|
/// specified function, compiling it if neccesary.
|
|
///
|
|
void *JIT::getPointerToFunction(Function *F) {
|
|
|
|
if (void *Addr = getPointerToGlobalIfAvailable(F))
|
|
return Addr; // Check if function already code gen'd
|
|
|
|
// Make sure we read in the function if it exists in this Module.
|
|
if (F->hasNotBeenReadFromBitcode()) {
|
|
// Determine the module provider this function is provided by.
|
|
Module *M = F->getParent();
|
|
ModuleProvider *MP = 0;
|
|
for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
|
|
if (Modules[i]->getModule() == M) {
|
|
MP = Modules[i];
|
|
break;
|
|
}
|
|
}
|
|
assert(MP && "Function isn't in a module we know about!");
|
|
|
|
std::string ErrorMsg;
|
|
if (MP->materializeFunction(F, &ErrorMsg)) {
|
|
cerr << "Error reading function '" << F->getName()
|
|
<< "' from bitcode file: " << ErrorMsg << "\n";
|
|
abort();
|
|
}
|
|
}
|
|
|
|
if (void *Addr = getPointerToGlobalIfAvailable(F)) {
|
|
return Addr;
|
|
}
|
|
|
|
MutexGuard locked(lock);
|
|
|
|
if (F->isDeclaration()) {
|
|
void *Addr = getPointerToNamedFunction(F->getName());
|
|
addGlobalMapping(F, Addr);
|
|
return Addr;
|
|
}
|
|
|
|
runJITOnFunction(F);
|
|
|
|
void *Addr = getPointerToGlobalIfAvailable(F);
|
|
assert(Addr && "Code generation didn't add function to GlobalAddress table!");
|
|
return Addr;
|
|
}
|
|
|
|
/// getOrEmitGlobalVariable - Return the address of the specified global
|
|
/// variable, possibly emitting it to memory if needed. This is used by the
|
|
/// Emitter.
|
|
void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) {
|
|
MutexGuard locked(lock);
|
|
|
|
void *Ptr = getPointerToGlobalIfAvailable(GV);
|
|
if (Ptr) return Ptr;
|
|
|
|
// If the global is external, just remember the address.
|
|
if (GV->isDeclaration()) {
|
|
#if HAVE___DSO_HANDLE
|
|
if (GV->getName() == "__dso_handle")
|
|
return (void*)&__dso_handle;
|
|
#endif
|
|
Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV->getName().c_str());
|
|
if (Ptr == 0) {
|
|
cerr << "Could not resolve external global address: "
|
|
<< GV->getName() << "\n";
|
|
abort();
|
|
addGlobalMapping(GV, Ptr);
|
|
}
|
|
} else {
|
|
if (isGVCompilationDisabled()) {
|
|
cerr << "Compilation of GlobalVariable is disabled!\n";
|
|
abort();
|
|
}
|
|
// If the global hasn't been emitted to memory yet, allocate space and
|
|
// emit it into memory. It goes in the same array as the generated
|
|
// code, jump tables, etc.
|
|
const Type *GlobalType = GV->getType()->getElementType();
|
|
size_t S = getTargetData()->getABITypeSize(GlobalType);
|
|
size_t A = getTargetData()->getPreferredAlignment(GV);
|
|
if (GV->isThreadLocal()) {
|
|
MutexGuard locked(lock);
|
|
Ptr = TJI.allocateThreadLocalMemory(S);
|
|
} else if (TJI.allocateSeparateGVMemory()) {
|
|
if (A <= 8) {
|
|
Ptr = malloc(S);
|
|
} else {
|
|
// Allocate S+A bytes of memory, then use an aligned pointer within that
|
|
// space.
|
|
Ptr = malloc(S+A);
|
|
unsigned MisAligned = ((intptr_t)Ptr & (A-1));
|
|
Ptr = (char*)Ptr + (MisAligned ? (A-MisAligned) : 0);
|
|
}
|
|
} else {
|
|
Ptr = MCE->allocateSpace(S, A);
|
|
}
|
|
addGlobalMapping(GV, Ptr);
|
|
EmitGlobalVariable(GV);
|
|
}
|
|
return Ptr;
|
|
}
|
|
|
|
/// recompileAndRelinkFunction - This method is used to force a function
|
|
/// which has already been compiled, to be compiled again, possibly
|
|
/// after it has been modified. Then the entry to the old copy is overwritten
|
|
/// with a branch to the new copy. If there was no old copy, this acts
|
|
/// just like JIT::getPointerToFunction().
|
|
///
|
|
void *JIT::recompileAndRelinkFunction(Function *F) {
|
|
void *OldAddr = getPointerToGlobalIfAvailable(F);
|
|
|
|
// If it's not already compiled there is no reason to patch it up.
|
|
if (OldAddr == 0) { return getPointerToFunction(F); }
|
|
|
|
// Delete the old function mapping.
|
|
addGlobalMapping(F, 0);
|
|
|
|
// Recodegen the function
|
|
runJITOnFunction(F);
|
|
|
|
// Update state, forward the old function to the new function.
|
|
void *Addr = getPointerToGlobalIfAvailable(F);
|
|
assert(Addr && "Code generation didn't add function to GlobalAddress table!");
|
|
TJI.replaceMachineCodeForFunction(OldAddr, Addr);
|
|
return Addr;
|
|
}
|
|
|
|
/// getMemoryForGV - This method abstracts memory allocation of global
|
|
/// variable so that the JIT can allocate thread local variables depending
|
|
/// on the target.
|
|
///
|
|
char* JIT::getMemoryForGV(const GlobalVariable* GV) {
|
|
const Type *ElTy = GV->getType()->getElementType();
|
|
size_t GVSize = (size_t)getTargetData()->getABITypeSize(ElTy);
|
|
if (GV->isThreadLocal()) {
|
|
MutexGuard locked(lock);
|
|
return TJI.allocateThreadLocalMemory(GVSize);
|
|
} else {
|
|
return new char[GVSize];
|
|
}
|
|
}
|